JPS62275204A - Low dispersion optical transmission line - Google Patents
Low dispersion optical transmission lineInfo
- Publication number
- JPS62275204A JPS62275204A JP61118503A JP11850386A JPS62275204A JP S62275204 A JPS62275204 A JP S62275204A JP 61118503 A JP61118503 A JP 61118503A JP 11850386 A JP11850386 A JP 11850386A JP S62275204 A JPS62275204 A JP S62275204A
- Authority
- JP
- Japan
- Prior art keywords
- dispersion
- line
- wavelength
- transmission
- chromatic dispersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006185 dispersion Substances 0.000 title claims abstract description 124
- 230000005540 biological transmission Effects 0.000 title claims abstract description 69
- 230000003287 optical effect Effects 0.000 title claims description 18
- 239000000835 fiber Substances 0.000 claims abstract description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 230000010355 oscillation Effects 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 238000005253 cladding Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 2
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 2
- 241001504519 Papio ursinus Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
概 要
例えば特定の波長のみに対して零分散となるように設定
された既設線路の途中に、該特定波長と異なる伝送波長
域において既設線路で生ずる波長分散を相殺する分散補
償線路を介挿し、伝送波長域における波長分散の低減を
可能とする低分散光伝送路。[Detailed Description of the Invention] 3. Detailed Description of the Invention Overview For example, in the middle of an existing line that is set to have zero dispersion only for a specific wavelength, an existing line is installed in a transmission wavelength range different from the specific wavelength. A low-dispersion optical transmission line that makes it possible to reduce chromatic dispersion in the transmission wavelength range by inserting a dispersion compensation line that cancels out the chromatic dispersion that occurs in the transmission wavelength range.
産業上の利用分野
本発明は所望の伝送波長域における波長分散を低減した
低分散光伝送路に関するもので、さらに詳しく言えば、
特定波長に対して零分散となるように設定された既設線
路で他の波長域の伝送を行なうときに生ずる波長分散を
低減した低分散光伝送路に関するものである。INDUSTRIAL APPLICATION FIELD The present invention relates to a low dispersion optical transmission line that reduces chromatic dispersion in a desired transmission wavelength range.
The present invention relates to a low-dispersion optical transmission line that reduces chromatic dispersion that occurs when transmitting other wavelength ranges using an existing line that is set to have zero dispersion for a specific wavelength.
光ファイバを伝送路と9る光通信システムにおいて、伝
送客層の増大並びに中継スパンの長距離化を計るために
は、本質的に広帯域なシングルモードファイバが有利と
されている。即ち、シングルモードファイバは、マルチ
モードファイバに見られる多モード分散を生じないため
に、伝送路の広帯域化に極めて有用である。ところが、
このシングルモードファイバを用いる場合には、伝送モ
ードの群速度が光の波長に依存することにより生ずる波
長分散の影響が無視できない。そのため、より一層広帯
域化するために、伝送波長域における波長分散の低減が
望まれている。In optical communication systems using optical fibers as transmission paths, single-mode fibers, which are essentially broadband, are considered advantageous in order to increase the number of transmission customers and extend the relay spans over long distances. That is, since single mode fiber does not produce the multimode dispersion seen in multimode fiber, it is extremely useful for widening the transmission line. However,
When using this single mode fiber, the influence of chromatic dispersion caused by the dependence of the group velocity of the transmission mode on the wavelength of light cannot be ignored. Therefore, in order to further widen the band, it is desired to reduce chromatic dispersion in the transmission wavelength range.
従来の技術
第7図は、一般的な石英系シングルモードファイバにお
ける群遅延時間の波長依存性(a)及びこれに伴う波長
分散係数の波長依存性(b)を示したしのである。同図
から、零波長分散を与える波長、即ち群遅延時間の波長
微分係数が零であるところの波長は、1.3μm近傍に
あることが明らかであるが、この零分散波長は、ドーパ
ントの種類や濃度のコントロールにより大きく変化させ
ることは困難であると言われている。また、石英系シン
グルモードファイバにおいては、波長1.3μmにおけ
る伝送損失が比較的小さいことが知られている。そのた
め、従来は、伝送波長を1.3μm近傍とし、ファイバ
が元来布する零分散波長に一致させるようにして、より
一層の広帯域化を計っていた。BACKGROUND OF THE INVENTION FIG. 7 shows the wavelength dependence (a) of the group delay time and the associated wavelength dependence (b) of the chromatic dispersion coefficient in a typical silica-based single mode fiber. From the same figure, it is clear that the wavelength that gives zero wavelength dispersion, that is, the wavelength where the wavelength differential coefficient of the group delay time is zero, is around 1.3 μm, but this zero dispersion wavelength depends on the type of dopant. It is said that it is difficult to make large changes by controlling the concentration. Furthermore, it is known that transmission loss at a wavelength of 1.3 μm is relatively small in a silica-based single mode fiber. Therefore, in the past, the transmission wavelength was set in the vicinity of 1.3 .mu.m to match the zero dispersion wavelength originally distributed by the fiber, in order to further widen the band.
