[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6260829A - Two-stage-ignition sintering method for raw material for iron manufacture - Google Patents

Two-stage-ignition sintering method for raw material for iron manufacture

Info

Publication number
JPS6260829A
JPS6260829A JP19906485A JP19906485A JPS6260829A JP S6260829 A JPS6260829 A JP S6260829A JP 19906485 A JP19906485 A JP 19906485A JP 19906485 A JP19906485 A JP 19906485A JP S6260829 A JPS6260829 A JP S6260829A
Authority
JP
Japan
Prior art keywords
sintering
raw material
fixed carbon
layer
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19906485A
Other languages
Japanese (ja)
Other versions
JPH0567686B2 (en
Inventor
Shun Sato
駿 佐藤
Kazumasa Kato
和正 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19906485A priority Critical patent/JPS6260829A/en
Publication of JPS6260829A publication Critical patent/JPS6260829A/en
Publication of JPH0567686B2 publication Critical patent/JPH0567686B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To burn fixed carbon in high efficiency and to obtain an excellent sintered ore by regulating the fixed-carbon concentration in a raw material for iron manufacture for use in sintering to a proper value on the average of whole layer and by blending a fixed carbon-containing material so that said concentration is lower on the upper layer side and is higher on the lower layer side. CONSTITUTION:The raw material for iron manufacture is piled up on the floor of a sintering equipment into two layers in the direction of the height of layer and, at the same time, the respective surfaces of the above two layers are ignited severally, so that the sintering reaction of each layer is allowed to proceed simultaneously in two places in order to increase sharply the sintering reaction velocity and to improve productivity. In the above two-stage- ignition sintering method, the fixed carbon-concentration in the raw material for iron manufacture to be sintered is regulated to <=3.3wt% on the average of whole layer. When coke fines are used as the above fixed carbon-containing material, it is proper to regulate its quantity to 3.6% or below. Simultaneously, the fixed carbon-containing material is blended so that the fixed carbon concentration in the raw material becomes lower on the upper layer side and higher on the lower layer side, respectively. In this way, the fixed carbon contained in the lower layer is efficiently burned, so that deterioration in the strength of sintered ore products can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、製鉄原料の焼結法、特に2段点火式の製鉄原
料の焼結法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for sintering raw materials for iron manufacturing, particularly a two-stage ignition method for sintering raw materials for iron manufacturing.

(従来の技術) 製鉄用の鉄鉱石のうち粉状鉄鉱石は焼結により塊成化し
てから高炉に装入されている。
(Prior Art) Powdered iron ore, which is used for iron ore manufacturing, is agglomerated by sintering and then charged into a blast furnace.

一般に、このような粉状鉱石などの製鉄原料(以下、単
に“原料”という)の塊成化法としてDL型(ドワイト
ロイド型)焼結機が用いられてきた。これは第1図に示
す如く、焼結ストランドlの回りを周回回動せしめられ
る多数のパレット2上に、ホッパー3.4からそれぞれ
床敷鉱、焼結原料を順次供給し、点火炉5を通過する過
程で焼結原料表面に点火し、パレノロ多動域下に配した
風箱6からプロワ−7で吸引することによって原料上方
から下方に空気を流通させ、パレットが排鉱端に向う間
に原料の焼成を上方から下方に向けて進行させ、排鉱端
直前にて焼成を完了して塊成化した焼結鉱を得る方法で
ある。
Generally, a DL type (Dwight Lloyd type) sintering machine has been used as a method for agglomerating iron manufacturing raw materials (hereinafter simply referred to as "raw materials") such as powdered ore. As shown in Fig. 1, bedding ore and sintering raw materials are sequentially supplied from hoppers 3 and 4 onto a large number of pallets 2 which are rotated around the sintered strands l, and an ignition furnace 5 is started. During the process of passing, the surface of the sintered raw material is ignited, and air is circulated from above the raw material to downward by suctioning it with the blower 7 from the wind box 6 placed below the pallet hyperactive area, while the pallet moves toward the ore discharge end. In this method, the sintering of the raw material proceeds from the top to the bottom, and the sintering is completed just before the ore discharge end to obtain agglomerated sintered ore.

