[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6181532A - Fuel feed controlling method of multicylinder internal-combustion engine - Google Patents

Fuel feed controlling method of multicylinder internal-combustion engine

Info

Publication number
JPS6181532A
JPS6181532A JP19845884A JP19845884A JPS6181532A JP S6181532 A JPS6181532 A JP S6181532A JP 19845884 A JP19845884 A JP 19845884A JP 19845884 A JP19845884 A JP 19845884A JP S6181532 A JPS6181532 A JP S6181532A
Authority
JP
Japan
Prior art keywords
cylinder
fuel
value
engine
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19845884A
Other languages
Japanese (ja)
Inventor
Akihiro Yamato
大和 明博
Akihiko Koike
明彦 小池
Yoshio Wazaki
和崎 嘉夫
Yuzuru Koike
譲 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP19845884A priority Critical patent/JPS6181532A/en
Publication of JPS6181532A publication Critical patent/JPS6181532A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent a misfire from occurring, by detecting a variation in engine speed in time of a specific stroke of each cylinder, while controlling a fuel quantity according to this variation. CONSTITUTION:A crank angle position signal (TDC signal) out of an engine speed sensor 11 is fed to a central processing unit 503 after its waveform is shaped up by a waveform shaping circuit 501. An Me counter 502 measures time ranging from the input of the last time TDC signal to that of this time TDC signal out of the Ne sensor 11. From this measured time, a variation in engine speed in time of a specific stroke of each cylinder is found. If the variation in a deceleration direction of the engine speed is less than the specified value, a fuel quantity is increased for only the cylinder. With this constitution, a misfire is from occurring.

Description

【発明の詳細な説明】 (技術分野) 本発明は多気筒内燃エンジンの燃料供給制御方法に関し
、特に、内燃エンジンのアイドル運転状態等の所定運転
状態時にエンジン回転数の減速方向の変動の減少を図る
と同時に排気ガス特性の改善を図った燃料供給制御方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a fuel supply control method for a multi-cylinder internal combustion engine, and more particularly, to a method for controlling fuel supply for a multi-cylinder internal combustion engine, and in particular for reducing fluctuations in engine speed in the deceleration direction during a predetermined operating state such as an idling operating state of the internal combustion engine. The present invention relates to a fuel supply control method that simultaneously aims to improve exhaust gas characteristics.

(発明の技術的背景) 多気筒内燃エンジンの所定運転状態時、特にアイドル状
態時に特定の気筒が失火し易くなる場合が生じる。これ
は各気筒に配された燃料噴射弁間の耐久劣化に伴う燃料
供給量特性のばらつきによリ前述の特定の気筒への燃料
供給量が他の気筒に比べ減少することに起因し、又、各
気筒に設けられた動弁系のバルブクリアランスのばらつ
きにより前述の特定の気筒の残留ガスが他の気筒に比べ
変動すること等に起因し、該気筒に供給される混合気が
リーン化することによるものと考えられている。
(Technical Background of the Invention) During a predetermined operating state of a multi-cylinder internal combustion engine, particularly during an idling state, a particular cylinder may be prone to misfire. This is because the amount of fuel supplied to a particular cylinder is reduced compared to other cylinders due to variations in fuel supply amount characteristics due to durability deterioration between fuel injection valves arranged in each cylinder, and , due to variations in the valve clearance of the valve train installed in each cylinder, the residual gas in the aforementioned specific cylinder fluctuates compared to other cylinders, and the air-fuel mixture supplied to that cylinder becomes lean. It is thought that this is due to this.

特定の気筒が失火するとエンジン回転数の変動が大きく
なり、運転性能に悪影響を与える。そこで、エンジン回
転数の変動をなくすために、エンジン回転数の平均値を
求め、実エンジン回転数と該平均値との偏差を求め、求
めた偏差に応じて、各気筒への燃料供給量を増減する燃
料供給制御方法が1例えば特開昭58−176424号
により知られている。
If a specific cylinder misfires, the engine speed will fluctuate significantly, which will have a negative impact on driving performance. Therefore, in order to eliminate fluctuations in engine speed, the average value of engine speed is determined, the deviation between the actual engine speed and the average value is determined, and the amount of fuel supplied to each cylinder is determined according to the calculated deviation. A method of controlling fuel supply that increases or decreases is known, for example, from Japanese Patent Laid-Open No. 58-176424.

一方、内燃エンジンから排出されるGo、HC。On the other hand, Go and HC are emitted from internal combustion engines.

NOX等の有害ガス排出量を減少させるために、排気通
路途中に三元触媒等の排気浄化装置を備えると共に、エ
ンジンに供給される混合気の空燃比を該排気浄化装置の
浄化効率が最適になる値に制御する燃料供給制御方法が
知られている。
In order to reduce the amount of harmful gas emissions such as NOX, an exhaust purification device such as a three-way catalyst is installed in the middle of the exhaust passage, and the air-fuel ratio of the air-fuel mixture supplied to the engine is adjusted so that the purification efficiency of the exhaust purification device is optimized. A fuel supply control method for controlling the fuel supply to a value is known.

然るに、失火によるエンジン回転数の減速方向の変動を
減少させるために上述の偏差に応じて各気筒への燃料供
給量を増加させる燃料供給制御方法ではエンジン全体の
空燃比が上述の排気浄化装置の浄化効率が最適になる値
から外れた値になってしまい、排気ガス特性に悪影響を
与える。
However, in a fuel supply control method in which the amount of fuel supplied to each cylinder is increased in accordance with the above-mentioned deviation in order to reduce fluctuations in the deceleration direction of engine speed due to misfire, the air-fuel ratio of the entire engine is lower than that of the above-mentioned exhaust purification device. The purification efficiency becomes a value that deviates from the optimum value, which adversely affects the exhaust gas characteristics.

