JPS6174205A - Anisotropically electroconductive composition - Google Patents
Anisotropically electroconductive compositionInfo
- Publication number
- JPS6174205A JPS6174205A JP19513984A JP19513984A JPS6174205A JP S6174205 A JPS6174205 A JP S6174205A JP 19513984 A JP19513984 A JP 19513984A JP 19513984 A JP19513984 A JP 19513984A JP S6174205 A JPS6174205 A JP S6174205A
- Authority
- JP
- Japan
- Prior art keywords
- conductive
- resin
- particles
- conductive particles
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、印刷回路の回路間、印刷回路の検出部1回路
と制御部との接続の場合等にコネクターと同様(こ用い
IFする異方19電性電極用粗成物に関するものである
。Detailed Description of the Invention (Industrial Field of Application) The present invention is applicable to connections between circuits of a printed circuit, or between one detecting section and a control section of a printed circuit, as well as a connector. 19 relates to a crude product for conductive electrodes.
(l来技術)
近時、印刷回路に関係した部分の1妾続に用いられるコ
ネクター自体の小型化や端子数の増加に伴い、端子を取
り出しするためのハンダやかしめ接続では不可能になり
、シリコンゴム中に金メッキしたステンレスワイヤーを
埋めこんだものや、導体や絶縁板を多層にして構成した
エラストマーコネクター、平行な多数体の印刷導体をパ
イプ状にして丸めたコネクター、異方導電性感圧ゴムシ
ート等をコネクターとしたものが用いられている。この
中でも異方導電性感圧ゴムシートはゴム中に、ある配合
量の導電性微粒子を配合したものであって、これを例え
ば印刷回路のような平行導体を有する2枚の回路を接続
することによって厚みの方向では導電性となり、厚みに
直角な方向では絶縁性となるコネクターとして注目を浴
びている。(Next technology) Recently, as the connectors used for connecting parts related to printed circuits have become smaller and the number of terminals has increased, it has become impossible to connect by soldering or caulking to take out the terminals. Connectors with gold-plated stainless steel wire embedded in silicone rubber, elastomer connectors made of multiple layers of conductors and insulating plates, connectors with many parallel printed conductors rolled into a pipe shape, anisotropically conductive pressure-sensitive rubber A connector using a sheet or the like is used. Among these, an anisotropically conductive pressure-sensitive rubber sheet is a rubber sheet containing a certain amount of conductive fine particles, and is used by connecting two circuits having parallel conductors, such as printed circuits. It is attracting attention as a connector that is conductive in the direction of thickness and insulating in the direction perpendicular to the thickness.
しかしこのようなコネクターも従来のものはプラスチッ
ク中に一定の粒子サイズ(1μm程度)の金属の粉体を
混合し、ロール成形してシート状に作ったもので2枚の
電極間に介在さばて圧着するものでロール成形し得るシ
ートの厚みと金属粉体の混入量による導電性の限界から
ある厚み以下のものは期待て・きず極めて薄い塗料形式
のものの出現が待望されていた。However, conventional connectors like this are made by mixing metal powder with a certain particle size (about 1 μm) in plastic and roll-forming it into a sheet. Due to the limits of conductivity due to the thickness of the roll-formed sheet and the amount of metal powder mixed in, it was expected that the thickness would be less than a certain level, and the appearance of a paint type product with extremely thin scratches was eagerly awaited.
この様な塗料形式のものとしては特公昭5つ一2179
号等が知られている。しかしながらこの明細書に開示の
技術は通常の形態を有する導電性微粒子を使用したもの
で、これを混入した■1成物を加圧により電気部材間に
介在させても効果的な導電異方性を保つことができない
。An example of this type of paint is Tokuko Showa 5tsu-1 2179.
The number etc. are known. However, the technology disclosed in this specification uses conductive fine particles having a normal shape, and even if a compound containing the conductive particles is interposed between electrical members by applying pressure, the conductive anisotropy can be effectively achieved. can't keep it.
本発明者はこの様な問題点を解決するために鋭意研究を
行った結果、多数の突起を有しサイズの¥1.<@った
2種の導電性粒子を用い、かつバインダーとしてホット
メルト樹脂(熱可塑性樹脂)および印刷用溶剤を用いる
ことにより、塗料として塗装した際にきわめて有効な異
方性を示す導電性組成物を見出し先に特許出願を行った
(特願昭58−227057号)。The inventor of the present invention conducted intensive research to solve these problems, and as a result, the inventor found that the product has a large number of protrusions and a size of ¥1. By using two types of conductive particles and using a hot melt resin (thermoplastic resin) and a printing solvent as binders, we have created a conductive composition that exhibits extremely effective anisotropy when applied as a paint. A patent application was filed for the product (Japanese Patent Application No. 58-227057).
