JPS6221963B2 - - Google Patents
Info
- Publication number
- JPS6221963B2 JPS6221963B2 JP11850682A JP11850682A JPS6221963B2 JP S6221963 B2 JPS6221963 B2 JP S6221963B2 JP 11850682 A JP11850682 A JP 11850682A JP 11850682 A JP11850682 A JP 11850682A JP S6221963 B2 JPS6221963 B2 JP S6221963B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- zabuton
- shaft
- blade
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003466 welding Methods 0.000 claims description 29
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 238000005266 casting Methods 0.000 claims description 11
- 238000010894 electron beam technology Methods 0.000 claims description 6
- 238000005242 forging Methods 0.000 claims description 5
- 239000011324 bead Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 3
- 239000000428 dust Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 206010070834 Sensitisation Diseases 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/147—Construction, i.e. structural features, e.g. of weight-saving hollow blades
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
本発明は、タービンの静翼の製造方法の改良に
関する。更に詳しくは、翼部と軸部とを別体に鋳
造と鍛造とで各々製造し、前記軸部の端部に形成
した拡大部、即ちザブトン部を利用して溶接して
一体化したことを特徴とするものである。
例えば、溶鉱炉等の排ガスはかなり高温でかつ
圧力を有しているのでその侭の状態で空中に排出
するのは経済上問題であり、この排ガスの有する
エネルギを回収する方法が検討されている。この
排ガスのエネルギを回収する方法として、タービ
ンをこの排ガスによつて駆動し、このタービンに
よつて発電機を駆動して排ガスのエネルギを電気
エネルギとして回収する方法が最も有効な方法の
1つである。
ところで、この溶鉱炉より排出される排ガスは
多くのダストと有害な成分を含んでいるのでター
ビンに供給する前に除塵処理がなされる。
このように前処理を施したガスは多分に腐食性
であり、従つて炉頂圧エネルギの回収タービンの
静翼は、従来塩分を含んだ湿つたガスに対する耐
蝕性を保つため次の方法によつて製造されてい
る。
即ち、第1図に示す形状の静翼を第2図に示す
ように翼部1から軸部の一部3Aまでをオーステ
ナイト系ステンレス鋳鋼により鋳造し、更にオー
ステナイトステンレス鋼の鍛造で製造した残りの
軸部3Bを溶接により接合部5を形成して製造す
る方法が採用されていた。
このタービンの静翼の製造方法は、翼部1とザ
ブトン部2と軸部3Aからなる複雑に変化する形
状のものを鋳造で製造するため、鋳造後の熱処理
を行い、鋳造欠陥を除去する作業を行なつてい
る。しかし、この熱処理が充分でない場合には翼
部1とザブトン部2、ザブトン部2と軸部3Aの
境界部4(或いはR部4)に鋳造欠陥が発生し易
くなり、良質の翼を製作するためには高度の鋳造
技術が要求されていた。
又、この方法によつてタービンの静翼を製造す
る際にTIG溶接を採用する際には、溶接による欠
陥の発生を防止するため低入熱で溶接する必要が
あり、例えば軸径が60φの場合、溶接層数を20層
にもする必要があり、溶接に多大の時間と労力を
要していた。
本発明は前記従来のタービン用静翼の有する問
題点を解決するために得られたものであつて、そ
の目的とするところは、静翼Gの軸側のR部(境
界部)に発生し易い欠陥を除くための鋳造技術上
の問題点を解消し、高品質のタービン翼を高能率
に製造することにある。
前記目的を達成するための本発明の構成は、翼
部と軸部とを分割し、翼部を鋳造によつて製造
し、軸部を鍛造によつて製造し、両者を溶接によ
つて一体化したタービン用静翼であつて、翼部の
端部にザブトン部(拡大部)を形成し、前記軸部
の端部を拡開してザブトン部を形成し、両ザブト
ン部を合せて溶接したことを特徴とするタービン
の静翼の製造方法である。
本発明は、特に軸部と、この軸部を翼部に固定
するためのザブトン部とを一体的にオーステナイ
ト系ステンレス鋼の鍛造品によつて製造し、前記
軸部と結合する翼部を鋳造によつて製造し、両者
のザブトン部を溶接によつて一体化したことに特
徴がある。
更に好ましくは、前記溶接に使用する方法は電
子ビーム溶接を採用したことを特徴とするもので
ある。
本発明は前記のように翼部を鋳造品で、また軸
部を鍛造品で製造し、両者の整合部分にザブトン
部を形成し、このザブトン部を溶接する点に特徴
があるが、本発明はこのように構成されてる結
果、次のような作用効果を奏することができるも
のである。
イ 軸部のR部(境界部)を鍛造品で製造するこ
とにより信頼性が更に向上する。
ロ 軸部と翼部とにザブトン部(拡大部)を形成
し、このザブトン部を電子ビーム溶接するので
溶接は自動的に行なえ、一度溶接条件を制御盤
上でセツトしておけば、溶接時の僅かの調整で
全ての静翼の製造が可能であり、作業者の特殊
技能を必要とせず、溶接部の信頼性も高い。
又、溶接にかかる時間は一本の静翼当り、正味
40分程度であり、作業者の疲労をTIG溶接の場
合に較べて格段に少なくすることが可能であ
る。
ハ 電子ビーム溶接を採用した場合には、1パス
溶接であるため従来のTIG溶接に較べ軸径が60
mmφの場合で、2.5〜3倍の高能率で静翼の溶
接作業が可能である。
ニ 低入熱量、かつビード巾が狭いため溶接によ
る収縮が少なく、溶接による翼部の欠陥の発生
が少ない。
ホ 軸径の異なる静翼であつても、軸のみの取替
ですむため予備品が少なくて済む利点がある。
また、定期検査での不良品の取替にも即座に
対応することができ、アフターサービスの経費
を節減することができる。
ヘ 低入熱溶接で、熱影響部の冷却速度は大とな
るため、熱影響部に鋭敏化は認められず、従つ
て溶接後の溶体化熱処理を必要とせず、熱処理
経費の節減、熱処理に伴う変形を考慮した余分
な材料の節約ができる利点がある。
ト 軸部での強度上の信頼性が向上するため、軸
径が小さくてすみ、静翼が軽量化できる。更に
は、軸径が小さくなると第5図に示すように静
翼Gに取付けている軸スリーブ17、軸受2
0、レバー18、ナツト19等が小型化でき、
またこれらを取付けているケーシング16の穴
加工が小なくできるなど他部品のコストも低減
できる。
次に図面を参照して本発明の実施例を説明す
る。