(発明の目的) 本発明は上述の問題点を解決するためになされたもので
、失火によるエンジン@転数の減速方向の変動を防止す
ると共に排気ガス特性の悪化の防止を図った多気筒内燃
エンジンの燃料供給制御方法を提供することを目的とす
る。
(Object of the Invention) The present invention has been made to solve the above-mentioned problems, and is a multi-cylinder internal combustion engine that prevents fluctuations in the direction of deceleration of engine speed due to misfire and prevents deterioration of exhaust gas characteristics. The object of the present invention is to provide a method for controlling fuel supply to an engine.

(発明の構成) 上述の目的を達成するために、本発明に依れば、複数の
気筒を有する内燃エンジンの所定運転状態時に、前記各
気筒毎に設定された燃料量を各気筒に供給する燃料供給
制御方法において、前記各気筒の特定の行程時に夫々エ
ンジン回転数の変動の大きさを検出し、エンジン回転数
の検出した減速方向の変動の大きさが所定値以上のとき
、当該気筒への燃料供給量を所定量増量すると共に、前
記当該気筒以外の各気筒への燃料供給量を減量すること
を特徴とする多気筒内燃エンジンのm料供給制御方法が
提供される。
(Structure of the Invention) In order to achieve the above object, according to the present invention, during a predetermined operating state of an internal combustion engine having a plurality of cylinders, an amount of fuel set for each cylinder is supplied to each cylinder. In the fuel supply control method, the magnitude of fluctuation in the engine speed is detected during a specific stroke of each cylinder, and when the detected magnitude of the fluctuation in the deceleration direction of the engine speed is greater than or equal to a predetermined value, the fuel supply to the cylinder is detected. Provided is a fuel supply control method for a multi-cylinder internal combustion engine, characterized in that the amount of fuel supplied to the cylinder is increased by a predetermined amount, and the amount of fuel supplied to each cylinder other than the cylinder is decreased.

(発明の実施例) 以下1本発明の実施例を図面を参照して説明する。(Example of the invention) An embodiment of the present invention will be described below with reference to the drawings.

先ず、第1図において、符号1は例えば4気筒の内燃エ
ンジンを示し、エンジン1には吸気管2が接続され、吸
気管2の途中にはスロットル弁3が設けられている。ス
ロットル弁3にはスロットル弁開度(θ丁H)センサ4
が連結されてスロットル弁の弁開度を電気的信号に変換
し電子コントロールユニット(以下rECUJと言う)
5に送られるようにされている。
First, in FIG. 1, reference numeral 1 indicates, for example, a four-cylinder internal combustion engine, an intake pipe 2 is connected to the engine 1, and a throttle valve 3 is provided in the middle of the intake pipe 2. The throttle valve 3 is equipped with a throttle valve opening (θH) sensor 4.
is connected to the electronic control unit (hereinafter referred to as rECUJ) which converts the valve opening of the throttle valve into an electrical signal.
5.

吸気管2のエンジン1とスロットル弁3間には燃料噴射
弁6が設けられている。この燃料噴射弁6は吸気間2の
図示しない吸気弁の少し上流側に各気筒ごとに設けられ
ており、各噴射弁は図示しない燃料ポンプに接続されて
いると共にECU3に電気的に接続されて、ECU3か
らの信号によって燃料噴射の開弁時間が制御される。
A fuel injection valve 6 is provided in the intake pipe 2 between the engine 1 and the throttle valve 3. This fuel injection valve 6 is provided for each cylinder slightly upstream of an intake valve (not shown) in the intake space 2, and each injection valve is connected to a fuel pump (not shown) and electrically connected to the ECU 3. , the valve opening time of fuel injection is controlled by signals from the ECU 3.

一方、スロットル弁3の下流には管7を介して絶対圧(
PaA)センサ8が設けられており、この絶対圧センサ
8によって電気的信号に変換された絶対圧信号は前記E
CU3に送られる。又、その下流には吸気温(TA)セ
ンサ9が取付けられており、この吸気温センサ9も吸気
温度を電気的信号に変換してECU3に送るものである
On the other hand, the absolute pressure (
PaA) sensor 8 is provided, and the absolute pressure signal converted into an electrical signal by this absolute pressure sensor 8 is
Sent to CU3. Further, an intake air temperature (TA) sensor 9 is installed downstream thereof, and this intake air temperature sensor 9 also converts the intake air temperature into an electrical signal and sends it to the ECU 3.

エンジン本体1にはエンジン水温(Tw)センサ10が
設けられ、このセンサ10はサーミスタ等から成り、冷
却水が充満したエンジン気筒周壁内に挿着されて、その
検出水温信号をECU3に供給する。
The engine body 1 is provided with an engine water temperature (Tw) sensor 10, which is made of a thermistor or the like, and is inserted into the circumferential wall of the engine cylinder filled with cooling water, and supplies its detected water temperature signal to the ECU 3.

エンジン回転数センサ(以下r N eセンサ」と言う
)11及び気筒判別(CYL)センサ12がエンジンの
図示しないカム軸周囲又はクランク軸周囲に取り付けら
れており、前者11はエンジンのクランク軸の180°
回転毎に所定のラクランり角度位置で即ち、各気筒の吸
気行程開始時の上死点(TDC)に関して所定クランク
角度前のクランク角度位置でクランク角度位置信号(以
下これをrTDC信号」と言う)パルスを、後者12は
特定の気筒の所定のクランク角度位置で気筒判別信号パ
ルスを夫々出力するものであり、これらのパルスはEC
U3に送られる。
An engine rotation speed sensor (hereinafter referred to as "rN e sensor") 11 and a cylinder discrimination (CYL) sensor 12 are installed around the camshaft or crankshaft (not shown) of the engine, and the former 11 is installed around the 180° of the crankshaft of the engine. °
A crank angle position signal (hereinafter referred to as "rTDC signal") is generated at a predetermined crank angle position for each rotation, that is, at a crank angle position a predetermined crank angle before the top dead center (TDC) at the start of the intake stroke of each cylinder. The latter 12 outputs a cylinder discrimination signal pulse at a predetermined crank angle position of a specific cylinder, and these pulses are used as EC pulses.
Sent to U3.