(発明の目的)
しかしながら本発明者の先願に係る上記異方導電性組成
物はバインダーとしてホットメルト樹脂を使用している
ため、耐熱性、接着強度。(Object of the Invention) However, since the above-mentioned anisotropically conductive composition according to the inventor's earlier application uses a hot melt resin as a binder, it has poor heat resistance and adhesive strength.
可溶剤性に問題が必りその用途が限定されていた。There were always problems with solubility, which limited its use.
本発明の目的は、先願と同じく大小2種の導電性粒子を
用いさらにバインダーとなる樹脂の種類を選定すること
により異方導電性に囮れると共に、上記各特性の改善さ
れた組成物を提供づることにある。The purpose of the present invention is to obtain anisotropic conductivity by using two types of conductive particles, large and small, and selecting the type of resin that will serve as the binder, as in the previous application, and to create a composition with improved characteristics as described above. It's all about providing.
(発明の構成)
本発明者はバインダーとしてホットメルト樹脂の代りに
、その全部又は一部を熱硬化性樹脂を使用することによ
り、先願に係る異方導電性組成物の問題点を解決するこ
とに成功したつ本発明はすなわら、粒子径0.5μm以
下の導電性粒子0.2〜2唖1%1粒子径1.01i
m以上の多数の突起を有する2J導電性子10〜75玉
伍%。(Structure of the Invention) The present inventor solves the problems of the anisotropically conductive composition according to the prior application by using a thermosetting resin in whole or in part instead of a hot melt resin as a binder. The present invention has been particularly successful in that the conductive particles having a particle size of 0.5 μm or less 0.2 to 1% 1 particle size 1.01 i
2J conductive element having a large number of protrusions of 10 to 75%.
印刷用溶剤に可溶性の熱硬化性樹脂組成物30〜80重
間%、印刷用溶剤に不溶性の幼体樹脂O〜70重量%か
らなり、總計で100重量%となるように、配合された
固形成分と適量の印刷用溶剤からなる異方導電性組成物
である。A solid component consisting of 30 to 80% by weight of a thermosetting resin composition soluble in a printing solvent and 0 to 70% by weight of a juvenile resin insoluble in a printing solvent, and blended so that the total amount is 100% by weight. It is an anisotropically conductive composition consisting of an appropriate amount of a printing solvent and a suitable amount of a printing solvent.
粒子径0.5μm以下の導電性粒子としてはカーボンブ
ラック、グラファイトが一般に用いられるが化学的j?
元、熱分解蒸着によって製造することができるコロイド
状金、白金、やロジウム、ルテニウム、パラジウム、イ
リジウム等の金属粉体、又はコロイドチタン等も用いら
れる。Carbon black and graphite are generally used as conductive particles with a particle size of 0.5 μm or less, but chemical j?
Metal powders such as colloidal gold, platinum, rhodium, ruthenium, palladium, and iridium, which can be produced by pyrolytic vapor deposition, or colloidal titanium are also used.
また粒子、粒子径1.0μm以上の多数の突起を有する
導電性粒子としては製造方法によって特長づけられカル
ボニル法でつくられるニッケル、コバルト、鉄等の金属
粒子、又はアトマイ法あるいはスタンプ法によるこれら
の合金等の金属粒子ヤ砥粒としての耐化物、窒化物、炭
化物、ホウ化物たとえばAl 203 、 Si 02
、 Si C。Particles and conductive particles having a large number of protrusions with a particle diameter of 1.0 μm or more include metal particles such as nickel, cobalt, iron, etc., which are characterized by the manufacturing method and are produced by the carbonyl method, or by the atomization method or the stamp method. Metal particles such as alloys, resistant materials, nitrides, carbides, borides as abrasive grains, such as Al 203, Si 02
, SiC.
WC,Ta c、si 3 Na等の顔料粒子にニッケ
ル、銅、銀、金、白金、ロジウム、ルテニウム、オスミ
ウム、パラジウム等の導電性に溺れた金属のメッキをh
mした粒子が挙げられる。Pigment particles such as WC, Ta c, and Si 3 Na are plated with highly conductive metals such as nickel, copper, silver, gold, platinum, rhodium, ruthenium, osmium, and palladium.