この間の焼結の進行状況は第2図に示す通りで、符号8
は原料を示し、斜線部分は焼結反応帯9を、さらに焼結
反応帯上に位置する符号工0は焼結完了帯をそれぞれ示
している。原料には燃料として粉コークスおよび高炉ガ
ス灰等の固定炭素含有材料が予め配合されており (主
に粉コークスを使用するので、以下粉コークスで代表さ
せる)、点火炉5で点火後、上方より0.濃度21%の
空気を通気せしめて固定炭素を燃焼させ、これにより鉱
石の溶融焼結を行っている。燃焼排ガスは風箱6を通し
て排気されるが、このときの排ガス中の0!濃度は13
%程度である。この酸素濃度レヘルのガスは未だ固定炭
素を燃焼させるだけの酸化力を保持しており、したがっ
て排ガスの再利用が望まれる。
The progress of sintering during this period is as shown in Figure 2, with reference numeral 8.
indicates the raw material, the shaded area indicates the sintering reaction zone 9, and the symbol 0 located above the sintering reaction zone indicates the sintered completed zone. The raw material is pre-blended with fixed carbon-containing materials such as coke powder and blast furnace gas ash as fuel (coke powder is mainly used, so it will be referred to as coke powder below), and after being ignited in the ignition furnace 5, it is heated from above. 0. Air with a concentration of 21% is aerated to burn fixed carbon, thereby melting and sintering the ore. The combustion exhaust gas is exhausted through the wind box 6, but at this time the exhaust gas contains 0! The concentration is 13
It is about %. Gas at this level of oxygen concentration still has enough oxidizing power to burn fixed carbon, and therefore it is desirable to reuse the exhaust gas.

(発明が解決しようとする問題点) したがって、かかる排ガス再利用技術の一つとして、従
来より[鉄と鋼J Vol、69、隘4.72頁に例示
されるような、排ガスの焼結ストランドへの循環技術が
実施されている。これはストランド後半の排ガスを抽気
し、これを再度原料表面に吹き付けて焼成ガスとして再
利用を図るもので、大気放散ガス量低減、窒素酸化物低
減、さらに排熱回収量増加等に効果がある。しかし、焼
結層内で起こる固定炭素の燃焼および焼結反応自体は、
第2図に示す従来の焼結法と同様であり、このため焼結
進行速度増加による生産性向上効果は達成できない。
(Problem to be Solved by the Invention) Therefore, as one of such exhaust gas reuse technologies, there has been a conventional method of using sintered strands of exhaust gas as exemplified in [Tetsu to Hagane J Vol. 69, page 4.72]. Circulation technology is being implemented. This extracts the exhaust gas from the latter half of the strand and sprays it onto the surface of the raw material again to reuse it as firing gas, which is effective in reducing the amount of gas released into the atmosphere, reducing nitrogen oxides, and increasing the amount of waste heat recovered. . However, the combustion of fixed carbon and the sintering reaction itself that occurs within the sintered layer are
This is similar to the conventional sintering method shown in FIG. 2, and therefore the productivity improvement effect by increasing the sintering progress rate cannot be achieved.

排ガスを再度焼結反応促進に利用し、かつ焼結進行速度
を速めるためには、原料層内で焼結反応を同時多発的に
進行させる必要がある。
In order to use the exhaust gas again to promote the sintering reaction and to speed up the sintering progress, it is necessary to allow the sintering reaction to proceed simultaneously in the raw material layer.

これを具体的に実現した方法として特開昭47−263
04号に示される方法がある。この方法は、原料供給装
置および点火炉をパレット進行方向に位置をずらして複
数個設け、供給された各々の原料表面に1@次点火せし
めて、焼結反応を進行させるもので、この操作により排
ガスの再利用と焼結反応速度の大幅な増加が可能となり
、この結果、生産性向上が達成できる。2段式の場合の
焼結進行状況を第3図に模式的に示す。図中、符号は第
2図のそれに同じである。上層を通過した排ガスは再び
下層で燃焼用に利用される。
As a method to specifically realize this, Japanese Patent Application Laid-Open No. 47-263
There is a method shown in No. 04. In this method, a plurality of raw material supply devices and ignition furnaces are provided with their positions shifted in the direction of pallet movement, and the surface of each supplied raw material is ignited to advance the sintering reaction. It is possible to reuse the exhaust gas and significantly increase the sintering reaction rate, resulting in improved productivity. The progress of sintering in the case of the two-stage method is schematically shown in FIG. In the figure, the symbols are the same as those in FIG. The exhaust gas that has passed through the upper layer is used again for combustion in the lower layer.

しかしながら、この2段点火式焼結法では、焼結過程に
おいて上層から下層に流入するガスは酸素4度が低く、
このため下層に配合された粉コークスは不完全燃焼の状
態に陥りやすく、燃焼発熱量が減少することとなる。こ
の結果、層内の温度が低下し、十分な溶融焼結化が達成
できず、成品焼結鉱の強度劣化を惹起することとなり、
これが多段点火式焼結法の欠点となっている。
However, in this two-stage ignition sintering method, the gas flowing from the upper layer to the lower layer during the sintering process has a low oxygen content of 4°C.
For this reason, the coke powder blended in the lower layer tends to be in a state of incomplete combustion, resulting in a decrease in the amount of heat generated by combustion. As a result, the temperature within the layer decreases, making it impossible to achieve sufficient melting and sintering, leading to deterioration in the strength of the finished sintered ore.
This is a drawback of the multistage ignition sintering method.

