[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6180875A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6180875A
JPS6180875A JP59202311A JP20231184A JPS6180875A JP S6180875 A JPS6180875 A JP S6180875A JP 59202311 A JP59202311 A JP 59202311A JP 20231184 A JP20231184 A JP 20231184A JP S6180875 A JPS6180875 A JP S6180875A
Authority
JP
Japan
Prior art keywords
junction
region
layer
inp
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59202311A
Other languages
Japanese (ja)
Inventor
Kenshin Taguchi
田口 剣申
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59202311A priority Critical patent/JPS6180875A/en
Publication of JPS6180875A publication Critical patent/JPS6180875A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To realize a semiconductor photodetector excellent in both dark current and high-speed response characteristics by a method wherein the formation is prevented of a p-n junction approximating a single-side junction outside the region on top of a mesa and the circumference of a p-n junction approximating such a single-side junction is covered by a p-n junction approximating a slant-type junction. CONSTITUTION:An n-InGaAsP layer (first semiconductor layer) 14 is formed, which is followed by the formation of an n-InP layer (second semiconductor layer) 15. Most of the n-InP layer 15 is removed, whereby a mesa is selectively retained. On top of the mesa, an n<-> - InP layer (third semiconductor layer) 16 is formed. An SiO2 film is formed and then the region along the circumfer ence of the n-InP layer 15 is concentrically removed. After the removal of the photoresist.SiO2 on the wafer, heat treatment is accomplished for the forma tion of a p-InP region 17. This results in the formation of a p-n junction 18 approximating a slant-type junction. Next, an insulating film 21 is formed in the same way and the p-InP region 17 is removed selectively of its internal circumference for the formation of a p<+> - InP region 19. The p<+> - n junction 20 thus formed approximates a single-side junction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明け、逆バイアス動作で使用する半導体装置に関す
るもので、特に高速、高感度、低雑音で信頼性の高いア
バランシ・フォトダイオードに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a semiconductor device used in reverse bias operation, and particularly to an avalanche photodiode that is high speed, high sensitivity, low noise, and highly reliable.

(従来技術とその問題点) 半導体光検出器のなかでフォトダイオード(以下PDと
呼ぶ)あるいはアバランシ・フォトダイオード(以下A
PI)と井ぶ)は、光通信システム等における光検出器
として重要なものであ、9、光源である半導体レーザと
共にその開発が進められている。半導体レーザの発振波
長は0.8μm力Sら1.5μm域のもの、たとえばG
aAs−GaA7As系、あるいけI n k’−I 
n GaA S P系の半導体tフープがその主流であ
る。現在、GaAs−GaAJAs 系レーザの主な発
掘波長0.8μmから0.87μmに対する光検出器と
してはSi単結晶を用いたPDあるいはAPDが広く使
用されており、8iのIC及びLSI技術等に支えられ
た技術全活用することKより信頼性も含めて連れた特性
を示している。
(Prior art and its problems) Among semiconductor photodetectors, photodiodes (hereinafter referred to as PD) or avalanche photodiodes (hereinafter referred to as A
PI) and Ibu) are important as photodetectors in optical communication systems, etc.9, and their development is progressing along with semiconductor lasers as light sources. The oscillation wavelength of a semiconductor laser is in the range of 0.8 μm to 1.5 μm, for example, G
aAs-GaA7As system, Arike I n k'-I
The mainstream is the n GaA S P type semiconductor t-hoop. Currently, PDs or APDs using Si single crystals are widely used as photodetectors for the main detection wavelength of 0.8 μm to 0.87 μm for GaAs-GaAJAs lasers, and are supported by 8i IC and LSI technology. By making full use of the technology developed by K, it has shown characteristics that include reliability.