エンジン1の排気管13には三元触媒14が配置され排
気ガス中のHC,GO,NOx成分の浄化作用を行なう
。この三元触媒14の上流側には0□センサ15が排気
管13に挿着されこのセンサ15は排気中の酸素濃度を
検出しその検出値信号をECU3に供給する。更に、E
CU3には、大気圧を検出するセンサ等の他のエンジン
運転パラメータセンサ16が接続されている。
A three-way catalyst 14 is disposed in the exhaust pipe 13 of the engine 1 to purify HC, GO, and NOx components in the exhaust gas. A 0□ sensor 15 is inserted into the exhaust pipe 13 on the upstream side of the three-way catalyst 14, and this sensor 15 detects the oxygen concentration in the exhaust gas and supplies the detected value signal to the ECU 3. Furthermore, E
Other engine operating parameter sensors 16, such as a sensor for detecting atmospheric pressure, are connected to the CU3.

ECU3は前記TDC信号が入力する毎に上述の各種エ
ンジンパラメータ信号に基づいて、0□フィードバック
運転領域、アイドル運転領域等のエンジン運転状態を判
別すると共に、エンジン運転状態に応じて以下に示す式
(1)及び(2)で与えられる燃料噴射弁6の燃料噴射
時間To+JTをを各噴射弁毎に演算する。
Each time the TDC signal is input, the ECU 3 determines the engine operating state such as the 0□ feedback operating region and the idle operating region based on the various engine parameter signals described above, and also calculates the following equation ( The fuel injection time To+JT of the fuel injection valve 6 given by 1) and (2) is calculated for each injection valve.

T OuT =Ti XKl+に2      ・= 
(1)ここにTiは基本燃料噴射時間を示し、この基本
燃料噴射時間Tiは吸気管内絶対圧P[lAと工′ンジ
ン回転数Neに応じて演算される。K1及びに2は前述
の各種センサ、即ち、スロットル弁開度センサ4、吸気
管内絶対圧センサ8.吸気温センサ9、エンジン水温セ
ンツ1O−Neセンサ11゜気筒判別センサ12.0□
センサ15等からのエンジンパラメータ信号に応じて設
定される補正係数及び補正変数であって始動特性、排気
ガス特性。
T Out = Ti XKl + 2 ・=
(1) Here, Ti indicates the basic fuel injection time, and this basic fuel injection time Ti is calculated according to the intake pipe absolute pressure P[lA and the engine rotation speed Ne. K1 and K2 are the various sensors mentioned above, ie, the throttle valve opening sensor 4, the intake pipe absolute pressure sensor 8. Intake temperature sensor 9, engine water temperature sensor 1O-Ne sensor 11°Cylinder discrimination sensor 12.0□
Correction coefficients and correction variables that are set according to engine parameter signals from the sensor 15 and the like, and are starting characteristics and exhaust gas characteristics.

燃費特性、エンジン加速特性等の諸特性が最適なものと
なるように所定の演算式に基づいて演算される。
It is calculated based on a predetermined calculation formula so that various characteristics such as fuel efficiency characteristics and engine acceleration characteristics are optimized.

T 0IJT =T 0LIT +T 1AoJt  
    ・−(2)前記式(1)で求められた燃料噴射
時間TOLITは本発明に係るアイドル回転数補正変数
TiADJKを加算することにより補正される。補正変
数TiAoJtは各気筒毎に夫々値TiAoax乃至T
iAI)J。
T 0IJT = T 0LIT + T 1AoJt
(2) The fuel injection time TOLIT determined by the above formula (1) is corrected by adding the idle rotation speed correction variable TiADJK according to the present invention. The correction variable TiAoJt has values TiAoax to T for each cylinder, respectively.
iAI)J.

をとり、各補正変数値は後述するプログラムにより求め
られる。
, and each correction variable value is obtained by a program described later.

ECU3は上述のようにして求めた燃料噴射時間Tot
、τに基づいて燃料噴射弁6を開弁させる駆動信号を燃
料噴射弁6に供給する6 第2図は第1図のECU3内部の回路構成を示す図で、
第1図のNeセンサ11からのTDC信号は波形整形回
路501で波形整形された後、各種プログラムを実行す
るための割込信号して中央処理装置(以下rCPUJと
言う)503に供給されると共にMeカウンタ502に
も供給される。
ECU3 calculates the fuel injection time Tot as described above.
, τ is used to supply the fuel injection valve 6 with a drive signal to open the fuel injection valve 6. FIG. 2 is a diagram showing the circuit configuration inside the ECU 3 of FIG.
The TDC signal from the Ne sensor 11 in FIG. 1 is waveform-shaped by a waveform shaping circuit 501, and then supplied to the central processing unit (hereinafter referred to as rCPUJ) 503 as an interrupt signal for executing various programs. It is also supplied to the Me counter 502.

Meカウンタ502はNeセンサ11から前回TDC信
号の入力時から今回TDC信号の入力時までの時間間隔
を計数するもので、その計数値Meはエンジン回転数N
eの逆数に比例する。Meカウンタ502はこの計数値
Meをデータバス510を介してCPU503に供給す
る6 第1図の吸気温TAセンサ9、吸気管内絶対圧PEAセ
ンサ8、エンジン水温Twセンサ10.02センサ15
等の各種センサからの夫々の出力信号はレベル修正回路
504で所定電圧レベルに修正された後、マルチプレク
サ505により順次A/Dコンバータ506に供給され
る。A/Dコンバータ506は前述の各センサからの出
力信号を順次デジタル信号に変換して該デジタル信号を
データバス510を介してCPU503に供給する。
The Me counter 502 counts the time interval from when the previous TDC signal was input from the Ne sensor 11 to when the current TDC signal was input, and the counted value Me is equal to the engine rotation speed N.
It is proportional to the reciprocal of e. Me counter 502 supplies this counted value Me to CPU 503 via data bus 510 6 Intake air temperature TA sensor 9, intake pipe absolute pressure PEA sensor 8, engine coolant temperature Tw sensor 10.02 sensor 15 in FIG.
The respective output signals from the various sensors are corrected to a predetermined voltage level by a level correction circuit 504, and then sequentially supplied to an A/D converter 506 by a multiplexer 505. The A/D converter 506 sequentially converts the output signals from the aforementioned sensors into digital signals and supplies the digital signals to the CPU 503 via the data bus 510.