第3図は本発明の実施例を示すタービン用静翼
Gの正面図であつて、翼部10を鋳造によつて製
造するが、この翼部10の上端にザブトン部の一
部11を同時に鋳造しておく。
そして、この翼部10とは別体にザブトン部の
一部12と軸部13とを一体的に鍛造によつて製
造する。
前記ザブトン部11と12とは略同一の形状を
しており、両者を合せて溶接するわけであるが、
この溶接部には通常必要とする所定の開先が取ら
れている。
前記のように鋳造によつて製造した翼部10と
鍛造によつて製造した軸部13とを両者の端部に
形成したザブトン部11,12を合せてその合せ
部を溶接して一体化して本発明に係る静翼の素材
ができ、これにネジ加工、軸の外周加工等の最終
仕上加工を施すことにより静翼Gが完成する。
第4図はビード部の断面形状を示すもので、ビ
ード14はザブトン部11,12の全面に形成さ
れている。
溶接は、軸材が例えばSUS316Lである場合に
は第1表に示す溶接条件で電子ビーム溶接を行な
つた。
The present invention relates to an improvement in a method for manufacturing turbine stator blades. More specifically, the blade part and the shaft part are manufactured separately by casting and forging, and are integrated by welding using the enlarged part formed at the end of the shaft part, that is, the zabuton part. This is a characteristic feature. For example, exhaust gas from blast furnaces, etc. has a fairly high temperature and pressure, so it is economically problematic to discharge it into the air in that state, and methods of recovering the energy contained in this exhaust gas are being considered. One of the most effective ways to recover the energy of this exhaust gas is to drive a turbine with this exhaust gas, and use this turbine to drive a generator to recover the energy of the exhaust gas as electrical energy. be. By the way, since the exhaust gas discharged from the blast furnace contains a lot of dust and harmful components, it is subjected to dust removal treatment before being supplied to the turbine. The gas pretreated in this way is likely to be corrosive, and therefore the stator blades of the top pressure energy recovery turbine have traditionally been made using the following method to maintain corrosion resistance against humid gas containing salt. It is manufactured by That is, as shown in FIG. 2, a stationary blade having the shape shown in FIG. A method has been adopted in which the shaft portion 3B is manufactured by forming the joint portion 5 by welding. The manufacturing method for the stator blades of this turbine is to manufacture the blade part 1, the blade part 2, and the shaft part 3A with a complicated shape by casting, so heat treatment is performed after casting to remove casting defects. is being carried out. However, if this heat treatment is not sufficient, casting defects are likely to occur at the boundary portion 4 (or R portion 4) between the blade portion 1 and the blade portion 2, and between the blade portion 2 and the shaft portion 3A, making it difficult to manufacture a high-quality blade. This required advanced casting technology. In addition, when using TIG welding to manufacture turbine stator blades using this method, it is necessary to weld with low heat input to prevent defects due to welding. In this case, it was necessary to increase the number of welding layers to 20, which required a great deal of time and effort. The present invention was obtained in order to solve the problems of the conventional turbine stator blades, and its purpose is to prevent the occurrence of the problem in the R part (boundary part) on the shaft side of the stator blade G. The objective is to solve problems in casting technology to eliminate easy defects and to manufacture high-quality turbine blades with high efficiency. The configuration of the present invention to achieve the above object is