発明が解決しようとする問題点
ところで、石英系シングルモードファイバにおいてもっ
とも伝送損失の少ない波長域は1.55μm帯であると
され、近年この波長域で十分実用に耐え得る送受光手段
が開発されるに至り、長距離大容量光伝送路の伝送波長
は1.3μ雇帯から1.55μ雇帯に移行しつつある。Problems to be Solved by the Invention Incidentally, it is said that the wavelength range with the least transmission loss in a silica-based single mode fiber is the 1.55 μm band, and in recent years, light transmitting and receiving means that are sufficiently durable for practical use in this wavelength range have been developed. As a result, the transmission wavelength of long-distance, high-capacity optical transmission lines is shifting from the 1.3μ band to the 1.55μ band.
しかしながら、零分散波長が1.3μmatsにある従
来の伝送路で、前述した1、55μm帯の伝送を行なう
と、以下に示すような問題が生ずる。(この問題は波長
分散の影響そのものに他ならないが、理解の−・助のた
め詳説することにする。)
第8図に示されるように、送信R1と、この送信機1に
長さLbの伝送路3を介して接続される受信機2とから
構成される光通信システムを想定する。ここで、送信機
1は、第9図に示すように1.55μTrL(λ。)に
中心波長をもつ発振スペクトルを有するレーザダイオー
ド(LD)を用いて構成されるものとし、伝送路3は、
第7図に示す群遅延時間・波長分散特性を有するシング
ルモードファイバからなるものとする。このシステムを
用いて、例えば光パルス信号を伝送する場合には、送信
機1側では、前述のLDの発振スペクトルのうち2次ま
での発振モードに注目すれば、第10図(a)に示すよ
うに波長λ。のパルスと波長λ0+Δλのパルスとが同
位相で重畳した単一のパルスPとみなせるが、受信側で
は第10図(b)に示すように、波長λ。+Δλのパル
スが波長λ0のパルスに対してΔτ=mo ・Δλ・L
だけ遅延して、その結果これらの重畳パルスpが歪んで
しまい、広帯域化が阻止されるという問題があった。こ
こでm。は伝送路3の波長λ。における波長分散係数を
表すものとする。However, when the above-mentioned transmission in the 1.55 .mu.m band is carried out using a conventional transmission line having a zero dispersion wavelength of 1.3 .mu.mats, the following problems occur. (This problem is nothing but the effect of chromatic dispersion itself, but I will explain it in detail to aid understanding.) As shown in FIG. An optical communication system is assumed that includes a receiver 2 and a receiver 2 connected via a transmission path 3. Here, the transmitter 1 is configured using a laser diode (LD) having an oscillation spectrum with a center wavelength at 1.55 μTrL (λ.) as shown in FIG. 9, and the transmission line 3 is
It is assumed that the fiber is made of a single mode fiber having the group delay time and wavelength dispersion characteristics shown in FIG. When using this system to transmit, for example, an optical pulse signal, on the transmitter 1 side, if we pay attention to the oscillation modes up to the second order of the LD's oscillation spectrum, we can see the oscillation modes shown in FIG. 10(a). so that the wavelength λ. It can be regarded as a single pulse P in which a pulse with a wavelength λ0+Δλ and a pulse with a wavelength λ0+Δλ are superimposed in the same phase, but on the receiving side, as shown in FIG. The pulse of +Δλ is Δτ=mo ・Δλ・L for the pulse of wavelength λ0
As a result, these superimposed pulses p are distorted, which prevents widening of the band. Here m. is the wavelength λ of the transmission line 3. Let it represent the chromatic dispersion coefficient at .
上述した問題は、1.55μm帯において波長分散が零
となるように、あるいは1.3μm及び1.55μmの
両波長を含む広波長帯域において波長分散が零となるよ
うに設計されたシングルモードファイバの提供により解
決することは可能であるが、現存する1、3μm帯零分
散伝送路が使用できないという点で産業経済上の多大な
る損失が予想される。The above-mentioned problem is caused by single-mode fibers designed to have zero chromatic dispersion in the 1.55 μm band, or in a wide wavelength band that includes both 1.3 μm and 1.55 μm wavelengths. Although it is possible to solve this problem by providing the following, a large industrial economic loss is expected because the existing 1.3 μm band zero dispersion transmission line cannot be used.