Examples include m-sized particles.
粒子径0.5mμ以下の導電性粒子は上記のように0.
2〜201 fH%、好ましくは1〜15小の%の含ω
にFJ!4整するが、この範囲未満では導電性が不十分
であり、この範囲を越えると必要な方向の絶縁性が低下
し、接着強度の低下とともにシール抵抗値が大でその抵
抗(直のバラツキを生ずる。このような粒子径0.5μ
m以下の導電性微粒子の実例と!1指に混合した場合の
抵抗値を示びば次のとおりである。As mentioned above, conductive particles with a particle diameter of 0.5 mμ or less have a diameter of 0.5 mμ or less.
2-201 fH%, preferably 1-15% ω content
To FJ! However, below this range, the conductivity is insufficient, and beyond this range, the insulation in the required direction decreases, the adhesive strength decreases, and the seal resistance value becomes large, and the variation in the resistance (direction) is reduced. Such a particle size of 0.5μ
Examples of conductive fine particles smaller than m! The resistance value when mixed on one finger is as follows.
表 1
また粒子径1.0μm以上の表面に多数の突起を有する
導電性物質は俗に砥粒状粒子といわれる粗大粒子である
が、このものは10小宿%未満では接着強度はよくなる
が抵抗値が大きくてバラツキが大となり、75!rim
%を越えると接着強度は弱く実用的な塗膜が1qられ難
くなる。粒子(¥1.0μm以上の導電性粒子の例につ
いて特性等を表示すれば次のとおりである。Table 1 Conductive substances with a particle size of 1.0 μm or more and many protrusions on the surface are coarse particles commonly referred to as abrasive particles. is large and the variation is large, 75! rim
%, the adhesive strength will be weak and it will be difficult to form a practical coating film. The characteristics of particles (examples of conductive particles of ¥1.0 μm or more) are as follows.
表 2
この場合、粒子径を大きくすると印刷適性が悪くなるが
、電極間の接合抵抗が小さく、経時変化の小さいものを
作ることができる。なおこの粒子、粒子径1.0μm以
上の導電性粒子を使用するにあたり、具体的な粒子の選
定は、回路間の間隙。Table 2 In this case, if the particle size is increased, printability deteriorates, but the bonding resistance between the electrodes is small, and it is possible to make a material with a small change over time. In addition, when using these particles, conductive particles with a particle size of 1.0 μm or more, the specific particles should be selected in the gap between the circuits.
異方導電性組成物皮膜の厚さ、接着強度、対向する′c
t2極間、隣接する電極間の抵抗値等の特性や、導電性
皮膜構成方法、熱圧着方法等を配慮して定めるものであ
る。Thickness of anisotropically conductive composition film, adhesive strength, opposing ′c
It is determined by taking into consideration characteristics such as the resistance value between t2 electrodes and the resistance value between adjacent electrodes, the method of forming the conductive film, and the method of thermocompression bonding.
本発明に使用されるバインダーとしての熱硬化性樹脂は
融点50〜150°C,170℃でのゲル化時間 1秒
〜30分、好ましくは5秒〜2分の樹脂が適当であり、
例えばエポキシ樹脂、不飽和ポリエステル樹脂、フェノ
ール樹脂、メラミン樹脂、熱硬化型アクリル樹脂、ジア
リルフタレート樹脂、ウレタン樹脂又はこれらの変性樹
脂が単独もしくは混合物として用いられる。また反応性
モノマー、硬化剤、触媒、および硬化促進剤等が熱硬化
性樹脂を硬イ曝せるために用いられる。その他の添加物
としてロジン誘導体、テルペン樹脂1石曲樹脂等の粘着
性付与剤、シクロヘキサン、エチルセルソルブ、ベンジ
ルアルコール、ジアセトンアルコール、テルピネオール
等樹脂の硬化温度以下で指触乾燥できる溶剤や、可撓性
付与剤、耐燃性付与剤、耐燃助剤等が必要に応じて用い
られる。上記エポキシ樹脂としてはビスフェノールA型
、F型、水添ビスフェノールA型、テトラブロムビスフ
ェノールA型。The thermosetting resin used as the binder used in the present invention has a melting point of 50 to 150°C and a gelation time of 1 second to 30 minutes at 170°C, preferably 5 seconds to 2 minutes.