to separate the wing section and the shaft section, manufacture the wing section by casting, manufacture the shaft section by forging, and integrate the two by welding. This is a stator vane for a turbine which has been modified to have a Zabuton part (enlarged part) at the end of the blade part, a Zabutton part is formed by expanding the end of the shaft part, and both Zabuton parts are welded together. This is a method of manufacturing a stator blade for a turbine. In particular, the present invention is characterized in that the shaft portion and the zabuton portion for fixing the shaft portion to the wing portion are integrally manufactured by a forged product of austenitic stainless steel, and the wing portion coupled to the shaft portion is cast. It is characterized by the fact that both parts are manufactured by welding and integrated by welding. More preferably, the method used for the welding is electron beam welding. As described above, the present invention is characterized in that the blade part is manufactured by a cast product and the shaft part is manufactured by a forged product, a zabuton part is formed at the matching part of both, and this zabuton part is welded. As a result of being configured in this way, it is possible to achieve the following effects. B. Reliability is further improved by manufacturing the R part (boundary part) of the shaft part with a forged product. (b) Since a Zabuton part (enlarged part) is formed in the shaft part and the wing part, and this Zabuton part is electron beam welded, welding can be performed automatically, and once the welding conditions are set on the control panel, the welding All stator blades can be manufactured with only a few adjustments, no special skills are required on the part of the operator, and the reliability of the welded parts is high.
Also, the time required for welding is the net amount per stationary blade.
It takes about 40 minutes, and it is possible to significantly reduce worker fatigue compared to TIG welding. C. When electron beam welding is used, the shaft diameter is 60 mm compared to conventional TIG welding because it is one-pass welding.
In the case of mmφ, it is possible to weld stationary blades with 2.5 to 3 times higher efficiency. d) Since the heat input is low and the bead width is narrow, there is little shrinkage due to welding, and there are fewer defects in the blades due to welding. E. Even if the stator vane has a different shaft diameter, it has the advantage of requiring fewer spare parts because only the shaft needs to be replaced. In addition, it is possible to immediately replace defective products during periodic inspections, thereby reducing costs for after-sales service. F) With low heat input welding, the cooling rate of the heat-affected zone is high, so no sensitization is observed in the heat-affected zone.Therefore, there is no need for solution heat treatment after welding, which reduces heat treatment costs and improves heat treatment efficiency. There is an advantage that extra material can be saved considering the accompanying deformation. (g) Since the reliability of the strength of the shaft portion is improved, the shaft diameter can be reduced and the weight of the stator vane can be reduced. Furthermore, as the shaft diameter becomes smaller, as shown in FIG.