しかしながらSiでは材料の吸収係数によ914m以上
の波長光を検出することは#I @であり元ファイバー
の伝送損失の低い1.1μm〜1.6μtnet長域で
は使用することができない。また1、1μm以上の波長
用としてはGe−APDがあるが、@電流と過剰雑音が
大きいこと、1.55μm波長以上の波長光に対しては
材料的に検出か困難になる等の点でこの波長域でのI−
V族化合物半導体材料等によるAPD、PDが要求され
ている。
However, with Si, it is impossible to detect light with a wavelength of 914 m or more due to the absorption coefficient of the material, and it cannot be used in the 1.1 μm to 1.6 μtnet length range where the transmission loss of the original fiber is low. Ge-APD is also available for wavelengths of 1.1 μm or more, but it has large current and excessive noise, and it is difficult to detect light with wavelengths of 1.55 μm or more due to the material. I- in this wavelength range
APDs and PDs made of group V compound semiconductor materials and the like are required.

現在、この1.1ご1.6μm波長域用元検出器として
研究・開発が進められている材料としてはInGaAs
、InGaAsP、GaA!18b、(JaA/AsS
b。
InGaAs is currently being researched and developed as a source detector for the 1.1 and 1.6 μm wavelength range.
, InGaAsP, GaA! 18b, (JaA/AsS
b.

Garb等のa−V族化合物半導体結晶による報告例が
あり、例えばn” −InP基板上にn型I n (J
 aAs層をエピタキシャル成長後、距鉛あるいはカド
ミウム等のp型不純物t−選択拡散した単純ブレーナ型
あるいは全面拡散後、メサエッチングしたメサ型素子等
の例がある。また、最近においてはpn接合をInP中
に形成しI n0aA s  あるいはInGaAsP
層を元吸収層としアバランシ領域をInP層中に形成す
ることにより低暗蝿流化・高増倍化が例えば特願昭54
−39169.特紗昭54−124975 Kより報告
されている。しかしながら設計許容範囲が狭く、歩留り
が悪い等の難点を有しており、光通信システム用元栓検
器として満足するものではない。この改良型としで、例
えば第2図に示したごとく(エレクトロニクス・しp 
−X、 Volt 、20. NM、 pp158−1
59 (1984) )、n”−rnp基板11上の元
吸収層としてのn −I nGaA3111313及び
n −I n GaAs P層14上ニn −TnP層
15′!i−均一にエピタキシャル成長後、凸形状を形
成し、このn−InP基板上を遮う様にローInP層1
6を再度エピタキシャル成長し、このクエーハを用いて
、f3eのイオン注入技術を用いて、n  −InPM
中に傾斜接合に近いp−n接合18 k      +
形成し、この内側領域で上記凸状台地領域上にp+  
n接合20を形成してエツジブレークダウンを防止し特
性向上を計ろうとする試みが行なわれてし高電界がこの
InGaAs13域にできるとトンネル電流が発生し、
低暗電流でかつ高速応答全同時に満足することは容易で
はないなどの欠点を有している。
There are reports of a-V group compound semiconductor crystals such as Garb et al., for example, n-type I n (J
Examples include a simple Brenna type device in which a p-type impurity such as lead or cadmium is selectively diffused after epitaxial growth of an aAs layer, or a mesa-type device in which a mesa-etch is performed after full-surface diffusion. In addition, recently, pn junctions have been formed in InP, I n0aA s or InGaAsP.
For example, by forming the avalanche region in the InP layer with the original absorption layer, low dark current and high multiplication can be achieved.
-39169. Reported by Tokusa Sho 54-124975 K. However, it has drawbacks such as a narrow design tolerance and poor yield, and is not satisfactory as a main plug tester for optical communication systems. This improved version can be used, for example, as shown in Figure 2.
-X, Volt, 20. NM, pp158-1
59 (1984)), the n-InGaA3111313 as the original absorption layer on the n''-rnp substrate 11 and the n-TnP layer 15'! A low InP layer 1 is formed to cover the n-InP substrate.
6 was epitaxially grown again, and using this quafer, n-InPM was grown using f3e ion implantation technology.
Inside the p-n junction, which is close to the inclined junction, 18 k +
p+ is formed on the convex plateau region in this inner region.
Attempts have been made to form an n-junction 20 to prevent edge breakdown and improve characteristics. When a high electric field is created in this InGaAs region, a tunnel current is generated.
It has the disadvantage that it is not easy to satisfy both low dark current and high-speed response at the same time.