CPU503は、更に、データバス510を介してリー
ドオンリメモリ(以下rROMj と言う)507、ラ
ンダムアクセスメモリ(ROM)508及び駆動回路5
09に接続されており、RAM508はCPU503で
の演算結果等を一時的に記憶し、ROM507はCPU
503で実行される制御プログラム、燃料噴射弁6の基
本噴射時間Tiマツプ等を記憶している。CPU503
はROM507に記憶されている制御プログラムに従っ
て前述の各種エンジンパラメータ信号に応じた各気筒毎
に燃料噴射弁6の燃料噴射時間T O,JTを演算して
The CPU 503 further connects a read-only memory (hereinafter referred to as rROMj) 507, a random access memory (ROM) 508, and a drive circuit 5 via a data bus 510.
09, the RAM 508 temporarily stores the calculation results etc. of the CPU 503, and the ROM 507
The control program executed at 503, the basic injection time Ti map of the fuel injection valve 6, etc. are stored. CPU503
In accordance with the control program stored in the ROM 507, the fuel injection time TO, JT of the fuel injection valve 6 is calculated for each cylinder according to the various engine parameter signals mentioned above.

これら演算値をデータバス510を介して駆動回路50
9に供給する6駆動回路509には各気筒の燃料噴射弁
6a乃至6dが接続されており、駆動回路509は前記
演算値に応じて今回TDC信号パルスに対応する燃料噴
射弁を開弁させる駆動信号を当該噴射弁6に供給する。
These calculated values are sent to the drive circuit 50 via the data bus 510.
The fuel injection valves 6a to 6d of each cylinder are connected to the 6 drive circuit 509 that supplies the fuel injection valves 6a to 6d for each cylinder, and the drive circuit 509 controls the drive circuit 509 to open the fuel injection valve corresponding to the current TDC signal pulse according to the calculated value. A signal is supplied to the injection valve 6.

第3図は第1図の気筒、判別(CYL)センサ12から
の気筒判別(CYL)信号パルスとNeセンサ11から
のTDC信号パルスの発生タイミングを説明するタイミ
ングチャートであり、#1気筒に対応するTDC信号パ
ルス(Sal及びsb□)の発生より少し前のクランク
角度位置でCYL信号パルス(Sa及びsb)が発生し
、このCYL信号パルスによってその直後に発生するT
DC信号パルスがどの気筒に対応するか識別される。モ
して#1気筒に対応するTDC信号パルス(sb、)が
発生した後、#3,84.$2.・・・の各気筒に対応
するTDC信号パルス(s b2.s b3.s b4
゜Sal・・・)が順次繰返し発生し、このTDC信号
パルスに同期して各気筒の燃料噴射弁6a乃至6bが開
弁駆動される(第3図の(C))。
FIG. 3 is a timing chart illustrating the generation timing of the cylinder discrimination (CYL) signal pulse from the cylinder discrimination (CYL) sensor 12 and the TDC signal pulse from the Ne sensor 11 in FIG. 1, and corresponds to cylinder #1. A CYL signal pulse (Sa and sb) is generated at a crank angle position slightly before the TDC signal pulse (Sal and sb□) that occurs, and this CYL signal pulse causes the TDC signal pulse that occurs immediately after
It is identified which cylinder the DC signal pulse corresponds to. After the TDC signal pulse (sb,) corresponding to cylinder #1 is generated, #3, 84. $2. TDC signal pulses corresponding to each cylinder (s b2.s b3.s b4
) is repeatedly generated in sequence, and the fuel injection valves 6a to 6b of each cylinder are driven to open in synchronization with this TDC signal pulse ((C) in FIG. 3).

第4図は第2図のCPU503内で前記TDC信号パル
ス発生毎に実行される6本発明に係るエンジンの所定運
転状71!(アイドル運転状態)時の燃料供給制御手順
を示すフローチャートである。
FIG. 4 shows a predetermined operating state 71 of the engine according to the present invention which is executed in the CPU 503 of FIG. 2 every time the TDC signal pulse is generated. 2 is a flowchart showing a fuel supply control procedure during (idling operation state).

先ず、ステップ1及び2においてエンジンが所定運転状
態にあるか否かを判別する。即ち、第4図の実施例では
、ステップ1においてエンジンがアイドル運転域にある
か否かを判別する。この判別は、例えばエンジン回転数
Neが所定回転数NIDL(例えば101000rp以
下且つ吸気管内絶対圧PBAが所定値PeA+oL(例
えば360mmHg)以下の時にエンジンはアイドル運
転域にあると判別する。又、ステップ2において第1図
のスロットル弁開度(θ〒H)センサ4により検出され
るスロットル弁3の弁開度θTHがアイドル開度θII
)L (例えば、スロットル弁の全rA開度に1.5°
を加えた値)以下であるか否かを判別する。ステップ2
の判別はアイドル運転からの加速応答性を確保するため
のもので、ステップ1で仮えエンジンがアイドル域にあ
ると判別されてもスロットル弁3が開弁されたことを検
出するとエンジンは加速運転状態にあると判別するので
ある。
First, in steps 1 and 2, it is determined whether the engine is in a predetermined operating state. That is, in the embodiment shown in FIG. 4, in step 1, it is determined whether the engine is in the idle operating range. This determination is made, for example, by determining that the engine is in the idle operating range when the engine rotation speed Ne is below a predetermined rotation speed NIDL (for example, 101000 rpm or less and the intake pipe absolute pressure PBA is below a predetermined value PeA+oL (for example, 360 mmHg). Also, in step 2 The valve opening θTH of the throttle valve 3 detected by the throttle valve opening (θ〒H) sensor 4 in FIG. 1 is the idle opening θII.
)L (For example, 1.5° for the total rA opening of the throttle valve
(added value) or less. Step 2
This determination is to ensure acceleration responsiveness from idling operation, and even if it is determined in step 1 that the engine is in the idling range, when it is detected that the throttle valve 3 is opened, the engine will start accelerating operation. It is determined that it is in the state.