これに関連して、1段点火式の場合であるが、コークス
配合量を上層から下層に向かって順次減少するように傾
斜的または段階的に変えることによって、層の上下での
熱量不均衡を小さくすることが提案されている(特公昭
59−31576号)。
In this regard, in the case of a single-stage ignition type, by changing the coke content in a gradient or stepwise manner so that it decreases from the upper layer to the lower layer, the heat disparity between the upper and lower layers can be reduced. It has been proposed to make it smaller (Japanese Patent Publication No. 59-31576).

かくして、本発明の目的とするところは、2段式焼結法
において下層に含有される固定炭素を効率良く燃焼させ
る焼結方法を提供することである。
Thus, an object of the present invention is to provide a sintering method that efficiently burns the fixed carbon contained in the lower layer in a two-stage sintering method.

(問題点を解決するための手段) 焼結鉱の成品強度は焼結反応温度によって決り、これを
決定する主要因は燃料固定炭素量と層高位置である。す
なわち、粉コークスの増量により燃焼発熱量が増加して
反応温度を上昇させること、また層高下方に位置するほ
ど焼結反応帯に流入するガス温度が高くこれもまた反応
温度を上昇させることは良く知られた現象である。
(Means for solving the problem) The strength of the sintered ore product is determined by the sintering reaction temperature, and the main factors that determine this are the amount of fuel fixed carbon and the bed height position. In other words, increasing the amount of coke breeze increases the combustion calorific value and raises the reaction temperature, and the lower the bed height is, the higher the temperature of the gas flowing into the sintering reaction zone, which also increases the reaction temperature. This is a well-known phenomenon.

そこで、従来の1段点火焼結法では、前述の特公昭59
−−31576号に開示されているように、熱交換によ
って上反応帯に流入するガス温度が低くなる上層部の強
度低下防止を目的として粉コークスを上層に多く、下F
l (!QIJに少なく配合して、反応温度をより均一
にしているのである。
Therefore, in the conventional one-stage ignition sintering method, the above-mentioned
--As disclosed in No. 31576, a large amount of coke breeze is added to the upper layer in order to prevent a decrease in the strength of the upper layer where the temperature of the gas flowing into the upper reaction zone becomes low due to heat exchange.
(!A small amount is added to QIJ to make the reaction temperature more uniform.

しかし、この方法は装入した原料の1個所だけに点火す
る場合にのみ成立する技術で、原料層に2ケ所から点火
し焼結反応の同時進行を図る2段点火式焼結法では、極
端な下層強度低下を招くため高炉装入物としては不適の
成品となる。この原因は次のように考えられる。
However, this method only works when igniting the charged raw material at only one location, and the two-stage ignition sintering method, in which the raw material layer is ignited at two locations to allow the sintering reaction to proceed simultaneously, is extremely difficult to achieve. This results in a decrease in the strength of the lower layer, making the product unsuitable for use as a blast furnace charge. The reason for this is thought to be as follows.

すなわち、一般に、焼結層中の粉コークスの燃焼は、含
有される固定炭素分の通過ガス中の酸素による酸化反応
で起こるものであり、十分に酸素が存在する場合はti
+式に示す完全燃焼の状態となり、発熱蓋は93.98
9kcal/酸素モルとなる。これに対し、酸素が不足
すると、(2)式に示す不完全燃焼の状態になり、この
時の発熱量は52.796 kcal/酸素モルとなり
、酸素1モルを基準にして考えれば不完全燃焼時の発熱
量は完全燃焼時のそれに比べて44%減少する。
That is, in general, the combustion of coke breeze in the sintered layer occurs due to an oxidation reaction of the fixed carbon contained therein by oxygen in the passing gas, and if there is sufficient oxygen, ti
The state of complete combustion shown in the + formula is reached, and the heating lid is 93.98.
It becomes 9 kcal/oxygen mole. On the other hand, if there is a lack of oxygen, incomplete combustion will occur as shown in equation (2), and the calorific value at this time will be 52.796 kcal/mole of oxygen. The calorific value during combustion is reduced by 44% compared to that during complete combustion.