本発明はこのような事情に鑑みて創作されたもので、現
存する伝送路(既設線路)の伝送波長を変更したとして
も、これによる波長分散の増大を防止することのできる
低分散光伝送路を提供することを目的としている。The present invention was created in view of these circumstances, and provides a low-dispersion optical transmission line that can prevent an increase in chromatic dispersion even if the transmission wavelength of an existing transmission line (existing line) is changed. is intended to provide.
問題点を解決するための手段 第1図は本発明の低分散光伝送路の原理説明図を示す。Means to solve problems FIG. 1 shows an explanatory diagram of the principle of the low dispersion optical transmission line of the present invention.
同図において4は送信機、5は受信機、6は送信機4と
受信機5を接続する既設線路であり、この既設線路6は
長手方向に均一な波長分散特性を有するシングルモード
ファイバからなる。In the figure, 4 is a transmitter, 5 is a receiver, and 6 is an existing line connecting the transmitter 4 and receiver 5, and this existing line 6 is made of a single mode fiber having uniform wavelength dispersion characteristics in the longitudinal direction. .
既設線路6の途中の少なくとも1か所には、伝送波長に
おける既設線路6の波長分散係数と符号が逆でその長手
方向に均一・な波長分散係数を有するシングルモードフ
ァイバからなる分散補償線路7が介挿される。At least one location along the existing line 6 is provided with a dispersion compensating line 7 made of a single-mode fiber having a chromatic dispersion coefficient that is uniform in the longitudinal direction and whose sign is opposite to the chromatic dispersion coefficient of the existing line 6 at the transmission wavelength. Interposed.
そしてこの分散補償線路7は、既設線路6の波長分散と
分散補償線路7の波長分散とが相殺するような長さに設
定される。The dispersion compensation line 7 is set to a length such that the chromatic dispersion of the existing line 6 and the chromatic dispersion of the dispersion compensation line 7 cancel each other out.
作 用
前述したように光伝送路を構成したので、既設線路6で
伝送波長域における波長分散が生じたとしても、この分
散は分散補償線路7により相殺され、出力側、即ち受信
機5側は波長分散の影響を受けない。Operation Since the optical transmission line is configured as described above, even if chromatic dispersion occurs in the transmission wavelength range in the existing line 6, this dispersion is canceled out by the dispersion compensation line 7, and the output side, that is, the receiver 5 side is Not affected by wavelength dispersion.
つまり第1図において、伝送波長における既設線路6の
波長分散係数をm 0(ps/lv/nm)とすると、
長さL (lv)の既設線路6に生ずる波長分散はm
L (Its/nl)となり、 moL+mノー〇を
満足するシングルモードファイバからなる分散補償線路
7を介挿することにより、総伝送路、圓ち既設線路6の
送信機4側端と受信機5側端間にわたる伝送路の波長分
散を零とすることができる。In other words, in FIG. 1, if the chromatic dispersion coefficient of the existing line 6 at the transmission wavelength is m 0 (ps/lv/nm), then
The wavelength dispersion occurring in the existing line 6 with length L (lv) is m
L (Its/nl), and by inserting the dispersion compensation line 7 made of a single mode fiber that satisfies moL + m No. The wavelength dispersion of the transmission line between the ends can be made zero.
尚、m (ps/km/no+)は分散補償線路7の伝
送波長における波長分散係数であり、!(km)は分散
補償線路7を構成するシングルモードファイバの実質上
の長さである。Note that m (ps/km/no+) is the chromatic dispersion coefficient at the transmission wavelength of the dispersion compensation line 7, and! (km) is the actual length of the single mode fiber that constitutes the dispersion compensation line 7.
この場合、既設線路6及び分散補償線路7は長手方向に
均一な波長分散特性を有しているので、上記各パラメー
タ及び画成の関係から容易に分散補償線路7を設計する
ことができる。In this case, since the existing line 6 and the dispersion compensation line 7 have uniform wavelength dispersion characteristics in the longitudinal direction, the dispersion compensation line 7 can be easily designed from the relationship between the parameters and definitions described above.
実 施 例 以下実施例を示し、本発明をより具体的に説明する。Example EXAMPLES The present invention will be described in more detail below with reference to Examples.
第1図において、既設線路6は従来より実用に供されて
いる波長1.31μm零分散シングルモードファイバで
あり、送信機4及び受信機5は波長1.55μ扉仕様の
ものである。In FIG. 1, the existing line 6 is a zero-dispersion single mode fiber with a wavelength of 1.31 .mu.m, which has been used practically in the past, and the transmitter 4 and receiver 5 are of a wavelength 1.55 .mu.m door specification.