ステップ1及び2のいずれかの判別結果が否定(No)
の場合にはステップ3以降のステップを実行せずに本プ
ログラムを終了する。ステップ1及び2のいずれの判別
結果も肯定(Yes)の場合、ステップ3に進み、エン
ジン回転数の減速方向の変動の大きさくΔMe)が所定
値(ΔMeAons)以上であるか否かを判別する。エ
ンジン回転数の減速方向の変動の大きさく6M e )
は以上のようにして求められる。
The determination result of either step 1 or 2 is negative (No)
In this case, the program is terminated without executing the steps after step 3. If both of the determination results in steps 1 and 2 are affirmative (Yes), proceed to step 3 and determine whether the magnitude of the fluctuation in the deceleration direction of the engine speed (ΔMe) is greater than or equal to a predetermined value (ΔMeAons). . (6M e)
can be obtained as described above.

今、今回TDC信号パルスがSaよ(第3図(b))で
あると仮定すれば、今回TDC信号パルスSa工の発生
直後に前回TDC信号パルスSb4と今回TDC信号パ
ルスSa、のパルス発生時間間隔Me□nが前記第2図
のMeカウンタ502により検出される。このパルス発
生時間間隔M e in値は前述の通りエンジン回転数
Neの逆数に比例するののであり、エンジン回転数Ne
が小さい程、M e 1n値は大きい値となる。そして
、TDC信号の前回パルス(Sb、)と今回パルス(S
a□)間の期間は今回TDC信号パスルに対応する気筒
(#1気筒)の特定の行程、例えば燃焼行程の期間、よ
り具体的には、燃焼行程開始時の上死点前の所定クラン
ク角度位置で行なわれる混合気の点火時点から混合気の
化学変化(燃焼)を経て有効なトルクが発生し終る時点
までの期間に対応し、従って、上述の時間間隔Me1n
は今回TDC信号パルスに対応する気WI(81気筒)
と同じ気筒に対する前回TDC信号パルス(sb□)の
発生時に該気筒に供給された混合気の燃焼状態が正しく
反映されている。そして、今回TDC信号パルスSa工
に対応する気筒(#1気′@)と同じ気筒に対する前回
のTDC信号パルス(sbl)の発生時に検出されたパ
ルス発生時間間隔Meln−tの記憶値がECU内の記
憶手段から読み出れ、次いで値Me 1nと値Me、n
−1の偏差がエンジン回転数の減速方向の変動の大きさ
6M e (= M e in −M e in −x
 )として求められる。このようにエンジン回転数の減
速方向の変動の大きさΔMe□の演算に同じ気筒に対す
るTDC信号パルス発生時に検出したパルス発生時間間
隔Me in値及びM e 1n −L値を用いるので
当該気筒の失火を正確に検出することが出来る。
Now, assuming that the TDC signal pulse this time is Sa (Fig. 3 (b)), the pulse generation time of the previous TDC signal pulse Sb4 and the current TDC signal pulse Sa immediately after the generation of the current TDC signal pulse Sa The interval Me□n is detected by the Me counter 502 in FIG. As mentioned above, this pulse generation time interval M e in value is proportional to the reciprocal of the engine speed Ne.
The smaller the M e 1n value is, the larger the M e 1n value becomes. Then, the previous pulse (Sb, ) and current pulse (Sb, ) of the TDC signal are
The period between a□) is a specific stroke of the cylinder (#1 cylinder) corresponding to the current TDC signal pulse, for example, the period of the combustion stroke, more specifically, a predetermined crank angle before top dead center at the start of the combustion stroke. The above-mentioned time interval Me1n corresponds to the period from the moment of ignition of the air-fuel mixture that takes place at the position to the point at which the effective torque has been generated through the chemical change (combustion) of the air-fuel mixture.
is the WI (81 cylinders) that corresponds to the TDC signal pulse this time.
The combustion state of the air-fuel mixture supplied to the same cylinder when the previous TDC signal pulse (sb□) was generated is correctly reflected. Then, the memory value of the pulse generation time interval Meln-t detected when the previous TDC signal pulse (sbl) was generated for the same cylinder as the cylinder corresponding to the current TDC signal pulse (#1) is stored in the ECU. Then, the value Me 1n and the value Me,n
-1 deviation is the magnitude of the change in engine speed in the deceleration direction 6M e (= M e in - M e in -x
) is required. In this way, since the pulse generation time interval Me in value and Me 1n -L value detected when the TDC signal pulse is generated for the same cylinder are used to calculate the magnitude of the fluctuation in the deceleration direction of the engine speed ΔMe□, it is possible to prevent a misfire in the cylinder. can be detected accurately.

偏差ΔMeは上述の方法に代えて下記の式(3)及び(
4)により求めてもよい。
The deviation ΔMe can be calculated using the following formula (3) and (instead of the above method)
4) may be obtained.

B         A−B Meav=  Meavn−1+   、Men・・・
(3) ΔMe=Me n−Me a v      −(4)
ここに、Menは今回TDC信号パルス(Sal)発生
時に前記第2図のMsカウンタ502により計数したパ
ルス発生時間間隔、Meavn−、はTDC信号の前回
パルス(sb、)発生時に求めたMe値の平均値である
。A及びBは定数であって。
B A-B Meav= Meavn-1+ , Men...
(3) ΔMe=Me n−Me av −(4)
Here, Men is the pulse generation time interval counted by the Ms counter 502 in FIG. It is an average value. A and B are constants.