c+o、= co、  ・・・・ (1)式(発熱ff
1=93.989 kcal/酸素モル)2C+ oz
 = 2CO□ ・・・・ (2)式(発熱量=52.
796 kcal/酸素モル)前述した2段焼結時の下
層強度低下は、上層粉コークスを燃焼した後の低Ot?
71i度ガスで下層粉コークスの燃焼反応が進行するた
め下層では不完全燃焼になりやすく、溶融焼結に必要な
熱量が確保されにくいからである。上述の1段点火焼結
法と同様に上層の粉コークス配合を多くすると、この操
作が下層粉コークスの不完全燃焼状態をさらに惹起し、
下層強度の極端な低下を招くのである。
c+o, = co, ... Equation (1) (heat generation ff
1=93.989 kcal/oxygen mole)2C+ oz
= 2CO□ ... Equation (2) (calorific value = 52.
796 kcal/oxygen mol) The lower layer strength mentioned above during two-stage sintering is due to the low Ot after burning the upper layer powder coke?
This is because the combustion reaction of the lower layer coke powder progresses with the 71i degree gas, so incomplete combustion tends to occur in the lower layer, making it difficult to secure the amount of heat required for melting and sintering. Similar to the one-stage ignition sintering method described above, if the upper layer coke breeze mixture is increased, this operation will further cause incomplete combustion of the lower layer coke breeze,
This results in an extreme decrease in the strength of the lower layer.

したがって、2段焼結法では下層に配合する扮コークス
の燃焼性改善が肝要であるが、本発明者らは検討の結果
、酸素消費の観点からます全層にわたる粉コークス濃度
に制限を設ける必要があり、さらにこの中で、従来の知
見とは逆に上層に粉コークスを少なく、下層に粉コーク
スを多くした傾斜的配合操作が適切な方法であることを
見出した。
Therefore, in the two-stage sintering method, it is important to improve the combustibility of the coke mixed in the lower layer, but as a result of our studies, the present inventors found that it is necessary to limit the concentration of coke breeze throughout the entire layer from the viewpoint of oxygen consumption. Furthermore, contrary to conventional knowledge, it was discovered that a gradient blending operation in which the upper layer contains less coke powder and the lower layer contains more coke powder is an appropriate method.

かかる知見にもとすいて、2段焼結法において上述のよ
うに全層における配合コークス量の制限とともに上層と
下層とで配合コークス量を変えて操業を行なったところ
、十分な結合強度をもった焼結鉱が得られることを確認
し、本発明を完成した。
Based on this knowledge, when we operated the two-stage sintering method by limiting the amount of coke blended in all layers and changing the amount of coke blended in the upper and lower layers as described above, we were able to obtain sufficient bond strength. It was confirmed that sintered ore could be obtained, and the present invention was completed.

よって、本発明の要旨とするところは、製鉄原料を焼結
装置の床上に層高方向に2層に積荷すると同時に各製鉄
原料層表面に点火せしめ、各層の焼結反応を同時多発的
に進行させる2段点火式焼結方法において、焼結しよう
とする製鉄原料中の固定炭素濃度、例えば燃料粉コーク
ス配合量に関して、全層における濃度を一定4度以下に
制限すると共に、この濃度が上層側に少なく下層側に多
くなるように燃料源材料を配合することを特徴とする、
製鉄原料の焼結方法である。
Therefore, the gist of the present invention is to load steelmaking raw materials on the floor of a sintering device in two layers in the layer height direction, simultaneously ignite the surface of each steelmaking raw material layer, and proceed with the sintering reaction of each layer simultaneously and multiple times. In the two-stage ignition type sintering method, the fixed carbon concentration in the steel raw material to be sintered, for example, the amount of fuel powder coke blended, is limited to a certain level of 4 degrees or less in all layers, and this concentration is The fuel source material is blended so that it is less in the upper layer and more in the lower layer,
This is a method for sintering raw materials for steelmaking.

ここに、「製鉄原料」とは、鉄鉱石の予備処理段階で発
生する粉鉱石および最初からその状態で存在する粉鉱石
、そして各種製鉄ダスト、スケールなどを含み、これに
粉石灰石などの造滓材と返鉱を加えたものである。製鉄
業にあっていわゆる焼結原料として良く知られているも
ので、その具体的内容において特に制限されるものでは
ない。
Here, "steelmaking raw materials" include powdered ore generated during the pre-processing stage of iron ore, powdered ore existing in that state from the beginning, various ironmaking dust, scale, etc., and slag such as powdered limestone. This includes wood and return ore. It is well known as a so-called sintering raw material in the steel industry, and its specific content is not particularly limited.

