JPS621261B2 - - Google Patents
Info
- Publication number
- JPS621261B2 JPS621261B2 JP7437979A JP7437979A JPS621261B2 JP S621261 B2 JPS621261 B2 JP S621261B2 JP 7437979 A JP7437979 A JP 7437979A JP 7437979 A JP7437979 A JP 7437979A JP S621261 B2 JPS621261 B2 JP S621261B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- region
- type
- base
- thyristor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005215 recombination Methods 0.000 claims description 8
- 230000006798 recombination Effects 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 5
- 230000035515 penetration Effects 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 230000003071 parasitic effect Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/74—Thyristor-type devices, e.g. having four-zone regenerative action
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Thyristors (AREA)
Description
【発明の詳細な説明】
本発明はプレーナ形サイリスタに係り、特に高
耐圧プレーナ形サイリスタにおける特性安定化に
有用な構造に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a planar thyristor, and particularly to a structure useful for stabilizing the characteristics of a high voltage planar thyristor.
プレーナ形サイリスタ特に400Vを越える高耐
圧プレーナ形サイリスタの実際の製造におけるト
ラブルは適正設計のなされた製品においては、ほ
とんどが表面劣化現象に起因するものと云つてよ
い。なかでも、直流高温バイアス試験(以下
DCBTと呼ぶ)において発生する電流リーク不良
が最のものである場合が多い。 It can be said that most of the troubles in the actual manufacture of planar thyristors, especially high-voltage planar thyristors exceeding 400V, are caused by surface deterioration phenomena in properly designed products. Among them, DC high temperature bias test (hereinafter referred to as
In many cases, the most common problem is current leakage that occurs in the DCBT.
第1図は本発明が主として問題にしている表面
劣化現象を示したものである。該表面劣化は、次
のように発生する。先ず、順方向バイアスDCBT
により、比較的低濃度なNベース1の表面に、
絶縁膜中の可動電荷のドリフト、絶縁膜表面へ
の電極からの電荷の拡がり、樹脂レジン中の可
動イオンの絶縁膜へのドリフト、表面空乏層か
ら絶縁膜中の捕獲準位へのホツトエレクトロンの
注入、もしくはそれ以外、等諸メカニズムによ
り、P形反転層2が形成される。その状態で、第
1図のように、アノードP層3を基準にして、カ
ソードN層4に負電位バイアスVRを印加した場
合(プレーナ形サイリスタにとつて、逆阻止状
態)を考えると、逆バイアスのアノード接合に誘
起された広い空乏層5と上記DCBTにより形成し
たP形反転層2との間は、高濃度N+層リング
(以下N+チヤネルストツパと呼ぶ)6の近傍で局
部的に近接した状態になつている。Pベース層7
に接続したP形表面反転層2をエミツタ、Nベー
ス1をベース、アノードP層3をコレクタとする
寄生バイポーラpnpトランジスタを図中に矢印で
示したように考えると、上述したようにその実効
ベース幅は反転層2のために小さくなつている。
つまり局部的に該寄生pnpトランジスタの電流利
得が上昇している。そのためによる局部的な表面
破壊のために、プレーナ形サイリスタの逆方向側
阻止能力はDCBTで順方向側だけにストレスを印
加したにもかかわらず、大幅に下落する。その下
落の度合は容易に直観されるように、寄生バイポ
ーラpnpトランジスタの電流利得に直結してお
り、それはよく知られているように、主として、
実効ベース幅とベース内少数キヤリアの拡散長と
の兼ね合いで決定される。つまり、上述の表面反
転層の形成で顕在化する寄生バイポーラpnpトラ
ンジスタの電流利得の局部的な異常上昇を抑える
ためには、該寄生トランジスタの実効ベース幅を
広する。すなわちN+チヤンネルストツパ6の幅
wと深さxjを増加させるか、あるいは、Nベース
1内の相当部分の少数キヤリア(ホール)の拡散
長Lpを短くするかの手段が取り得る。 FIG. 1 shows the surface deterioration phenomenon that is the main problem of the present invention. The surface deterioration occurs as follows. First, forward bias DCBT
As a result, on the surface of N base 1 with a relatively low concentration,
Drift of mobile charges in the insulating film, spread of charges from the electrode to the surface of the insulating film, drift of mobile ions in the resin to the insulating film, hot electrons from the surface depletion layer to the trap level in the insulating film. The P-type inversion layer 2 is formed by various mechanisms such as injection or other mechanisms. In this state, if we consider the case where a negative potential bias V R is applied to the cathode N layer 4 with reference to the anode P layer 3 as shown in FIG. 1 (reverse blocking state for the planar thyristor), Between the wide depletion layer 5 induced in the reverse-biased anode junction and the P-type inversion layer 2 formed by the above-mentioned DCBT, there is a local gap in the vicinity of the high concentration N + layer ring (hereinafter referred to as N + channel stopper) 6. They are in close proximity. P base layer 7
If we consider a parasitic bipolar pnp transistor with the P-type surface inversion layer 2 connected to the emitter, the N base 1 as the base, and the anode P layer 3 as the collector, as shown by the arrow in the figure, its effective base is The width is reduced due to the inversion layer 2.