Aは例えば256に、Bは1乃至255間の適宜値に夫
々設定される6 上述のようにして求めた偏差ΔMeを前記所定値ΔMe
ADJG(例えば3.8m5)と比較し、偏差ΔMeが
所定値ΔMeA□Qより小さいとき、即ちエンジン回転
数の減速方向の変動が所定値より小さいとき当該気筒で
の失火は生じていないと判断して後述するステップ10
に進む。一方、偏差ΔMeが所定値ΔMeADJGより
大きいとき、当該気筒(#1気筒)は失火していると判
定してステップ4に進み、当該気筒(#1気筒)のアイ
ドル回転数補正変数T i ADJK(T i ADJ
工)に所定値ΔTを加算してこれを新たな補正変数値と
して第2図のRAM508に記憶する。次いで、ステッ
プ5において上述の失火していると判定された気筒以外
の気筒(#2,83及び#4気筒)の各アイドル回転数
補正変数T i ADJK (TiAoJz乃至Ti。
For example, A is set to 256, and B is set to an appropriate value between 1 and 255.6 The deviation ΔMe obtained as described above is set to the predetermined value ΔMe.
ADJG (for example, 3.8 m5), and when the deviation ΔMe is smaller than a predetermined value ΔMeA□Q, that is, when the fluctuation in the deceleration direction of the engine speed is smaller than the predetermined value, it is determined that a misfire has not occurred in the relevant cylinder. Step 10, which will be described later
Proceed to. On the other hand, when the deviation ΔMe is larger than the predetermined value ΔMeADJG, it is determined that the cylinder (#1 cylinder) has misfired, and the process proceeds to step 4, where the idle rotation speed correction variable T i ADJK( T i ADJ
A predetermined value .DELTA.T is added to .DELTA.T) and stored in the RAM 508 in FIG. 2 as a new correction variable value. Next, each idle rotation speed correction variable T i ADJK (TiAoJz to Ti) of the cylinders (#2, 83, and #4 cylinders) other than the cylinder determined to have misfired in step 5 is determined.

、4)から前記ステップ4で加算した値ΔTに対応した
値ΔT/KICを減じてこれを新たな補正変数値として
RAM508に記憶する。値KICは気筒数に1を減じ
た値(実施例では値3)に設定される。この場合、失火
していると判定された気筒以外の各気筒の減量する燃料
量はΔT/3となり、各気筒の燃料減量の総和はステッ
プ4で増量する燃料量へTに等しい(第3図(c)のT
DC信号パルスS all S az+ S ai、・
・・の各パルス発生直後に増減する燃料供給量)。
, 4), the value ΔT/KIC corresponding to the value ΔT added in step 4 is subtracted, and this is stored in the RAM 508 as a new correction variable value. The value KIC is set to a value obtained by subtracting 1 from the number of cylinders (value 3 in this embodiment). In this case, the amount of fuel to be reduced in each cylinder other than the cylinder determined to be misfiring is ΔT/3, and the sum of the fuel reductions in each cylinder is equal to T to the amount of fuel to be increased in step 4 (see Figure 3). (c) T
DC signal pulse S all S az+ S ai,・
(fuel supply amount that increases or decreases immediately after each pulse occurs).

ステップ6乃至9の各ステップは補正変数値TiADJ
ににより各気筒への燃料供給量を増量又は減量した場合
に混合気がオーバリッチ又はオーバリーンなるのを防止
するために各気筒の補正変数値TiADJKに上下限値
を設けるものであって、各気筒毎にTi45Jに値が上
限値TiLMHより大きいか否かを判別し、いずれかの
気筒のTiADJK値が上限値TiLMHより大きいと
き、即ち、ステップ6の判別結果が肯定(Yes)のと
き当該気筒のTiADJK値を上限値TiLMHに書き
換え。
Each step from Steps 6 to 9 uses the correction variable value TiADJ.
In order to prevent the mixture from becoming over-rich or over-lean when the amount of fuel supplied to each cylinder is increased or decreased due to It is determined whether the Ti45J value is larger than the upper limit value TiLMH for each cylinder, and when the TiADJK value of any cylinder is larger than the upper limit value TiLMH, that is, if the determination result in step 6 is affirmative (Yes), the Rewrite the TiADJK value to the upper limit value TiLMH.

この値をRAM508に記憶する(ステップ7)。This value is stored in RAM 508 (step 7).

いずれかの気筒のTiADJK値が下限値T i L 
M Lより小さいとき、即ちステップ8の判別結果が肯
定(Yes)のとき当該気筒のTiAoJz値を下限値
T IL M L ニ書き換え、コノ値をRAM508
に記憶する(ステップ9)。
The TiADJK value of any cylinder is the lower limit T i L
When it is smaller than M L, that is, when the determination result in step 8 is affirmative (Yes), the TiAoJz value of the relevant cylinder is rewritten to the lower limit value T IL M L , and the value is stored in the RAM 508.
(Step 9).

次いでステップ10に進み、RAM508に記憶されて
いる各気筒の補正変数値TiAoxKから今回TDC信
号パルス(Sa工)に対応する気筒の補正変数値(Ti
ADJl)を読み出し、該補正変数値を前記式(1)で
求めた燃料噴射時間T OU Tに加算してこれを新た
な燃料噴射時間とし、本プログラムを終了する。
Next, the process proceeds to step 10, in which the correction variable value (Ti
ADJ1) is read out, and the correction variable value is added to the fuel injection time T OUT obtained by the above equation (1), this is set as a new fuel injection time, and this program is ended.