(発明の目的) 本発明は上述の欠点を除去し、暗電流特性と高速応答を
同時に満足する半導体光検出器を提供することにある。
(Objective of the Invention) An object of the present invention is to eliminate the above-mentioned drawbacks and provide a semiconductor photodetector that satisfies dark current characteristics and high-speed response at the same time.

(発明の構成) 本発明によれば、少くとも第1の導電型を示す第1の半
導体層上に第1の導電型を同一4電型で前記第1の半導
体層の禁制帯幅より大きな禁制帯幅で凸部領域を有する
第2の半導体層を有し、かつ上記第2の半導体層の凸部
領域を包含すべく前記第1の導電型と同一導電型で前記
第2の半導体層の禁制帯幅と等しいかもしくは大きな禁
制帯lI@を有する第3の半導体層を有する層構造で、
選択的に上記凸部領域を形成する第2、あるいは第3の
半導体層中に前記第1の導電型と逆の導電型領域を形成
することによりp−n接合全形成する半導体装置におい
て、上記凸部領域台地上周縁においては傾斜接合釦近い
p−n接合を形成することを特徴とする半導体装置であ
る。
(Structure of the Invention) According to the present invention, the first conductivity type is formed on the first semiconductor layer exhibiting at least the first conductivity type, and the first conductivity type is the same as the fourth conductivity type and has a band gap larger than the forbidden band width of the first semiconductor layer. The second semiconductor layer has a second semiconductor layer having a convex region with a forbidden band width, and the second semiconductor layer is of the same conductivity type as the first semiconductor layer so as to include the convex region of the second semiconductor layer. A layered structure including a third semiconductor layer having a forbidden band lI@ that is equal to or larger than the forbidden band width of
In the semiconductor device in which the entire p-n junction is formed by selectively forming a region of a conductivity type opposite to the first conductivity type in the second or third semiconductor layer in which the convex region is formed, This semiconductor device is characterized in that a pn junction is formed near the inclined junction button at the periphery of the plateau in the convex region.

(発明の作用・原理) 本発明は、上述の構成、即ち、凸状台地上平坦領域外に
片側接合に近いp −n接合が形成されることを防ぎか
つ、本片側接合に近いp −n接合周縁を傾斜形接合に
近いp −n接合で遮りことにより、逆バイアス印加で
の暗電流特性を改善し、低暗電流で、高速光応答を可能
とした。
(Operation/Principle of the Invention) The present invention has the above-mentioned configuration, that is, it prevents the formation of a p-n junction close to a one-sided junction outside the flat area on the convex plateau, and also prevents the formation of a p-n junction close to a one-sided junction. By blocking the junction periphery with a p-n junction similar to a tilted junction, the dark current characteristics under reverse bias application were improved, and high-speed photoresponse was made possible with low dark current.