製鉄原料の焼結にあっては燃料として粉コークスおよび
高炉ガス灰などの固定炭素含有材料が原料中に配合され
るが、本発明の方法においては、酸素の必要量と供給量
のバランスを確保するために、固定炭素含有材料の配合
量に量的制限が加えられる。すなわち、第5図に示され
るごとく、全層平均濃度で、原料中の粉コークス濃度は
3.64%以下、固定炭素(F、C18度としては3.
3 wt%以下とする。
When sintering raw materials for steelmaking, fixed carbon-containing materials such as coke breeze and blast furnace gas ash are mixed into the raw materials as fuel, but the method of the present invention ensures a balance between the required amount of oxygen and the amount of oxygen supplied. Therefore, quantitative restrictions are placed on the amount of fixed carbon-containing material added. That is, as shown in FIG. 5, the coke breeze concentration in the raw material is 3.64% or less, and the fixed carbon (F, C 18 degrees) is 3.64% or less in terms of the average concentration in all layers.
3 wt% or less.

この全層平均濃度の量的制限に加えて、本発明にあって
は、原料中のF、C,ft1度が上層で少なく、下層で
多くなるように、F、C,含有材料の配合量を層ごとに
変化させるのである。
In addition to this quantitative restriction on the average concentration of all layers, in the present invention, the amount of F, C, and materials contained in the raw material is set so that the amount of F, C, and ft1 degree in the raw material is lower in the upper layer and higher in the lower layer. is changed for each layer.

したがって、本発明によれば、吸引ガス中の0□はほぼ
全部が固定炭素燃焼に利用され、それにより発生した熱
も効率的に燃焼反応に利用できるため、下層の焼結鉱強
度も上層のそれと比べてほとんど低下しない均一な特性
の成品を得ることができ、また総合的に大幅なる強度改
善を達成することができるものである。
Therefore, according to the present invention, almost all of the 0□ in the suction gas is used for fixed carbon combustion, and the heat generated thereby can also be efficiently used for the combustion reaction, so the strength of the sintered ore in the lower layer is lower than that of the upper layer. Compared to that, it is possible to obtain a product with uniform properties with almost no deterioration, and it is also possible to achieve a comprehensive improvement in strength.

(作用) 次に、添付図面によって本発明をさらに説明する。(effect) The invention will now be further explained with reference to the accompanying drawings.

まず、焼結鍋装置について説明すると、第4図は本発明
を実施するための焼結鍋を一部断面で示すものである。
First, the sintering pot device will be described. FIG. 4 shows a partially sectional view of the sintering pot for carrying out the present invention.

図中、符号11は本体を示し、これは高さ600mm内
径300mmの円筒状になっており、底部には間隔をお
いた格子よりなるグレート12が設けられ、その下部に
風箱13があり、排風機(図面省略)により吸引するよ
うになっている。点火は鍋本体上に設置したコークス炉
ガス燃焼バーナー14により行う。この試験鍋を用い、
グレート12上に床敷鉱15を敷きその上に所定の原料
16を2段に装入し、この充填原料表面上に各段装入ご
とに着火して焼成を行なった。
In the figure, reference numeral 11 indicates the main body, which has a cylindrical shape with a height of 600 mm and an inner diameter of 300 mm, and a grate 12 consisting of a grid at intervals is provided at the bottom, and a wind box 13 is located below the grate 12. It is designed to be sucked in by an exhaust fan (not shown). Ignition is performed by a coke oven gas combustion burner 14 installed on the pot body. Using this test pot,
A bedding ore 15 was spread on a grate 12, and predetermined raw materials 16 were charged thereon in two stages, and firing was performed on the surface of the charged raw materials at each stage of charging.

次に焼成試験時の操作を説明すると、最初に層高300
mm相当分の原料を装入して点火し、点火完了直後さら
にまた原料を層高30011II11相当分装入し、再
度点火を行なった後大気吸引で焼成した。原料に配合す
る粉コークスおよび高炉ガス灰は予め設定した量に調整
して用いた。
Next, to explain the operation during the firing test, first, the layer height is 300.
A raw material equivalent to mm was charged and ignited, and immediately after the ignition was completed, another raw material was charged in an amount equivalent to a bed height of 30011II11, ignited again, and then fired by atmospheric suction. The coke powder and blast furnace gas ash to be mixed into the raw materials were adjusted to preset amounts before use.

実施例 本例では、第4図に示す装置を使い、2段式焼結を行な
った。原料組成および焼結条件はそれぞれ第1表および
第2表にまとめて示す。第1表中、粉コークスの配合量
は、粉コークス以外の原料の合計を100%としたとき
の重量%である。
Example In this example, two-stage sintering was carried out using the apparatus shown in FIG. The raw material composition and sintering conditions are summarized in Tables 1 and 2, respectively. In Table 1, the blending amount of coke powder is expressed as % by weight when the total amount of raw materials other than coke powder is 100%.