ECU3は前述した通りステップ10で求めた燃料噴射
時間TOUTに基づいて今回TDC信号パルス(Sa工
)に対応する気筒(#1気筒)の燃料噴射弁6を開弁さ
せる駆動信号(第3図(c)のTDC信号パルスSa□
直後の#1気筒の燃料噴射弁駆動信号)を該噴射弁に供
給する。そして、次回TDC信号パルス(Sa、)の直
後に実行される前記ステップ3の判別で偏差ΔMeが所
定値ΔMCADJG以下であれば、該TDC信号パルス
(Sa2)に対応する気筒(#3気筒)の補正変数値T
 i ADJK (T i ADJ3)として、今回T
DC信号パルス(Sal)発生時に実行した前記ステッ
プ5において設定された値(ΔT/3だけ増量された値
)がそのまま保持され、この補正変数値を適用して噴射
時間TOIJTが演算される。そして、ECU3は演算
値ToUTに基づいて次回TDC信号パルス(Sa、)
に対応する気筒(#3気筒)の燃料噴射弁6に駆動信号
(第3図(c)のTDC信号パルスSa、直後の#3気
筒の燃料噴射弁駆動信号)を供給することになる。
As described above, the ECU 3 sends a drive signal (see Fig. 3) to open the fuel injection valve 6 of the cylinder (#1 cylinder) corresponding to the current TDC signal pulse (Sa) based on the fuel injection time TOUT obtained in step 10. c) TDC signal pulse Sa□
A fuel injection valve drive signal for the immediately following #1 cylinder is supplied to the injection valve. Then, if the deviation ΔMe is equal to or less than the predetermined value ΔMCADJG in the determination in step 3 executed immediately after the next TDC signal pulse (Sa2), the cylinder corresponding to the TDC signal pulse (Sa2) (#3 cylinder) Correction variable value T
As i ADJK (T i ADJ3), this time T
The value set in step 5 (increased by ΔT/3) executed when the DC signal pulse (Sal) is generated is maintained as it is, and the injection time TOIJT is calculated by applying this correction variable value. Then, the ECU 3 outputs the next TDC signal pulse (Sa,) based on the calculated value ToUT.
A drive signal (TDC signal pulse Sa in FIG. 3(c), fuel injector drive signal for the immediately following #3 cylinder) is supplied to the fuel injection valve 6 of the cylinder corresponding to (#3 cylinder).

(発明の効果) 上述したように本発明の多気筒内燃エンジンの燃料供給
制御方法に依れば、各気筒の特定の行程時に夫々エンジ
ン回転数の変動の大きさを検出し、エンジン回転数の検
出した減速方向の変動の大きさが所定値以上のとき、当
該気筒への燃料供給量を所定量増量すると共に、前記当
該気筒以外の各気筒への燃料供給量を減量するようにし
たので失火によるエンジン回転数の減速方向の変動を防
止すると共に排気ガス特性の悪化も同時に防止すること
が出来る。
(Effects of the Invention) As described above, according to the fuel supply control method for a multi-cylinder internal combustion engine of the present invention, the magnitude of fluctuation in the engine speed is detected during a specific stroke of each cylinder, and the engine speed is adjusted accordingly. When the magnitude of the detected change in the deceleration direction is greater than or equal to a predetermined value, the amount of fuel supplied to the relevant cylinder is increased by a predetermined amount, and the amount of fuel supplied to each cylinder other than the cylinder concerned is decreased, thereby preventing misfires. It is possible to prevent the engine rotational speed from changing in the direction of deceleration caused by the engine rotation, and at the same time prevent the deterioration of the exhaust gas characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法が適用される多気筒内燃エンジン
の燃料供給制御装置の全体構成を示すブロック図、第2
図は第1図の電子コントロールユニット(EC:U)の
内部構成を示すブロック図、第3図は気筒判別(CYL
)信号、TDC信号及び各気筒の燃料噴射弁の駆動信号
の各パルスの発生の様子を説明するためのタイミングチ
ャート。 第4図は所定運転状態時に適用される補正変数T1AD
JKの設定手順を示すフローチャードである。 1・・・内燃エンジン、5・・・電子コントロールユニ
ット、6,6a乃至6b・・・燃料噴射弁、11・・エ
ンジン回転数(N e )センサ、12・・・気筒判別
(CYL)センサ、502−Meカウンタ、503・・
・CPU、507・・・ROM、508・・・RAM、
509・・駆動回路。
FIG. 1 is a block diagram showing the overall configuration of a fuel supply control device for a multi-cylinder internal combustion engine to which the method of the present invention is applied;
The figure is a block diagram showing the internal configuration of the electronic control unit (EC:U) in Figure 1, and Figure 3 is a block diagram showing the internal configuration of the electronic control unit (EC:U) in Figure 1.
) signal, a TDC signal, and a timing chart for explaining how each pulse of a drive signal for a fuel injection valve of each cylinder is generated. Figure 4 shows the correction variable T1AD applied during a predetermined operating state.
It is a flowchart showing the setting procedure of JK. DESCRIPTION OF SYMBOLS 1... Internal combustion engine, 5... Electronic control unit, 6, 6a to 6b... Fuel injection valve, 11... Engine speed (N e ) sensor, 12... Cylinder discrimination (CYL) sensor, 502-Me counter, 503...
・CPU, 507...ROM, 508...RAM,
509...Drive circuit.