第2図は既設線路6の波長分散特性を示すグラフであり
、横軸には波長(μm)、縦軸には波長分散係数(Ds
/lv/nm)をとっである。尚、波長分散係数の単位
(ps/に+I/rv)は、1KIRの長さのシングル
モードファイバで1 nm(10−9m)の波長スペク
トル幅を為する例えばLD等の光源を用いたときに1p
s(10s)単位の波形拡がり(波長分散)を起すこと
を示している。また、第2図において、波長分散係数の
+(プラス)側は、成る波長(λ)を基準にして波長が
+Δλだけずれたら光パルス波形が遅れてずれて拡がる
方を示している。FIG. 2 is a graph showing the chromatic dispersion characteristics of the existing line 6, where the horizontal axis is the wavelength (μm) and the vertical axis is the chromatic dispersion coefficient (Ds
/lv/nm). The unit of chromatic dispersion coefficient (ps/+I/rv) is when using a light source such as an LD that has a wavelength spectrum width of 1 nm (10-9 m) with a single mode fiber of 1 KIR length. 1p
This shows that waveform expansion (wavelength dispersion) occurs in units of s (10 s). Furthermore, in FIG. 2, the + (plus) side of the chromatic dispersion coefficient indicates that if the wavelength deviates by +Δλ with respect to the corresponding wavelength (λ), the optical pulse waveform will be delayed, deviated, and spread.
従って、分散補償線路7を介挿しないとすると、例えば
長さ40階の既設線路6には、伝送波長1.55μ雇に
おいて約800 as/rvの波長分散が生ずることに
なる。そのため、−(マイナス)符号の波長分散係数を
有するシングルモードファイバを所定長さ用いて構成さ
れる分散補償線路7を既設線路6に介挿して前記波長分
散を相殺するようにしている。この分散補償線路7の介
挿位置は、必ずしも既設線路6の中間部ではなく、例え
ば既設線路6の端部に設ける、つまり既設線路6と送信
機4あるいは受信機5との接続を分散補償線路7を介し
て行なうようにしてもよい。Therefore, if the dispersion compensation line 7 is not inserted, the existing line 6 having a length of, for example, 40 stories will have a chromatic dispersion of about 800 as/rv at a transmission wavelength of 1.55 μm. Therefore, a dispersion compensating line 7 made of a predetermined length of a single mode fiber having a chromatic dispersion coefficient of a - (minus) sign is inserted into the existing line 6 to cancel out the chromatic dispersion. The insertion position of this dispersion compensation line 7 is not necessarily in the middle of the existing line 6, but for example, it is provided at the end of the existing line 6. In other words, the connection between the existing line 6 and the transmitter 4 or receiver 5 is 7 may also be used.
第3図は本実施例で用いる分散補償線路7の波長分散特
性を示しており、同図から明らかなように、この分散補
償線路7の波長分散係数は比較的広帯域において約−7
0(ps/kIIl/nm)であり、既設線路6の伝送
波長1.55μmにおける波長分散係数の絶対値より大
きくかつ逆符号の波長分散係数を有していることがわか
る。従って、伝送波長1.55μmにおいて例えば前述
の長さ40Ksの既設線路6に生ずる8 00 (ps
/nm)の波長分散を相殺するためには、分散補償線路
7の長さを、8 0 0 (ps/ns) / 7
0 (as/km/nm)= 1 1 、 4
1にの前後で微調整して、第4図(b)に示すように、
総伝送路の波長分散が伝送波長1.55μmにおいて零
になるようにすればよいことになる。尚、同図において
、実線Aは既設線路6の波長分散、点線Bは分散補償線
路7の波長分散、一点鎖線A+8は総伝送路の波長分散
をそれぞれ示しており、参考までに第4図(a)に、こ
れら各波長分散に対応する、つまりこれら各波長分散の
原因となる群遅延時間特性を示す。FIG. 3 shows the chromatic dispersion characteristics of the dispersion compensation line 7 used in this embodiment, and as is clear from the figure, the chromatic dispersion coefficient of this dispersion compensation line 7 is approximately -7 in a relatively wide band.
0 (ps/kIIl/nm), which is larger than the absolute value of the chromatic dispersion coefficient at the transmission wavelength of 1.55 μm of the existing line 6 and has a chromatic dispersion coefficient with an opposite sign. Therefore, at a transmission wavelength of 1.55 μm, for example, 800 (ps
/nm), the length of the dispersion compensation line 7 should be set to 800 (ps/ns) / 7.