募り二表 】じ1表 第5図に、本発明方法を実施した場合の効果を比較例の
それとともにグラフにまとめて示す。
Table 2] Figure 5 of Table 1 shows the effects of implementing the method of the present invention in a graph together with those of comparative examples.

図中、・印は上・下層の粉コークスの配合率を同一にし
た場合(比較例)の強度(JIS M8712に開示さ
れるTI値)を、△、ム印は下層の粉コークス配合率を
上層のそれよりも多くした場合(本発明法)、○印は逆
に上層の粉コークス配合率を下層のそれよりも多くした
場合(比較例)の強度結果を示す。なお、図中の破線は
本発明性実施結果を、実線は比較例実施結果を示す。
In the figure, the mark ・ indicates the strength (TI value disclosed in JIS M8712) when the blending ratio of coke powder in the upper and lower layers is the same (comparative example), and the mark △ indicates the blending ratio of coke powder in the lower layer. On the other hand, the circles indicate the strength results when the coke powder blending ratio in the upper layer was higher than that in the lower layer (comparative example). In addition, the broken line in the figure shows the results of the present invention, and the solid line shows the results of the comparative example.

この場合、全層のコークス配合率が3.5 wt%以下
(固定炭素濃度で3.3 wL%以下)の条件内では、
粉コークス配合率の増加により強度が向上する。
In this case, under the condition that the coke blending ratio in all layers is 3.5 wt% or less (fixed carbon concentration is 3.3 wL% or less),
Strength is improved by increasing the coke powder blending ratio.

これに対し、全層のコークス配合率が3.6 ht%以
上(固定炭素濃度で3.3 wt%以上)の条件では強
度が大幅に低下している。これは先に述べたように、コ
ークス配合率3.6%以下で固定炭素の燃焼に必要な0
□廿は供給otMよりも小さく、燃焼性に関する問題は
あるにしても酸素欠乏をきたすことはないが、コークス
配合率3.6%以上では必要O2量の方が供給02量よ
りも大きくなり酸素欠乏を起こし、大幅な強度低下をき
たすばかりでなく最悪の場合には燃焼できなくなり焼結
不能におちいるためである。したがって、2段点火焼結
法を行うためには、上層・下層のコークス配合率にかか
わらず全層平均において3.6%以上のコークス配合率
になると強度低下が発生ずる。
On the other hand, under conditions where the coke content in all layers is 3.6 ht% or more (fixed carbon concentration is 3.3 wt% or more), the strength is significantly reduced. As mentioned earlier, this means that the coke content is 3.6% or less, which is necessary for the combustion of fixed carbon.
□ is smaller than the supplied otM, and although there are problems with combustibility, it does not cause oxygen deficiency. However, at coke blending ratios of 3.6% or more, the required O2 amount is larger than the supplied O2 amount, and oxygen This is because not only does this cause a deficiency and a significant decrease in strength, but in the worst case, it becomes impossible to burn and sintering becomes impossible. Therefore, in order to carry out the two-stage ignition sintering method, strength decreases when the coke content is 3.6% or more on average for all layers, regardless of the coke content in the upper and lower layers.

さて、全層のコークス配合率が3.6 wt%以下の場
合、すなわち燃焼に必要な0□量が確保されている場合
においては、上層は0□21 %の大気で焼成されるた
め粉コークス配合率の増加とともに強度は改善されるが
、当然のことながら上層の粉コークス配合率の増加は下
層の供給される0□ガス濃度の低下をまねき下層部での
粉コークスの燃焼性を悪化させ、結果的には上層の強度
向上を図るものの下層の強度低下を招き、その改善効果
は相殺される。一方、下層での粉コークス配合率の増加
は、燃焼性の悪い状態ながらも燃料増から発熱増となり
強度向上をもたらすが、この場合下層部から出る排ガス
0□濃度が低くても他に影響を及ぼさないので、結果的
に強度改善につながる。
Now, when the coke content ratio in all layers is 3.6 wt% or less, that is, when the amount of coke necessary for combustion is secured, the upper layer is fired in an atmosphere of 0□21%, so the coke powder is The strength improves as the blending ratio increases, but as a matter of course, an increase in the coke breeze blending ratio in the upper layer leads to a decrease in the 0□ gas concentration supplied to the lower layer, which worsens the combustibility of the coke breeze in the lower layer. As a result, although the strength of the upper layer is improved, the strength of the lower layer is reduced, and the improvement effect is canceled out. On the other hand, an increase in the blending ratio of coke breeze in the lower layer causes an increase in heat generation due to the increase in fuel and improves strength even though the combustibility is poor, but in this case, even if the concentration of exhaust gas emitted from the lower layer is low, it does not affect other As a result, the strength is improved.