Claims (4)

【特許請求の範囲】[Claims] 1.複数の気筒を有する内燃エンジンの所定運転状態時
に、前記各気筒毎に設定された燃料量を各気筒に供給す
る燃料供給制御方法において、前記各気筒の特定の行程
時に夫々エンジン回転数の変動の大きさを検出し、エン
ジン回転数の検出した減速方向の変動の大きさが所定値
以上のとき、当該気筒への燃料供給量を所定量増量する
と共に、前記当該気筒以外の各気筒への燃料供給量を減
量することを特徴とする多気筒内燃エンジンの燃料供給
制御方法。
1. In a fuel supply control method for supplying a predetermined amount of fuel to each cylinder during a predetermined operating state of an internal combustion engine having a plurality of cylinders, the method includes: When the magnitude of the detected change in the engine speed in the deceleration direction is greater than or equal to a predetermined value, the amount of fuel supplied to the cylinder is increased by a predetermined amount, and the amount of fuel supplied to each cylinder other than the cylinder is increased by a predetermined amount. A fuel supply control method for a multi-cylinder internal combustion engine, characterized by reducing the supply amount.
2.前記当該気筒以外の各気筒の前記減量する燃料量の
総和は前記当該気筒の前記増量する所定量と実質的に等
しいことを特徴とする特許請求の範囲第1項記載の多気
筒内燃エンジンの燃料供給制御方法。
2. 2. The fuel for a multi-cylinder internal combustion engine according to claim 1, wherein the sum total of the amount of fuel to be reduced in each cylinder other than the cylinder is substantially equal to the predetermined amount to be increased in the cylinder. Supply control method.
3.前記当該気筒以外の各気筒の前記減量する燃料量は
前記当該気筒の前記増量する所定量を気筒数から1を減
じた値で除した値と実質的に等しいことを特徴とする特
許請求の範囲第2項記載の多気筒内燃エンジンの燃料供
給制御方法。
3. Claims characterized in that the amount of fuel to be reduced in each cylinder other than the cylinder concerned is substantially equal to a value obtained by dividing the predetermined amount to increase in the cylinder concerned by a value obtained by subtracting 1 from the number of cylinders. 2. The fuel supply control method for a multi-cylinder internal combustion engine according to item 2.
4.前記所定運転状態はアイドル状態である特許請求の
範囲第1項記載の多気筒内燃エンジンの燃料供給制御方
法。
4. 2. The fuel supply control method for a multi-cylinder internal combustion engine according to claim 1, wherein the predetermined operating state is an idle state.
JP19845884A 1984-09-25 1984-09-25 Fuel feed controlling method of multicylinder internal-combustion engine Pending JPS6181532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19845884A JPS6181532A (en) 1984-09-25 1984-09-25 Fuel feed controlling method of multicylinder internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19845884A JPS6181532A (en) 1984-09-25 1984-09-25 Fuel feed controlling method of multicylinder internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6181532A true JPS6181532A (en) 1986-04-25

Family

ID=16391437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19845884A Pending JPS6181532A (en) 1984-09-25 1984-09-25 Fuel feed controlling method of multicylinder internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6181532A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138446U (en) * 1987-03-04 1988-09-12
US5021960A (en) * 1988-08-08 1991-06-04 Hitachi, Ltd. Combustion fault detection apparatus and control system for internal combustion engine
US5088318A (en) * 1990-04-02 1992-02-18 Toyota Jidosha Kabushiki Kaisha Determining device for determining a failure in an engine cylinder
US5245865A (en) * 1991-02-19 1993-09-21 Toyota Jidosha Kabushiki Kaisha Device for determining misfiring cylinder of multicylinder engine
US5534072A (en) * 1992-06-24 1996-07-09 Anelva Corporation Integrated module multi-chamber CVD processing system and its method for processing subtrates
DE4002209C2 (en) * 1990-01-26 2003-05-08 Bosch Gmbh Robert Misfire detection in an internal combustion engine
CN103748341A (en) * 2011-08-23 2014-04-23 大众汽车有限公司 Method for operating an internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138446U (en) * 1987-03-04 1988-09-12
US5021960A (en) * 1988-08-08 1991-06-04 Hitachi, Ltd. Combustion fault detection apparatus and control system for internal combustion engine
DE4002209C2 (en) * 1990-01-26 2003-05-08 Bosch Gmbh Robert Misfire detection in an internal combustion engine
US5088318A (en) * 1990-04-02 1992-02-18 Toyota Jidosha Kabushiki Kaisha Determining device for determining a failure in an engine cylinder
US5245865A (en) * 1991-02-19 1993-09-21 Toyota Jidosha Kabushiki Kaisha Device for determining misfiring cylinder of multicylinder engine
US5534072A (en) * 1992-06-24 1996-07-09 Anelva Corporation Integrated module multi-chamber CVD processing system and its method for processing subtrates
CN103748341A (en) * 2011-08-23 2014-04-23 大众汽车有限公司 Method for operating an internal combustion engine

Similar Documents

Publication Publication Date Title
US5016591A (en) System and method for controlling a combustion state in a multi-cylinder engine for a vehicle
US7747379B2 (en) Control device of direct injection internal combustion engine
US7448360B2 (en) Controller of internal combustion engine
JPH07247892A (en) Fuel injection control device for internal combustion engine
US5157613A (en) Adaptive control system for an engine
US20070235009A1 (en) Control apparatus for direct injection type spark ignition internal combustion engine
US9856845B2 (en) Control device for internal combustion engine
JPH04128535A (en) Electronically controlled fuel injection of internal combustion engine
US5319558A (en) Engine control method and apparatus
JPS6263147A (en) Air-fuel ratio controlling method for internal combustion engine and device thereof
JP3186250B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6181532A (en) Fuel feed controlling method of multicylinder internal-combustion engine
KR100736282B1 (en) Variable valve timing controller for internal combustion engine
JPS61169666A (en) Ignition timing control device in internal-combustion engine
JP3709595B2 (en) In-cylinder direct injection spark ignition engine controller
JP3563435B2 (en) Cylinder-specific combustion control method
JP3036351B2 (en) Method of detecting rotation fluctuation of internal combustion engine
JP4491739B2 (en) Control device for internal combustion engine
JPH0633855A (en) Mbt control by ion current
JP2002038993A (en) Control device for cylinder injection engine
JPH06185396A (en) Basic fuel injection method
JP2005180356A (en) Compensating gear and compensating method of crank angle sensor
JP2535895B2 (en) Air-fuel ratio control device for internal combustion engine
JPH1130149A (en) Fuel injection control device for direct-injection spark-ignition type internal combustion engine
JP2884836B2 (en) Engine ignition timing control device