0 (as/km/nm) = 1 1, 4
By making fine adjustments before and after 1, as shown in Figure 4(b),
It is sufficient to make the total wavelength dispersion of the transmission path zero at the transmission wavelength of 1.55 μm. In addition, in the figure, the solid line A shows the chromatic dispersion of the existing line 6, the dotted line B shows the chromatic dispersion of the dispersion compensation line 7, and the dashed line A+8 shows the chromatic dispersion of the total transmission line. In a), group delay time characteristics corresponding to each of these chromatic dispersions, that is, group delay time characteristics that are the cause of each of these chromatic dispersions are shown.
ところで既設線路6に分散補償線路7を介挿すると、総
伝送路長が長距離化し、これに伴い伝送損失が増大する
ことになるので、分散補償線路7の伝送波長域における
波長分散係数の絶対値が既設線路6の伝送波長域におけ
る波長分散係数の絶対値に比べてできるだけ大きくなる
ように設定して、伝送損失の増大化を最小限に抑えるこ
とが望ましい。By the way, when the dispersion compensation line 7 is inserted into the existing line 6, the total transmission path length increases, and the transmission loss increases accordingly. Therefore, the absolute chromatic dispersion coefficient in the transmission wavelength range of the dispersion compensation line 7 It is desirable to set the value to be as large as possible compared to the absolute value of the chromatic dispersion coefficient in the transmission wavelength range of the existing line 6 to minimize increase in transmission loss.
上記特性の分散補償線路7は、高分散シングルモードフ
ァイバを、曲げ損失が問題にならないような径を有する
適当な部材に巻回する等して達成することができる。こ
の−例を簡単に説明することにする。The dispersion compensation line 7 having the above characteristics can be achieved by winding a high dispersion single mode fiber around a suitable member having a diameter such that bending loss does not become a problem. Let us briefly explain this example.
第5図は当該ファイバの横断面内における半径方向の屈
折率分布形状を示す図であり、横軸には前記横断面の中
心(0)からの半径(r)方向の距離、縦軸には比屈折
率差Δ(%)をとっである。FIG. 5 is a diagram showing the shape of the refractive index distribution in the radial direction within the cross section of the fiber, where the horizontal axis represents the distance in the radial (r) direction from the center (0) of the cross section, and the vertical axis represents the distance in the radial (r) direction from the center (0) of the cross section. The relative refractive index difference Δ (%) is taken.
いま、図示の屈折率分布形状においてr<rlにあるコ
ア部10のr>r2にあるクラッド部11に対する比屈
折率差をΔ1(x)とし、rl<r<r2にある中間層
12の前記クラッド部11に対する比屈折率差をΔ2
〈%)とするときに、第3図に示した特性は、
コア径 2r1=2μ扉。Now, in the illustrated refractive index distribution shape, the relative refractive index difference of the core portion 10 at r<rl with respect to the cladding portion 11 at r>r2 is set as Δ1(x), and the relative refractive index difference of the intermediate layer 12 at rl<r<r2 is assumed to be Δ1(x). The relative refractive index difference with respect to the cladding part 11 is Δ2
〈%), the characteristics shown in Figure 3 are as follows: Core diameter 2r1 = 2μ door.
中間層の外径 2r2=4μm。Outer diameter of the intermediate layer 2r2 = 4 μm.
Δ1(%)=2.0%。Δ1 (%) = 2.0%.
Δ2(%)=−0,3%。Δ2 (%) = -0.3%.
に設定することにより得られる。This can be obtained by setting .
上述した構造のシングルモードファイバは一般にW型光
ファイバと称され、例えば以下の方法により製造するこ
とができる。先ずMCVD法によって純粋石英管の内面
にクラッド部となるべき酸化ゲルマニウム■または五酸
化リンをドープしたシリカガラス層をデポジットする。The single mode fiber having the above-described structure is generally referred to as a W-type optical fiber, and can be manufactured, for example, by the following method. First, a silica glass layer doped with germanium oxide or phosphorus pentoxide, which is to become a cladding part, is deposited on the inner surface of a pure quartz tube by the MCVD method.
次にその内面に中間層となるべきフッ素をドープしたシ
リカガラスをデポジットする。最後にコア部となるべき
酸化ゲルマニウム[Vをドープしたシリカガラスをデポ
ジットしてプリフォームを作成し、通常の方法で線引き
することにより第5図に示すような屈折率分布を有する
W型光ファイバが得られる。そして、当該屈折率分布に
おける比屈折率差及び各部分の径等の前述のファイバパ
ラメータは、所望の分散特性に応じて数値計算による設
計を行なった後に、添加物のドープ聞、各デポジット量
、及び線引き時の減面率等をコントロールすることによ
り設定される。Next, fluorine-doped silica glass, which will become an intermediate layer, is deposited on its inner surface. Finally, a preform is created by depositing silica glass doped with germanium oxide [V, which is to become the core part, and drawn in the usual manner to create a W-type optical fiber having a refractive index distribution as shown in Figure 5. is obtained. The above-mentioned fiber parameters such as the relative refractive index difference in the refractive index distribution and the diameter of each part are designed by numerical calculation according to the desired dispersion characteristics, and then the doping level of the additive, the amount of each deposit, It is set by controlling the area reduction rate, etc. during line drawing.