したがって、2段点火焼結時には1段点火焼結時とは全
く異なり、全層にわたる粉コークス配合率3.6%以下
(固定炭素濃度3.3%以下)の制限を設けるとともに
、下層部のコークス配合率は上層部のそれよりも多くす
ることが強度改善上好ましく、逆に、上層・下層の粉コ
ークス配合率を同一にする操作、あるいは特公昭59−
31576号で開示される上履部に粉コークス配合率を
高く、下層を低くする操作は好ましくないと言える。
Therefore, during two-stage ignition sintering, which is completely different from that during first-stage ignition sintering, there is a limit to the coke breeze blending ratio of 3.6% or less (fixed carbon concentration 3.3% or less) throughout the entire layer, and In order to improve strength, it is preferable that the coke blending ratio be higher than that of the upper layer.Conversely, it is preferable to make the coke powder blending ratio of the upper layer and the lower layer the same, or
It can be said that the operation disclosed in No. 31576, in which the blending ratio of coke powder is high and the lower layer is low in the shoe part, is not preferable.

さらに本発明の別の適用例として、上層と下層の扮コー
クス配合率を同一として下層のみに固定炭素を含む亮炉
ガス灰を添加した場合について述べる。
Furthermore, as another example of application of the present invention, a case will be described in which the coke ratio in the upper and lower layers is the same, and light furnace gas ash containing fixed carbon is added only to the lower layer.

原料配合率を第3表に示す。なお、焼成方法は前述実施
例と同様の方法をとった。その結果成品強度TIは59
%となり、第5図の結果に比しても良好なものと評価で
きる。第3表中、粉コークスの配合量は、扮コークス以
外の原料の合計を100%としたときの重量%である。
The raw material blending ratio is shown in Table 3. The firing method was the same as in the previous example. As a result, the product strength TI was 59
%, which can be evaluated as good compared to the results shown in FIG. In Table 3, the blended amount of coke powder is expressed as % by weight when the total amount of raw materials other than coke coke is 100%.

このように本発明においては、燃料となる固定炭素濃度
が全層平均で3.3 wt%以下でかつ上層よりも下層
に多くなるように操作すれば良く、その銘柄は粉コーク
スにこだわるものではなく、高炉ガス灰の他石炭などで
あってもよい。
In this way, in the present invention, it is sufficient to operate so that the fixed carbon concentration serving as the fuel is 3.3 wt% or less on average in all layers and is higher in the lower layer than in the upper layer, and the brand does not need to be particular about coke breeze. Instead, it may be blast furnace gas ash or coal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のDL型焼結機の略式説明図;第2図は
、1段焼結法における焼結進行状況をラフ; 第4図は、本発明において利用する焼結機のバケットの
断面図;および 第5図は、上下層における粉コークス配合率の差および
全層平均における粉コークス配合率とTIとの関係を示
すグラフである。 l:焼結ストランド   2:バレント3.4:ホノパ
ー       5:点火炉6:風箱        
7:ブロワー8:原料帯       9:反応帯 lO;焼結完了帯     11:焼結鍋12ニゲレー
ト      13;風箱14:バーナー      
15:床敷鉱16:原料
Figure 1 is a schematic explanatory diagram of a conventional DL type sintering machine; Figure 2 is a rough illustration of the sintering progress in the one-stage sintering method; Figure 4 is a bucket of the sintering machine used in the present invention. and FIG. 5 are graphs showing the difference in the blending ratio of coke powder between the upper and lower layers and the relationship between the blending ratio of coke powder and TI in the average of all layers. l: Sintered strand 2: Valent 3.4: Honopah 5: Ignition furnace 6: Wind box
7: Blower 8: Raw material zone 9: Reaction zone lO; Sintering completion zone 11: Sintering pot 12 Nigerate 13; Wind box 14: Burner
15: Bed ore 16: Raw materials

Claims (2)