For example, epoxy resins, unsaturated polyester resins, phenol resins, melamine resins, thermosetting acrylic resins, diallyl phthalate resins, urethane resins, or modified resins thereof may be used alone or as a mixture. In addition, reactive monomers, curing agents, catalysts, curing accelerators, and the like are used to harden the thermosetting resin. Other additives include rosin derivatives, tackifying agents such as terpene resins, cyclohexane, ethyl cellosolve, benzyl alcohol, diacetone alcohol, terpineol, and other solvents that can be dried to the touch at temperatures below the curing temperature of the resin. A flexibility imparting agent, a flame resistance imparting agent, a flame resistance aid, etc. are used as necessary. The above-mentioned epoxy resins include bisphenol A type, F type, hydrogenated bisphenol A type, and tetrabromobisphenol A type.
フェノールノボラック型、臭素化フェノールノボラック
型、クレゾールノボラック型、グリシジル7ミン型、ヒ
ダントイン型、トリグリシジルイソシアヌレートを、■
1型等が挙げられる。Phenol novolac type, brominated phenol novolac type, cresol novolac type, glycidyl 7mine type, hydantoin type, triglycidyl isocyanurate, ■
Examples include type 1.
硬化剤としてはジエチレントリアミン、メタキシリレン
ジアミン、ポリアミド樹脂等の脂肪族アミン、パラメン
タンジアミン、2−エチル−4−メチルイミダゾール等
の環状脂肪族アミン。Examples of the curing agent include aliphatic amines such as diethylenetriamine, metaxylylene diamine, and polyamide resins, and cycloaliphatic amines such as paramenthanediamine and 2-ethyl-4-methylimidazole.
メタフェニレンジアミン、 4〜4′−ジアミノジフェ
ニルメタン等の芳f!1fQXアミン、無水フタル酸、
ナジックll!無水物等の酸無水物、三級アミン、三フ
フ化はう素−七ノエチルアミン、ジシアンジアミド、モ
レキュラーシーブ硬化剤。Aromatic f! such as meta-phenylenediamine, 4-4'-diaminodiphenylmethane, etc. 1fQX amine, phthalic anhydride,
Nazikll! Acid anhydrides such as anhydrides, tertiary amines, boronic trifluoride-7noethylamine, dicyandiamide, molecular sieve curing agents.
?イクロカプセル硬化剤等の潜在性硬化剤が用いられる
。またカチオン重合型のルイス酸触媒も用いることがで
きる。? A latent curing agent such as a microcapsule curing agent is used. A cationic polymerization type Lewis acid catalyst can also be used.
不飽和ポリエステル樹脂としては不飽和二基v:酸とし
て無水マレイン酸、フマール酸、イタコン酸、シトラコ
ン酸、グルタミン酸、メサコン酸等の1伸又は2種以上
、飽和二塩基酸としではコハク酸、グルタル酸、アジピ
ン酸、l:7バシン酸、ドデカンジカルボン酸等の脂肪
族ジカルボン酸、テレフタル酸、イソフタル酸、オルソ
フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル
酸の1種又は2種以上、グリコール成分としてはエチレ
ングリコール、プロピレングリコール、ジエチレングリ
コール、ジプロピレングリコール、トリエチレングリコ
ール。Unsaturated polyester resins include unsaturated dibasic acids such as maleic anhydride, fumaric acid, itaconic acid, citraconic acid, glutamic acid, mesaconic acid, etc., and saturated dibasic acids such as succinic acid and glutaric acid. Acid, adipic acid, l:7 aliphatic dicarboxylic acid such as bacic acid, dodecanedicarboxylic acid, one or more of the following: terephthalic acid, isophthalic acid, orthophthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, glycol component: Ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol.
1.3−ブチレングリコール、2.3−ブチレングリコ
ール、ネオペンチルグリコール、ヘキシレングリコール
、オクチレングリコール、ビスフェノールA、水添ごス
フエノールAの1種又は2種以上、架橋用単量体として
はスチレン、ジビニルベンゼン、ジアリルフタレート、
トリアリルシアヌレート、(メタ)アクリル酸及びその
アルキルエステル、アクリロニトリル、酢酸ビニル、ア
クリル7ミド等の 1種又は2種以上が用いられる。硬
化触媒としては通常の有は過酸化物、例えばベンゾイル
パーオキサイド、メチルエチルケトンパーオキサイド、
ターシャリ−ブチルパーベンゾエート等が用いられる。One or more of 1.3-butylene glycol, 2.3-butylene glycol, neopentyl glycol, hexylene glycol, octylene glycol, bisphenol A, hydrogenated sphenol A, and styrene as the crosslinking monomer. , divinylbenzene, diallyl phthalate,
One or more of triallyl cyanurate, (meth)acrylic acid and its alkyl ester, acrylonitrile, vinyl acetate, acryl 7mide, etc. are used. Common curing catalysts include peroxides such as benzoyl peroxide, methyl ethyl ketone peroxide,
Tertiary-butyl perbenzoate and the like are used.