第6図は上述した作用構成の低分散光伝送路で波長1.
55μmの例えば光パルス信号を伝送した場合の伝送容
量・中継スパン特性(実線A)を、分散補償線路7を介
挿しない場合の特性(一点鎖@B)と比較したものであ
り、横軸に伝送容量(ビット/sec ) 、Kl軸に
中継スパン(KIR)を両対数目盛でとっである。一般
に伝送容量は伝送路の分散制限により決まり、中継スパ
ンは伝送路の損失制限により決まるといわれており、本
実施例の低分散光伝送路にあっては、分散補償線路7の
介挿に伴う総伝送路長の増大により中継スパン特性が僅
かに悪化しているものの、波長分散の低減に伴う伝送容
量特性の改善が見られ、伝送路の大容量化が達成される
。FIG. 6 shows a low-dispersion optical transmission line having the above-mentioned operational configuration, with a wavelength of 1.
The transmission capacity and relay span characteristics (solid line A) when transmitting a 55 μm optical pulse signal, for example, are compared with the characteristics when the dispersion compensation line 7 is not inserted (single-dot chain @B). The transmission capacity (bits/sec) and the relay span (KIR) are plotted on the Kl axis on a logarithmic scale. It is generally said that the transmission capacity is determined by the dispersion limit of the transmission line, and the relay span is determined by the loss limit of the transmission line. Although the relay span characteristics are slightly deteriorated due to the increase in the total transmission path length, the transmission capacity characteristics are improved due to the reduction in chromatic dispersion, and a large capacity of the transmission path is achieved.
発明の効果
以上詳述したように本発明によれば、既設線路の伝送波
長を変更して波長分散が生じるようになったとしても、
この波長分散を分散補償線路により相殺して低分散化を
計っているので、伝送容量の増大化が可能になるという
効果を奏する。Effects of the Invention As detailed above, according to the present invention, even if the transmission wavelength of the existing line is changed and chromatic dispersion occurs,
Since this chromatic dispersion is offset by the dispersion compensation line to reduce dispersion, it is possible to increase the transmission capacity.
第1図は、本発明の原理説明図、
第2図は、本発明実施例における既設線路の波長分散特
性を示す図、
第3図は、本発明実施例における分散補償線路の波長分
散特性を示す図、
第4図(a)、 (b)は、伝送波長域における波長分
散の相殺を説明するための図、
第5図は、本発明実施例における分散層tα線路(W型
光ファイバ)の屈折率分布形状を示す図、第6図は、本
発明実施例における伝送容量・中継スパン特性を示す図
、
第7図(a)、 (b)は、一般的な石英系シングルモ
ードファイバにおける群遅延時間の波長依存性(a)及
び波長分散係数の波長依存性(b)を示す図、第8図は
、一般的な光通信システムの概略構成図、
第9図は、一般的なレーザダイオード(LD)の発振ス
ペクトルを示す図、
第10図(a)、 (b)は、光信号パルスの歪みを説
明するための図である。
1.4・・・送信機、 3・・・伝送路、2.5・・
・受信機、 6・・・既設線路、7・・・分散補償線
路。
第1 図
第2図
第3図
骸
会
囚
硅
凍
蕩
申 波長分散 (pS/nm)リ
0群遅延時間(ns
)
10:コア部
11:クラッド部
12:中間層
分散補償線路の屈折率分布
第5図
A:本発明実記例
B:既設線路のみ
本発明実施例の伝送容量・中継スパン特性を既設線路の
みの場合とヒヒ較した図
第6図
?