【特許請求の範囲】[Claims] (1)製鉄原料を焼結装置の床上に層高方向に2層に積
荷すると同時に各製鉄原料層表面に点火せしめ、各層の
焼結反応を同時多発的に進行させる2段点火式焼結方法
において、焼結しようとする製鉄原料中の固定炭素濃度
を全層平均で3.3wt%以下とすると共に、原料中の
固定炭素を濃度が上層側に少なく下層側に多くなるよう
に固定炭素含有材料を配合することを特徴とする、製鉄
原料の焼結方法。
(1) A two-stage ignition sintering method in which iron-making raw materials are loaded in two layers in the layer height direction on the floor of a sintering device, and the surface of each iron-making raw material layer is ignited at the same time, so that the sintering reaction in each layer proceeds simultaneously and multiple times. In this process, the fixed carbon concentration in the steel raw material to be sintered is set to 3.3 wt% or less on average for all layers, and the fixed carbon content in the raw material is reduced so that the concentration is lower in the upper layer and higher in the lower layer. A method for sintering raw materials for steelmaking, which is characterized by blending materials.
(2)固定炭素含有材料として粉コークスを用い、全層
平均で粉コークス配合量を3.6wt%以下とする、特
許請求の範囲第1項記載の焼結方法。
(2) The sintering method according to claim 1, wherein coke powder is used as the fixed carbon-containing material, and the average amount of coke powder in all layers is 3.6 wt% or less.
JP19906485A 1985-09-09 1985-09-09 Two-stage-ignition sintering method for raw material for iron manufacture Granted JPS6260829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19906485A JPS6260829A (en) 1985-09-09 1985-09-09 Two-stage-ignition sintering method for raw material for iron manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19906485A JPS6260829A (en) 1985-09-09 1985-09-09 Two-stage-ignition sintering method for raw material for iron manufacture

Publications (2)

Publication Number Publication Date
JPS6260829A true JPS6260829A (en) 1987-03-17
JPH0567686B2 JPH0567686B2 (en) 1993-09-27

Family

ID=16401507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19906485A Granted JPS6260829A (en) 1985-09-09 1985-09-09 Two-stage-ignition sintering method for raw material for iron manufacture

Country Status (1)

Country Link
JP (1) JPS6260829A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107032A (en) * 1985-11-01 1987-05-18 Sumitomo Metal Ind Ltd Two-stage-ignition sintering method
CN112410544A (en) * 2020-01-19 2021-02-26 中冶长天国际工程有限责任公司 Double-layer sintering method and sintering device
JP2021120479A (en) * 2020-01-31 2021-08-19 日本製鉄株式会社 Method for producing sintered ore and sintering machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107032A (en) * 1985-11-01 1987-05-18 Sumitomo Metal Ind Ltd Two-stage-ignition sintering method
CN112410544A (en) * 2020-01-19 2021-02-26 中冶长天国际工程有限责任公司 Double-layer sintering method and sintering device
JP2021120479A (en) * 2020-01-31 2021-08-19 日本製鉄株式会社 Method for producing sintered ore and sintering machine

Also Published As

Publication number Publication date
JPH0567686B2 (en) 1993-09-27

Similar Documents

Publication Publication Date Title
JP7035687B2 (en) Manufacturing method of reduced iron using rotary hearth furnace and rotary hearth furnace
JP4054505B2 (en) Exhaust gas circulation method sintering operation method
US4689007A (en) Process of thermally treating lump or agglomerated materials on a travelling grate
US3332770A (en) Apparatus for reduction firing of iron ore pellets
AU756767B2 (en) Method for producing directly reduced iron in a layered furnace
JPH08504937A (en) Method and apparatus for melting ferrous metal materials with coke burning cupola
JPS6260829A (en) Two-stage-ignition sintering method for raw material for iron manufacture
EP1087023A1 (en) Rotary hearth furnace and method of reducing metal oxide in a rotary hearth furnace
JP7384268B2 (en) Method for producing sintered ore
JP2789994B2 (en) Two-stage ignition ore manufacturing method
JPS6038443B2 (en) Iron ore reduction processing method
JP3395505B2 (en) Operating method of endless mobile sintering machine
JPS6260828A (en) Multistage ignition-type sintering method
JPS62107033A (en) Two-stage-ignition sintering method
JP2697550B2 (en) Two-stage ignition ore manufacturing method
JPS62107032A (en) Two-stage-ignition sintering method
KR100398278B1 (en) Method of reducing sinter with Low Oxidation Degree
JPS62109932A (en) Sintering method for two-step firing system
JP3745271B2 (en) Smelting reduction method and smelting reduction apparatus
RU1827386C (en) Method of heating and fusion of solid metal charge in converter with combination oxygen-fuel blast
JP4736541B2 (en) Method for producing reduced metal
GB2098190A (en) Method of treating ore
JP2002226904A (en) Method for operating blast furnace
JPH03211239A (en) Two-stage ignition type sintering method
JP2697549B2 (en) Two-stage ignition ore manufacturing method