その他ナフテン酸コバルト、Aクヂル酸コバルト等の促
進剤、ハイドロキノン等の重合禁止剤を必要に応じて添
加してもよい。In addition, accelerators such as cobalt naphthenate and cobalt oxylate, and polymerization inhibitors such as hydroquinone may be added as necessary.
フェノール樹脂としてはフェノールとホルマリンとをア
ルカリ触媒の存在下で反応して1nられるレゾール樹脂
や酸触媒の存在下で得られるノボラック樹脂が用いられ
る。As the phenol resin, a resol resin obtained by reacting phenol and formalin in the presence of an alkali catalyst or a novolak resin obtained in the presence of an acid catalyst are used.
メラミン樹脂としてはメラミンとホルマリンとをof−
17以上で加熱反応して得られる液状又はa末樹脂が用
いられる。Melamine resin is made of melamine and formalin.
A liquid or a-terminal resin obtained by heating reaction at a temperature of 17 or more is used.
ジアリルフタレート樹脂としてはジアリルオルソフタレ
ート、ジアリルイソフタレート、ジアリルテレフタレー
ト等の単独もしくは混合物より製造されたプレポリマー
、又は該ジアリルフタレート類と共重合しうるビニル系
モノマー。The diallyl phthalate resin includes a prepolymer produced from diallyl orthophthalate, diallyl isophthalate, diallyl terephthalate, etc. alone or in a mixture, or a vinyl monomer copolymerizable with the diallyl phthalate.
アリル系モノマー等との共重合ブレポリ7−が用いられ
る。Brepoly 7- copolymerized with an allyl monomer or the like is used.
ウレタン樹脂としてはポリイソシアネートとポリグリコ
ール、又は両末端に水酸基を含むポリエステルポリオー
ルとを反応させて得られる分子m 2000〜4000
のプレポリマーでイソシアネート基を両末端又は2個以
上有するものに架橋剤としてポリエチレングリコール、
又は両末端に水酸基を有するポリエステル、ポリアミン
。As the urethane resin, a molecule m2000 to 4000 obtained by reacting polyisocyanate with polyglycol or a polyester polyol containing hydroxyl groups at both ends is used.
A prepolymer having isocyanate groups at both ends or two or more as a crosslinking agent, polyethylene glycol,
Or polyester or polyamine having hydroxyl groups at both ends.
ポリカルボン酸等活性水素を2個以上持つ化合物を添加
して用いられる。It is used by adding a compound having two or more active hydrogens such as polycarboxylic acid.
ポリイソシアネートとしてはトリレンジイソシアネート
、 3.3’ −1−リレン−4,4′ ジイソシア
ネート、ジフェニルメタン4,4′ −ジイソシアネー
ト、トリフェニルメタンpp’ l) ”−トリイソシ
アネート、 2.4−トリレンダイマー。Examples of polyisocyanates include tolylene diisocyanate, 3,3'-1-lylene-4,4' diisocyanate, diphenylmethane 4,4'-diisocyanate, triphenylmethane pp'l)''-triisocyanate, 2,4-tolylene dimer. .
ナフタレン−1,5−ジイソシアネート、トリス(4−
フェニルイソシアネート)チオホスフェート、トリレン
ジイソシアネート三量体、ジシクロヘキサメタン4,4
′ −ジイソシアネート。Naphthalene-1,5-diisocyanate, tris(4-
phenyl isocyanate) thiophosphate, tolylene diisocyanate trimer, dicyclohexamethane 4,4
′ -diisocyanate.
メタキシレンジイソシアネート、ヘキサヒドロメタキシ
レンジイソシアネート、ヘキサメチレンジイソシアネー
ト、トリメチルプロパン−1−メチル−2−イソシアノ
−4−カーバメート、ポリメチレンポリフェニルイソシ
アネート。Meta-xylene diisocyanate, hexahydrometa-xylene diisocyanate, hexamethylene diisocyanate, trimethylpropane-1-methyl-2-isocyano-4-carbamate, polymethylene polyphenylisocyanate.