(実施例) 以下、本発明の実施例について図面を参照+Aで詳細に
説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の半導体装置の一実施例を示す概略横
断面図である。本実施例ではInP−1n(laAs系
材料全材料たものであり、まず(100)面を有するn
f型InP基板11の上にエピタキシャル成長法(例え
ば、気相成長法)により数μm厚の +−XnPバッフ
ァ層12ヲ層成2ヲ形成膜厚3μm、不純物濃度5xl
Qcm  のn型I nGaAs層(第1半導体層)1
3を形成する。次に膜厚1000A、不純物濃度1xl
Q”CnL″のn型1nQaAsP層(第1半導体層)
14を形成し、ひき続いて膜厚2μm、不純物濃度1.
2 X 1010l6”のn型InP層(第2 半導体
rfl)15ヲ形成する。この様にして得られたウェー
ハをフォトレジスト・目合せ工程等を経て例えば、HB
 r 4:H3PO42溶液により選択的に台地状領域
を残して、大部分のn −1nI’層15を除去する。
FIG. 1 is a schematic cross-sectional view showing an embodiment of the semiconductor device of the present invention. In this example, all materials are InP-1n (laAs), and first, n
A +-XnP buffer layer 12 with a thickness of several μm is formed on the f-type InP substrate 11 by epitaxial growth (e.g., vapor phase growth) with a thickness of 3 μm and an impurity concentration of 5xl.
Qcm n-type I nGaAs layer (first semiconductor layer) 1
form 3. Next, the film thickness is 1000A, and the impurity concentration is 1xl.
Q"CnL" n-type 1nQaAsP layer (first semiconductor layer)
14, and then a film thickness of 2 μm and an impurity concentration of 1.
A 2×1010l6” n-type InP layer (second semiconductor rfl) 15 is formed.The wafer thus obtained is subjected to a photoresist/alignment process, etc.
r4: Most of the n-1nI' layer 15 is selectively removed using a H3PO42 solution, leaving a plateau-like region.

ここでエツチングは1分権度とし、約0.3μmのn−
Jnp層15が凸状台地周縁に残っている。
Here, etching is performed at one degree of decentralization, and the n-
A Jnp layer 15 remains on the periphery of the convex plateau.

次に、有機溶剤による洗滌及びH*8043:Hzol
:Hz021の混合比による25℃程度の溶液によ01
分程度エツチングをほどこし、前記凸状n−InP層1
5ヲ層性5ヲ清浄、再度エピタキシャル成長を行ない白
地上領域上で約2μm、不純物源1×101 S Cw
L’のn−−1nPQ (第3半導体/’ii ) 1
6 k形成する。この様にして作製したウエーノ・の表
面に気相成長法あるいけスパッタ法等により、SiOx
膜を形成した後、フォトレジスト・目合せ工84により
前記凸状台地を形成するn −I n P層150周縁
上に位置する領域のS i 02膜を同心円状に除去し
、イオン注大技術により、上記SiOx除去領域に、B
eの原子を5 x IQ” /atl程度注入する。次
に上記ウェーハの7オトレジスト・SiO*=i除去後
、約700℃のリン圧下での熱処理によりp −I n
 P領域17を形成する。このとき得られるp−n*合
18は傾ン赴型接合に近い。
Next, washing with an organic solvent and H*8043:Hzol
: 01 by a solution at about 25℃ with a mixing ratio of Hz021
After etching the convex n-InP layer 1
5. Layer 5. Clean and epitaxially grow again. Approximately 2 μm on the white area, impurity source 1×101 S Cw
n--1nPQ of L' (third semiconductor/'ii) 1
Form 6k. SiO
After forming the film, the Si02 film in the region located on the periphery of the n-I n P layer 150 forming the convex plateau is removed concentrically by a photoresist/alignment process 84, and then the ion implantation technique is applied. As a result, B is added to the SiOx removal area.
Atoms of e are implanted at a rate of approximately 5 x IQ"/atl. Next, after removing the 7 photoresist SiO*=i from the wafer, heat treatment is performed at approximately 700°C under phosphorous pressure to form p -I n
A P region 17 is formed. The p-n* junction 18 obtained at this time is close to a tilt-to-head type junction.

次に前記同様5iOzあるいはSiNx絶縁膜を形成し
、前記p−InP17域の内周域を選択的に除去する。
Next, a 5 iOz or SiNx insulating film is formed as described above, and the inner peripheral region of the p-InP region 17 is selectively removed.