串
堰
一般的な石英系シングルモードファイバにおける群遅延
時間及び波長分散係数の波長依存性第7図
一般的な光通信システムの概陥構成
LDの発振スペクトル
第9図FIG. 1 is a diagram explaining the principle of the present invention. FIG. 2 is a diagram showing the chromatic dispersion characteristics of an existing line in an embodiment of the present invention. FIG. 3 is a diagram showing the chromatic dispersion characteristics of a dispersion compensation line in an embodiment of the present invention. 4(a) and 4(b) are diagrams for explaining cancellation of chromatic dispersion in the transmission wavelength range. FIG. 5 is a dispersion layer tα line (W-type optical fiber) in an embodiment of the present invention. FIG. 6 is a diagram showing the transmission capacity and relay span characteristics in an example of the present invention, and FIGS. 7(a) and (b) are diagrams showing the refractive index distribution shape of a general silica single mode fiber A diagram showing the wavelength dependence of the group delay time (a) and the wavelength dependence of the chromatic dispersion coefficient (b), FIG. 8 is a schematic configuration diagram of a general optical communication system, and FIG. 9 is a diagram showing the wavelength dependence of the wavelength dispersion coefficient (b). Figures 10(a) and 10(b) showing the oscillation spectrum of a diode (LD) are diagrams for explaining distortion of optical signal pulses. 1.4...Transmitter, 3...Transmission line, 2.5...
・Receiver, 6... Existing line, 7... Dispersion compensation line. Fig. 1 Fig. 2 Fig. 3
0 group delay time (ns
) 10: Core part 11: Clad part 12: Intermediate layer refractive index distribution of dispersion compensation line Figure 5 A: Actual example of the present invention B: Existing line only The transmission capacity and relay span characteristics of the embodiment of the present invention are compared to the existing line only. Figure 6 comparing the case and baboon? Figure 7: Wavelength dependence of group delay time and chromatic dispersion coefficient in a typical silica-based single mode fiber Figure 7: Oscillation spectrum of an LD with a general optical communication system Figure 9
Claims (1)
ファイバからなる既設線路(6)の端部または中間部の
少なくとも1か所に、 伝送波長における既設線路(6)の波長分散係数と符号
が逆でその長手方向に均一な波長分散係数を有するシン
グルモードファイバからなる分散補償線路(7)を介挿
し、 既設線路(6)の波長分散と分散補償線路(7)の波長
分散とが相殺するように分散補償線路(7)の長さを設
定したことを特徴とする低分散光伝送路。[Claims] At least one end or intermediate portion of the existing line (6) made of a single-mode fiber having uniform wavelength dispersion characteristics in the longitudinal direction, the chromatic dispersion of the existing line (6) at the transmission wavelength. A dispersion compensation line (7) made of a single-mode fiber with a uniform wavelength dispersion coefficient in the longitudinal direction and with opposite signs is inserted, and the chromatic dispersion of the existing line (6) and the chromatic dispersion of the dispersion compensation line (7) are A low-dispersion optical transmission line, characterized in that the length of the dispersion compensation line (7) is set so that the lines cancel each other out.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61118503A JPS62275204A (en) | 1986-05-23 | 1986-05-23 | Low dispersion optical transmission line |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61118503A JPS62275204A (en) | 1986-05-23 | 1986-05-23 | Low dispersion optical transmission line |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62275204A true JPS62275204A (en) | 1987-11-30 |
Family
ID=14738279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61118503A Pending JPS62275204A (en) | 1986-05-23 | 1986-05-23 | Low dispersion optical transmission line |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62275204A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02191941A (en) * | 1988-10-31 | 1990-07-27 | Fuji Photo Film Co Ltd | Silver halide photographic sensitive material |
EP0554714A1 (en) * | 1992-02-04 | 1993-08-11 | Corning Incorporated | Dispersion compensating devices and systems |
JPH0763938A (en) * | 1991-09-26 | 1995-03-10 | At & T Corp | Wavelength-dispersion compensator in optical fiber |
US5793917A (en) * | 1995-03-17 | 1998-08-11 | Fujitsu Limited | Apparatus for compensating for dispersion in submarine optical amplification and transmission system |
WO1998049586A3 (en) * | 1997-04-28 | 1999-02-04 | Corning Inc | Dispersion managed optical fiber |
US5880876A (en) * | 1993-09-03 | 1999-03-09 | Hitachi, Ltd. | Optical transmission system |
US5956440A (en) * | 1996-01-10 | 1999-09-21 | Nec Corporation | Optical transmission line for wavelength division multiplexed optical signals |
WO2000025158A1 (en) * | 1998-10-23 | 2000-05-04 | The Furukawa Electric Co., Ltd. | Dispersion compensation optical fiber and wavelength multiplex optical transmission line comprising dispersion compensation optical fiber |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5562406A (en) * | 1978-11-06 | 1980-05-10 | Nippon Telegr & Teleph Corp <Ntt> | Extra broad band optical fiber transmission line |