0, lever 18, nut 19, etc. can be made smaller,
In addition, the cost of other parts can be reduced, such as by reducing the need for holes in the casing 16 to which these parts are attached. Next, embodiments of the present invention will be described with reference to the drawings. FIG. 3 is a front view of a stator vane G for a turbine showing an embodiment of the present invention, in which the blade part 10 is manufactured by casting, and a part 11 of the Zabuton part is simultaneously attached to the upper end of this blade part 10. Cast it. Separately from this wing section 10, a part 12 of the zabuton section and a shaft section 13 are manufactured integrally by forging. The Zabuton parts 11 and 12 have substantially the same shape, and are welded together.
This welded portion is provided with a normally required predetermined bevel. The blade part 10 manufactured by casting as described above and the shaft part 13 manufactured by forging are combined with the double-sided parts 11 and 12 formed at the ends of both, and the combined parts are welded to integrate them. A material for the stator blade according to the present invention is prepared, and the stator blade G is completed by subjecting it to final finishing processes such as screw processing and shaft outer circumferential processing. FIG. 4 shows the cross-sectional shape of the bead portion, and the bead 14 is formed on the entire surface of the zabuton portions 11 and 12. When the shaft material was, for example, SUS316L, electron beam welding was performed under the welding conditions shown in Table 1.
【表】
この場合のビード形状は、溶け込み深さが40
mm、ビードの巾が3.5mm(溶け込み中央部)であ
つた。
このようにして製造したタービン用静翼Gは、
ビード部14及びザブトン部11,12の何れに
も欠陥が発生せず、健全で、高品質の静翼を製造
することが可能となつた。
又、翼一体の電子ビーム溶接に要する時間は約
40分であり、従来行なつていた軸部でTIG溶接に
より溶接して製造する方法に比較して軸径が60mm
φの場合で約2.5〜3倍の能率で製造することが
できた。
更にこの方法によつて製造した静翼は、溶鉱炉
の排ガスを使用する炉頂圧タービンに実用中であ
るが、何等問題は生じておらず、本発明が優れて
いることが明らかである。
尚、本発明は炉頂圧タービンの静翼に限らずこ
れと類似の製品、例えば軸流圧縮機やタービンの
静翼に適用できることはいうまでもない。[Table] The bead shape in this case has a penetration depth of 40
mm, and the bead width was 3.5 mm (center of melting). The turbine stator blade G manufactured in this way is
No defects occurred in either the bead portion 14 or the groove portions 11 and 12, making it possible to manufacture a sound and high-quality stationary blade. Also, the time required for electron beam welding of the wing is approximately
40 minutes, and the shaft diameter is 60 mm compared to the conventional method of welding the shaft part using TIG welding.
In the case of φ, the production efficiency was about 2.5 to 3 times higher. Furthermore, stator blades manufactured by this method are in practical use in furnace top pressure turbines that use exhaust gas from blast furnaces, but no problems have occurred, and it is clear that the present invention is superior. It goes without saying that the present invention is applicable not only to stator blades of furnace top pressure turbines but also to similar products such as axial flow compressors and turbine stator blades.
第1図および第2図は従来のタービンの静翼の
正面図である。第3図は本発明の実施例に係るタ
ービンの静翼の正面図、第4図は前記第3図の溶
接部の拡大断面図、第5図は、静翼の取付状況を
示した図である。
1……翼部、2……ザブトン部、3……軸部、
10……翼部、11,12……ザブトン部、13
……軸部、14……ビード部、15……ガス、1
6……ケーシング、17……スリーブ、18……
レバー、19……ナツト、20……軸受。
FIGS. 1 and 2 are front views of conventional turbine vanes. FIG. 3 is a front view of a stator vane of a turbine according to an embodiment of the present invention, FIG. 4 is an enlarged sectional view of the welded part in FIG. 3, and FIG. 5 is a diagram showing how the stator vane is installed. be. 1... Wing part, 2... Zabuton part, 3... Shaft part,
10... Wing section, 11, 12... Zabuton section, 13
...Shaft part, 14...Bead part, 15...Gas, 1
6...Casing, 17...Sleeve, 18...