次にCd5Pzを拡散源として排気した閉管すに上記ウ
ェーハと共に配し約570℃の熱処理を加えることによ
5Cdの選択拡散をkなどこし、p” −InP域19
t″形成する。この場合には、約40分の熱処理により
、深さ約1.8μmが得らhてカリ1片      1
側接合に近いp−n接合20が形成される。次に前記同
様な方法によr)SiNxあるいけ5iOt膜2[全形
成し、電極取出し窓22をフォトレジスト・目合せ工程
等により形成し、p型電極23を第1図に示す様に形成
し、最後にn型電極24をn“−InP 基板11に形
成することにより本発明の半導体装置をイ0ることかで
きる。
Next, the above-mentioned wafer was placed in a closed tube that had been evacuated using Cd5Pz as a diffusion source, and heat treatment was applied at about 570°C to selectively diffuse 5Cd into p''-InP region 19.
In this case, a depth of about 1.8 μm is obtained by heat treatment for about 40 minutes, and one piece of potash is formed.
A p-n junction 20 near the side junction is formed. Next, the SiNx or 5iOt film 2 is completely formed by the same method as described above, the electrode extraction window 22 is formed by photoresist/alignment process, etc., and the p-type electrode 23 is formed as shown in FIG. Finally, by forming an n-type electrode 24 on the n''-InP substrate 11, the semiconductor device of the present invention can be completed.

(発明の効果) 上記した本発明の一実施例((より得られた素子はブレ
ークダウン電圧的100Vで暗tlも1011A8度と
低く光入射に対する応答も3dB劣化値で20Hz/S
以上と極めて高速特注を示した。
(Effects of the Invention) The device obtained from the above embodiment of the present invention has a breakdown voltage of 100V, a low dark TL of 1011A8 degrees, and a response to light incidence of 20Hz/S with a 3dB deterioration value.
The above shows an extremely high-speed custom order.

本発明の効果を示す夷hfD例の結果を第3図に示す。FIG. 3 shows the results of an example hfD showing the effects of the present invention.

即ち編3図の逆方向゛Fl!流−電圧特性は前記再1図
を用いて説明した台地状n−1nPls上に形成された
p”  −1膜合により得られた特性(点線で示しであ
る)とは別の台地状n−InP15領域外に位置する実
験用のp“−n接合により得られた特性である。
In other words, in the opposite direction of Figure 3 ゛Fl! The current-voltage characteristics are different from the characteristics (indicated by the dotted line) obtained by the p''-1 film formed on the plateau n-1nPls explained using Figure 1 above. These are the characteristics obtained from an experimental p''-n junction located outside the InP15 region.

この図から1台地状n−1nP15上に形成されたp+
  n接合のブレークダウン電圧近傍即ち100V付近
で台地状n−InP15領域外に形成されたp” −n
接合により得ら1する暗′i−流は、μAオーダーであ
T)4fめて大きいことが判る。これは、次の様に理解
で倉る。即ち、前記台地状n−InP15領域外に形成
されたp◆ −n接合により得られる逆バイアス印加に
よる前記n−In0aAs13とn−InGa、〜5p
14のへテロ界面及びn−InC+aAs14とn−1
nP15のへテロ界面での内部電界が台地状n −I 
n P 15領域上に形成された酎−ni合により得ら
れる前記同様領域のへテロ電界よ−りも大きくなり、前
記ロー1nGaAs13あるいは(1−1nQaAsP
14jg内でのトンネル電流が発生することにより大き
な暗電流が発生したと理解される。これと較べて、fL
n /J+M接合に近いp−n接合18は、p領域にも
窒乏化が計7げ′られ、前記へテロ界面での内部電界の
上昇が緩和されかつブレークダウン電圧は、上昇するこ
とにより、ガードリングとして供していると理解される
From this figure, p+ formed on one plateau n-1nP15
p''-n formed outside the plateau-like n-InP15 region near the breakdown voltage of the n-junction, that is, around 100V.
It can be seen that the dark current obtained by joining is large on the order of .mu.A. This can be understood as follows. That is, the n-In0aAs13 and n-InGa, 5p by applying a reverse bias obtained by the p◆-n junction formed outside the plateau-like n-InP15 region.
14 heterointerface and n-InC+aAs14 and n-1
The internal electric field at the hetero interface of nP15 is plateau-like n - I
It is larger than the heteroelectric field of the similar region obtained by the Ni-Ni bond formed on the nP15 region, and
It is understood that a large dark current was generated due to the generation of tunnel current within 14jg. Compared to this, fL
In the p-n junction 18, which is close to the n/J+M junction, the p region is also depleted with nitrogen, and the rise in the internal electric field at the hetero interface is alleviated, and the breakdown voltage is increased. , it is understood that it serves as a guard ring.