JPS5687004A (en) * | 1979-11-13 | 1981-07-15 | Western Electric Co | Photopulse transmission line |
-
1986
- 1986-05-23 JP JP61118503A patent/JPS62275204A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5562406A (en) * | 1978-11-06 | 1980-05-10 | Nippon Telegr & Teleph Corp <Ntt> | Extra broad band optical fiber transmission line |
JPS5687004A (en) * | 1979-11-13 | 1981-07-15 | Western Electric Co | Photopulse transmission line |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02191941A (en) * | 1988-10-31 | 1990-07-27 | Fuji Photo Film Co Ltd | Silver halide photographic sensitive material |
JPH0763938A (en) * | 1991-09-26 | 1995-03-10 | At & T Corp | Wavelength-dispersion compensator in optical fiber |
EP0554714A1 (en) * | 1992-02-04 | 1993-08-11 | Corning Incorporated | Dispersion compensating devices and systems |
US5361319A (en) * | 1992-02-04 | 1994-11-01 | Corning Incorporated | Dispersion compensating devices and systems |
AU660522B2 (en) * | 1992-02-04 | 1995-06-29 | Corning Incorporated | Dispersion compensating devices and systems |
AU660522C (en) * | 1992-02-04 | 2003-01-23 | Corning Incorporated | Dispersion compensating devices and systems |
EP0935146A3 (en) * | 1992-02-04 | 2000-04-26 | Corning Incorporated | Dispersion compensating fibers and systems |
US5995278A (en) * | 1993-09-03 | 1999-11-30 | Hitachi, Ltd. | Optical transmission system |
US5880876A (en) * | 1993-09-03 | 1999-03-09 | Hitachi, Ltd. | Optical transmission system |
US5793917A (en) * | 1995-03-17 | 1998-08-11 | Fujitsu Limited | Apparatus for compensating for dispersion in submarine optical amplification and transmission system |
US5956440A (en) * | 1996-01-10 | 1999-09-21 | Nec Corporation | Optical transmission line for wavelength division multiplexed optical signals |
WO1998049586A3 (en) * | 1997-04-28 | 1999-02-04 | Corning Inc | Dispersion managed optical fiber |
WO2000025158A1 (en) * | 1998-10-23 | 2000-05-04 | The Furukawa Electric Co., Ltd. | Dispersion compensation optical fiber and wavelength multiplex optical transmission line comprising dispersion compensation optical fiber |
US6470126B1 (en) | 1998-10-23 | 2002-10-22 | The Furukawa Electric Co., Ltd. | Dispersion compensating optical fiber, and wavelength division multiplexing transmission line using a dispersion compensating optical fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5838867A (en) | Dispersion compensating fiber and optical transmission system including the same | |
JP3615731B2 (en) | Dispersion compensating optical waveguide fiber | |
US6396987B1 (en) | Line fiber for WDM optical fiber transmission systems | |
JP4847659B2 (en) | Chromatic dispersion compensating optical fiber | |
US5802234A (en) | Dispersion compensating optical fiber, and communication system comprising same | |
JP3760557B2 (en) | Dispersion compensating fiber and optical transmission system including the same | |
CA2271694A1 (en) | Dispersion slope compensating optical fiber | |
AU769369B2 (en) | Dispersion compensating fiber | |
US6654531B2 (en) | Dispersion-compensating module | |
JP4496649B2 (en) | Optical fiber and optical transmission line including the same | |
JPH10221562A (en) | Wavelength division multiplexing optical fiber communication system | |
JP4252894B2 (en) | Dispersion and dispersion slope compensating optical fiber and transmission link including the same | |
US6493494B1 (en) | Dispersion compensating fiber for wavelength division multiplexed optical fiber transmission systems using dispersion shifted fiber as line fiber | |
JP4282235B2 (en) | Dispersion shifted single mode optical fiber optimized for high data rates | |
US6751390B2 (en) | Dispersion and dispersion slope compensating fiber and optical transmission system utilizing same | |
JP5112582B2 (en) | Fiber for chromatic dispersion compensation of NZ-DSF fiber with positive chromatic dispersion | |
US6650814B2 (en) | Single mode dispersion compensating optical fiber | |
JPS62275204A (en) | Low dispersion optical transmission line | |
US20030147610A1 (en) | Optical fiber, optical transmission line and optical communications system | |
US6625362B2 (en) | Dispersion compensating optical fiber | |
US6442320B1 (en) | Limited mode dispersion compensating optical fiber | |
CN111656234A (en) | Optical fiber, coated optical fiber and optical transmission system | |
JP2001296444A (en) | Dispersion compensating optical fiber, optical transmission line and dispersion compensating module | |
JP2002182055A (en) | Fiber for compensating chromatic dispersion of s-band of single mode fiber | |
US7428361B2 (en) | Chromatic dispersion compensating and chromatic dispersion slope compensating fiber |