In other words, the current gain of the parasitic pnp transistor is locally increased. Due to the local surface destruction caused by this, the reverse blocking ability of the planar thyristor is significantly reduced even though stress is applied only to the forward side in DCBT. As is easily intuitive, the degree of the drop is directly related to the current gain of the parasitic bipolar PNP transistor, and as is well known, it is mainly due to
It is determined based on the balance between the effective base width and the diffusion length of minority carriers within the base. That is, in order to suppress the local abnormal increase in the current gain of the parasitic bipolar PNP transistor that becomes apparent due to the formation of the above-mentioned surface inversion layer, the effective base width of the parasitic transistor is widened. That is, it is possible to take measures such as increasing the width w and depth xj of the N + channel stopper 6, or shortening the diffusion length Lp of minority carriers (holes) in a considerable portion within the N base 1.
第2図は本発明による一実施例の構造を示す断
面図である。以下第2図は基づき構造の詳細につ
いて説明する。サイリスタは基本構造として、ア
ノードP層、Nベース層、Pベース層およびカソ
ードN層を有しているが、先ずアノードP層3
は、第2図に示したように、半導体基板の主表面
と裏面を貫通する突き抜け領域を有するP形拡散
領域である。Nベース層1は半導体基板の中で不
純物が拡散されずに残つた、比較的低濃度なN形
領域である。Pベース層7はアノード突き抜けP
形領域で囲まれたNベース層1の中に、アノード
P層3と接触しないように設けられたP形拡散層
である。カソードN層4はPベース層7の中にN
ベース層1に接触しないように設けられた比較的
高濃度なN形拡散領域である。また、第2図に示
したN+ストツパー層6は、Nベース1の表面の
ほぼ中央付近に設けられた(カソードN層と同時
に主表面から不純物を拡散して形成されることが
多い)、比較的高濃度なN形拡散領域である。こ
れらは従来のプレーナ形もしくは高耐圧プレーナ
形サイリスタの構造と略同様である。第2図中、
層8で示した領域は、本発明の一実施例により設
けた再結合領域である。この再結合領域8を設け
たことの目的は、第1図に基づき詳述したよう
に、DCBTにより、Nベースの表面に反転層が形
成され、寄生バイポーラpnpトランジスタが顕在
化するような状況において、その電流利得をベー
ス内少数キヤリアの再結合作用により、低減せし
め、該プレーナ形サイリスタの阻止能力と安定性
を確保することにある。該再結合領域8の形成場
所はN+ストツパ層6部分、およびその近傍が適
当であるがさらに詳述すれば、ストツパ層6の下
側Nベース内に形成することが、最も設置目的に
適う領域であり、かつ、深部まで形成される方が
より有効である。但し、順逆両方向の阻止接合に
阻止状態時発生する空乏層に接触しないように配
慮しておく必要がある。仮に接触すると、半導体
物理学の教えるように、空乏層等強電界下の再結
合領域はキヤリア発生領域に変わり、阻止状態時
リーク電流を増大させるからである。 FIG. 2 is a sectional view showing the structure of an embodiment according to the present invention. The details of the structure will be explained below based on FIG. 2. The basic structure of the thyristor is an anode P layer, an N base layer, a P base layer, and a cathode N layer.
As shown in FIG. 2, is a P-type diffusion region having a penetration region penetrating the main surface and back surface of the semiconductor substrate. The N base layer 1 is a relatively low concentration N type region in which impurities remain without being diffused in the semiconductor substrate. The P base layer 7 has an anode penetrating P
This is a P-type diffusion layer provided in the N base layer 1 surrounded by the shaped region so as not to come into contact with the anode P layer 3. The cathode N layer 4 is in the P base layer 7.
This is a relatively high concentration N-type diffusion region provided so as not to contact the base layer 1. Further, the N + stopper layer 6 shown in FIG. 2 is provided near the center of the surface of the N base 1 (often formed by diffusing impurities from the main surface at the same time as the cathode N layer). This is a relatively high concentration N type diffusion region. These have substantially the same structure as a conventional planar type or high voltage withstand planar type thyristor. In Figure 2,
The region designated layer 8 is a recombination region provided in accordance with one embodiment of the invention. The purpose of providing this recombination region 8 is, as explained in detail based on FIG. , the current gain is reduced by the recombination effect of minority carriers within the base, and the blocking ability and stability of the planar thyristor are ensured. The recombination region 8 is suitably formed in the N + stopper layer 6 portion and its vicinity, but more specifically, it is most suitable for the purpose of installation to be formed in the lower N base of the stopper layer 6. It is more effective if it is formed in a large area and deep. However, care must be taken to avoid contact with the depletion layer generated in the blocking state in both the forward and reverse blocking junctions. If they come into contact, as taught by semiconductor physics, a recombination region under a strong electric field, such as a depletion layer, will turn into a carrier generation region, increasing leakage current in the blocking state.