以上一実施例にもとづき本発明の効果について説明して
きたが、結晶の面方位、結晶の組合せ等を異にしても本
発明の効果が本構成により得られるのは必然であり、本
発明の範中にあるのは明らかである。
Although the effects of the present invention have been explained above based on one embodiment, it is inevitable that the effects of the present invention can be obtained with this configuration even if the plane orientation of the crystals, the combination of crystals, etc. are different, and it is within the scope of the present invention. It's obvious what's inside.

尚、一実施例である第1図ではI n P 7台15は
凸部周囲にも残っているように示したが、この周囲の部
分は無くても本質的には何ら変えることはない。
Incidentally, in FIG. 1, which is an embodiment, the seven I n P units 15 are shown to remain around the convex portion, but there is essentially no change in the surrounding area even if it is removed.

寸た。凸部領域をp′″−InP領域19よりも大きく
図示しているが、逆に小さくてもよい。要は、InP層
15凸部の周縁部分が、図示したようにp−−InP層
17  (いわゆるガードリングと呼ばれる領域)によ
って撰われていればよい。また、第1半n1体層け2つ
の層(InGaAs fi13. InoaAsP層1
4)で形成したが1層、あるいは3層以上の多層として
もよい。
Dimensions. Although the convex region is illustrated to be larger than the p''-InP region 19, it may be smaller than the p''-InP region 19.In short, the peripheral portion of the convex portion of the InP layer 15 is larger than the p--InP layer 17 as shown in the figure. (a region called a guard ring).In addition, the first half n1 layer and two layers (InGaAs fi13. InoaAsP layer 1
Although it was formed in step 4), it may be one layer or a multilayer of three or more layers.

く図面の1YXS革な説明 図釦おいて、 11・・・・・・n”−InP基板、 
12・・・・・・n”−InPエピタキシャル層、  
13・・・・・・n−InGaAs層、  14°−−
−= n −I noaAsP層、15− n −I 
n P Q、 L6−−・−n−−I nP a、17
・・・・p −I n P領域、 18・・・・・・p
−n羨合、19・・・・・pゝ−InP頃域、 20・
・・・・・p= −n妄合、21・・・・・・SiNx
あるいはSiO!膜、  22・・山・電てはMX1図
と同様であるので同一番号を付加した。
11... n''-InP board,
12...n''-InP epitaxial layer,
13...n-InGaAs layer, 14°--
-= n -I noaAsP layer, 15- n -I
n P Q, L6--・-n--I nP a, 17
...p-I n P region, 18...p
-n envy, 19...pゝ-InP area, 20.
... p = -n delusion, 21 ... SiNx
Or SiO! The membrane, 22...mountain, and wire are the same as in the MX1 diagram, so the same numbers have been added.

図 第3図は本発明の効g−を示1〜だ神で、実線は従来構
造の暗室R特性、点線は本発明の実施例による逆方向@
電流特性例を示す。
Figure 3 shows the effect of the present invention. The solid line is the dark room R characteristic of the conventional structure, and the dotted line is the reverse direction according to the embodiment of the present invention.
An example of current characteristics is shown.