Lever, 19... nut, 20... bearing.
Claims (1)
製造し、軸部を鍛造によつて製造し、両者を溶接
によつて一体化したタービン用静翼であつて、翼
部の端部にザブトン部を形成し、前記軸部の端部
を拡開してザブトン部を形成し、両ザブトン部を
合せて溶接したことを特徴とするタービンの静翼
の製造方法。 2 翼部の端部に形成したザブトン部と軸部の端
部に形成したザブトン部とを電子ビーム溶接によ
つて溶接して一体化したことを特徴とする特許請
求の範囲第1項記載のタービンの静翼の製造方
法。[Scope of Claims] 1. A stationary blade for a turbine in which a blade part and a shaft part are separated, the blade part is manufactured by casting, the shaft part is manufactured by forging, and both are integrated by welding. A stationary blade for a turbine, characterized in that a Zabuton part is formed at the end of the blade part, a Zabuton part is formed by widening the end of the shaft part, and both Zabuton parts are welded together. manufacturing method. 2. The invention as set forth in claim 1, characterized in that the Zabuton part formed at the end of the wing part and the Zabuton part formed at the end of the shaft part are welded and integrated by electron beam welding. A method of manufacturing turbine stator blades.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11850682A JPS5910705A (en) | 1982-07-09 | 1982-07-09 | Method of manufacturing stationary blade of turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11850682A JPS5910705A (en) | 1982-07-09 | 1982-07-09 | Method of manufacturing stationary blade of turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5910705A JPS5910705A (en) | 1984-01-20 |
JPS6221963B2 true JPS6221963B2 (en) | 1987-05-15 |
Family
ID=14738335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11850682A Granted JPS5910705A (en) | 1982-07-09 | 1982-07-09 | Method of manufacturing stationary blade of turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5910705A (en) |
-
1982
- 1982-07-09 JP JP11850682A patent/JPS5910705A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5910705A (en) | 1984-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0379922B1 (en) | Turbine blade repair | |
US8720056B2 (en) | Turbine rotor blade repair method | |
US6238187B1 (en) | Method using laser shock peening to process airfoil weld repairs pertaining to blade cut and weld techniques | |
US5033938A (en) | Repaired turbine blade and method of repairing | |
JP4878688B2 (en) | Brisk welding repair | |
US7849595B2 (en) | Method for repairing an impeller | |
US6085417A (en) | Method of repairing a steam turbine rotor | |
JP3990985B2 (en) | How to repair turbine blade tips | |
JP2011525593A (en) | Applying deep compressive residual stresses in peripheral repair welds of gas turbine engine airfoils | |
WO2007081924A2 (en) | Method of improving the properties of a repaired component and a component improved thereby | |
US6996906B2 (en) | Method of repairing a turbine blade and blade repaired thereby | |
JP4623463B2 (en) | How to repair and replace combustor liner panels | |
WO2017110039A1 (en) | Turbine rotor disc repairing method and welding method | |
JP2014218996A (en) | Method of producing hollow airfoil | |
JPH0653307B2 (en) | Welding repair method for cylindrical members | |
US8961144B2 (en) | Turbine disk preform, welded turbine rotor made therewith and methods of making the same | |
JP2007513780A (en) | Manufacturing method of compressor rotor | |
EP1564371B1 (en) | Method of repair a foot of a cast stator vane segment | |
JPS6221963B2 (en) | ||
EP3517237B1 (en) | Repair of gas turbine diaphragm | |
JPS6397802A (en) | Ti alloy turbine blade | |
CN110091118B (en) | Deformation repairing method for marine wind impeller | |
JPH01182505A (en) | Manufacture of turbine blade | |
CN118808869A (en) | Orbital friction welding method for blades and short posts on turbine rotor disks | |
Storch et al. | Repair welds in turbine blades |