最後に再結合領域の形成方法であるが、上述し
た目的にかなうものであれば何んでもよいが、具
体的には金原子もしくは白金原子等云わゆるライ
フタイム・キラと呼ばれる不純物の例えばイオン
注入法による局部的なドーピング、もしくは電子
ビーム等高エネルギ・ビームの照射による局部的
な結晶欠陥形成等が実用的である。本発明にかか
るサイリスタは第2図に限定されることなく、各
層が第2図と逆導電型の領域となつていても同様
の効果がある。 Finally, as for the method of forming the recombination region, any method may be used as long as it meets the above-mentioned purpose, but specifically, ion implantation of impurities called lifetime killers such as gold atoms or platinum atoms is recommended. Practical methods include local doping by a method or local crystal defect formation by irradiation with a high-energy beam such as an electron beam. The thyristor according to the present invention is not limited to that shown in FIG. 2, and even if each layer is a region of the opposite conductivity type to that shown in FIG. 2, the same effect can be obtained.
第1図は本発明が主として問題にしている表面
劣化現象を説明するためサイリスタの断面図、第
2図は本発明による一実施例の構造を示すサイリ
スタの断面図である。
尚、図において、1……Nベース層、2……P
形表面反転層、3……アノードP層、4……カソ
ードN層、5……アノード接合空乏層、6……
N+ストツパ、7……Pベース、8……再結合領
域。
FIG. 1 is a cross-sectional view of a thyristor for explaining the surface deterioration phenomenon that is the main problem of the present invention, and FIG. 2 is a cross-sectional view of a thyristor showing the structure of an embodiment according to the present invention. In the figure, 1...N base layer, 2...P
shaped surface inversion layer, 3... anode P layer, 4... cathode N layer, 5... anode junction depletion layer, 6...
N + stopper, 7...P base, 8...recombination region.
Claims (1)
形ベース領域、P形ベース領域、およびN形カソ
ード領域の4層を備え、前記N形ベース領域の側
から延在し、前記P形ベース領域を取り囲むよう
に配置せられたN形高濃度不純物領域を有するプ
レーナ形サイリスタにおいて、前記N形高濃度不
純物領域直下もしくは近傍に再結合領域を形成し
たことを特徴とするプレーナ形サイリスタ。1 P-type anode region with penetration region, N
N-type high concentration impurity comprising four layers of a type base region, a P-type base region, and an N-type cathode region, extending from the side of the N-type base region and surrounding the P-type base region. What is claimed is: 1. A planar thyristor having a recombination region immediately below or in the vicinity of the N-type high concentration impurity region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7437979A JPS55166957A (en) | 1979-06-13 | 1979-06-13 | Planar type thyristor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7437979A JPS55166957A (en) | 1979-06-13 | 1979-06-13 | Planar type thyristor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55166957A JPS55166957A (en) | 1980-12-26 |
JPS621261B2 true JPS621261B2 (en) | 1987-01-12 |
Family
ID=13545467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7437979A Granted JPS55166957A (en) | 1979-06-13 | 1979-06-13 | Planar type thyristor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55166957A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6104045A (en) * | 1998-05-13 | 2000-08-15 | Micron Technology, Inc. | High density planar SRAM cell using bipolar latch-up and gated diode breakdown |
CN102096037B (en) * | 2010-12-16 | 2013-01-30 | 许继集团有限公司 | Testing system and method of high-voltage processing plate of thyristor |
FR2991504A1 (en) | 2012-05-30 | 2013-12-06 | St Microelectronics Tours Sas | VERTICAL POWER COMPONENT HIGH VOLTAGE |
-
1979
- 1979-06-13 JP JP7437979A patent/JPS55166957A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS55166957A (en) | 1980-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11569092B2 (en) | Semiconductor device | |
US9876004B2 (en) | Semiconductor component including a short-circuit structure | |
US6025622A (en) | Conductivity modulated MOSFET | |
KR102204272B1 (en) | Power semiconductor devices and related methods with gate trenches and buried termination structures | |
US6091086A (en) | Reverse blocking IGBT | |
US4514747A (en) | Field controlled thyristor with double-diffused source region | |
KR101252628B1 (en) | Stable diodes for low and high frequency applications | |
JPH0734479B2 (en) | Semiconductor device | |
US8878237B2 (en) | Active edge structures providing uniform current flow in insulated gate turn-off thyristors | |
JP3895402B2 (en) | Semiconductor device | |
JPS6339109B2 (en) | ||
US3532945A (en) | Semiconductor devices having a low capacitance junction | |
US4936928A (en) | Semiconductor device | |
JP4108762B2 (en) | Semiconductor devices that can be controlled by field effects | |
US4975751A (en) | High breakdown active device structure with low series resistance | |
US5286984A (en) | Conductivity modulated MOSFET | |
US4236169A (en) | Thyristor device | |
US4032957A (en) | Semiconductor device | |
US4027324A (en) | Bidirectional transistor | |
US5504351A (en) | Insulated gate semiconductor device | |
US4868921A (en) | High voltage integrated circuit devices electrically isolated from an integrated circuit substrate | |
JPS5921170B2 (en) | MOS type semiconductor device | |
JPS621261B2 (en) | ||
WO2021145079A1 (en) | Semiconductor device | |
JPS6239547B2 (en) |