、   71−1図 t2図 2゜, Figure 71-1 t2 diagram 2゜

Claims (1)

【特許請求の範囲】[Claims]  少くとも第1の導電型を示す第1の半導体層上に第1
の導電型と同一導電型で前記第1の半導体層の禁制帯幅
より大きな禁制帯幅で凸部領域を有する第2の半導体層
を有し、かつ上記第2の半導体層の凸部領域を包含すべ
く前記第1の導電型と同一導電型で、前記第2の半導体
層の禁制帯幅と等しいか、もしくは大さな禁制帯幅を有
する第3の半導体層を有する層構造で、選択的に上記凸
部領域を形成する第2、あるいは第3の半導体層中に前
記第1の導電型と逆の導電型領域を形成することにより
p−n接合を形成する半導体装置において、上記凸部領
域台地上周縁部は傾斜接合に近いp−n接合で覆われて
いることを特徴とする半導体装置。
a first semiconductor layer exhibiting at least a first conductivity type;
a second semiconductor layer having the same conductivity type as the conductivity type and having a convex region with a forbidden band width larger than the forbidden band width of the first semiconductor layer, and a convex region of the second semiconductor layer; A layer structure including a third semiconductor layer having the same conductivity type as the first conductivity type and having a forbidden band width equal to or larger than the forbidden band width of the second semiconductor layer, In a semiconductor device in which a pn junction is formed by forming a region of a conductivity type opposite to the first conductivity type in a second or third semiconductor layer forming the convex region, A semiconductor device characterized in that a peripheral portion of a partial region plateau is covered with a p-n junction close to an inclined junction.
JP59202311A 1984-09-27 1984-09-27 Semiconductor device Pending JPS6180875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59202311A JPS6180875A (en) 1984-09-27 1984-09-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59202311A JPS6180875A (en) 1984-09-27 1984-09-27 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6180875A true JPS6180875A (en) 1986-04-24

Family

ID=16455444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59202311A Pending JPS6180875A (en) 1984-09-27 1984-09-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6180875A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610416A (en) * 1995-02-16 1997-03-11 Hewlett-Packard Company Avalanche photodiode with epitaxially regrown guard rings
US5866936A (en) * 1997-04-01 1999-02-02 Hewlett-Packard Company Mesa-structure avalanche photodiode having a buried epitaxial junction
WO2010057835A3 (en) * 2008-11-21 2010-09-16 Ketek Gmbh Radiation detector use of a radiation detector and method for producing a radiation detector
JP2018157156A (en) * 2017-03-21 2018-10-04 パナソニックIpマネジメント株式会社 Solid state imaging device and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610416A (en) * 1995-02-16 1997-03-11 Hewlett-Packard Company Avalanche photodiode with epitaxially regrown guard rings
US5866936A (en) * 1997-04-01 1999-02-02 Hewlett-Packard Company Mesa-structure avalanche photodiode having a buried epitaxial junction
WO2010057835A3 (en) * 2008-11-21 2010-09-16 Ketek Gmbh Radiation detector use of a radiation detector and method for producing a radiation detector
JP2018157156A (en) * 2017-03-21 2018-10-04 パナソニックIpマネジメント株式会社 Solid state imaging device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US3886579A (en) Avalanche photodiode
EP0458688B1 (en) Method of fabrication of an integrated semiconductor light guide-light detector structure
JPH051628B2 (en)
US4761383A (en) Method of manufacturing avalanche photo diode
Colace et al. Waveguide photodetectors for the near-infrared in polycrystalline germanium on silicon
WO2018189898A1 (en) Semiconductor light-receiving element
JPS63955B2 (en)
JPS6180875A (en) Semiconductor device
JPH02262379A (en) Semiconductor photodetector and manufacture thereof
JPS6244432B2 (en)
JPS61101084A (en) Manufacture of compound semiconductor light-receiving element
JPS59149070A (en) Photodetector
JPS59136981A (en) Semiconductor photo detector
JPS6244433B2 (en)
JPH0316275A (en) Manufacture of semiconductor photodetector
JPS63237484A (en) Semiconductor device
JPS6222474B2 (en)
JPH0621503A (en) Semiconductor photodetector and manufacture thereof
JPS62169376A (en) Photodiode
JP2004179404A (en) Semiconductor light receiving device and its manufacturing method
JPS59103385A (en) Semiconductor device
JP3038509B2 (en) Manufacturing method of light receiving element
JPS6244710B2 (en)
JPS60173882A (en) Semiconductor device
JPS61220481A (en) Manufacture of semiconductor light receiving device