3.3′ −ジメトキシ4.4′ −シフIニルジイソ
シアネート等が挙げられ、分子の両末端に水酸基をイ1
するポリエステルポリオール、ポリエーテルポリオール
等にポリイソシアネー1−を添加して用いてもよい。Examples include 3.3'-dimethoxy4.4'-Schiff I diisocyanate, which has hydroxyl groups at both ends of the molecule.
Polyisocyanate 1- may be added to polyester polyol, polyether polyol, etc. to be used.
熱硬化性アクリル樹脂としてはアクリル樹脂に2個以上
のカルボン酸基又はその無水物、エポキシ基、アミノ基
、その他の重合性官能基が導入されたものが挙げられ、
それぞれの官能基に適当な硬化剤を加え加熱硬化すれば
よい。Examples of thermosetting acrylic resins include acrylic resins into which two or more carboxylic acid groups or their anhydrides, epoxy groups, amino groups, and other polymerizable functional groups are introduced.
What is necessary is to add an appropriate curing agent to each functional group and heat curing.
フレキシブルな端子接続においては上記の樹脂j■独で
は接着強度が満足できないがざらに熱硬化性樹脂の耐衝
撃性、屈曲性、初期接着力を改良するために熱可塑性樹
脂やエラストマー樹脂をブレンドした複合熱硬化性樹脂
を使用してもよい。このような樹脂としてはフェノール
ポリビニルアセタール樹脂、フェノール−合成ゴム、エ
ポキシ−ナイロン、エポキシ−ニトリルゴム、エボキシ
ポリブクジエン等が挙げられる。For flexible terminal connections, the above resins cannot satisfy the adhesive strength, but thermoplastic resins and elastomer resins are blended to improve the impact resistance, flexibility, and initial adhesive strength of thermosetting resins. Composite thermosetting resins may also be used. Examples of such resins include phenol polyvinyl acetal resin, phenol-synthetic rubber, epoxy-nylon, epoxy-nitrile rubber, and epoxy-polybutene.
また本発明では印刷用溶剤に不音性の粉体樹脂をθ〜7
0重倒%使用するものであり、この樹脂を規定□配合す
ることは、後述の理由で異方性導電性インキは印刷適性
の見地からある量の顔料が必要とするが、それだけの顔
料を混入すると接着力を低下し、また導電性の顔料は絶
縁を低下させるので溶剤不溶性の粉体樹脂が接着力の低
下を伴なわず同顔料の代用をなすものである。粒子径は
スクリ−ンを通過するサイズの70μm以下のもので好
ましくは2〜10μmの範囲で溶剤に溶けたり、膨潤し
ない熱可塑性樹脂あるいは熱硬化性樹脂を用いる。In addition, in the present invention, a silent powder resin is added to the printing solvent from θ to 7
0 weight percent is used, and blending this resin in a specified manner is because anisotropic conductive ink requires a certain amount of pigment from the viewpoint of printability, for reasons explained later. If mixed in, the adhesive force will be reduced, and conductive pigments will reduce the insulation, so a solvent-insoluble powder resin can be used as a substitute for the same pigment without reducing the adhesive force. The particle size is 70 .mu.m or less, which is the size that passes through the screen, and preferably in the range of 2 to 10 .mu.m, and a thermoplastic resin or thermosetting resin that does not dissolve or swell in a solvent is used.
これら粉体樹脂の混入によって印刷適性を図るばか印刷
時の気泡が無くなり、接着強度を増大しシール抵抗を小
にすることができる。例えばナイロン12(商品名T
450P−Lダイセル化学工業社)はこの様な樹脂とし
て用いられ、他に飽和ポリエステル(商品名バイロンG
M −900、東洋紡偵社)、エポキシ樹脂(商品名
TEPIG、日産化学社)、ポリウレタン樹脂(商品名
ユーロボリマー200.野村事務所)等が挙げられる。By mixing these powder resins, air bubbles during printing, which improve printability, can be eliminated, adhesive strength can be increased, and seal resistance can be reduced. For example, nylon 12 (product name T
450P-L (Daicel Chemical Industries, Ltd.) is used as such a resin, and saturated polyester (trade name: Vylon G) is also used as such a resin.
M-900, Toyobo Teisha), epoxy resin (trade name: TEPIG, Nissan Chemical Co., Ltd.), polyurethane resin (trade name: Eurobolymer 200, Nomura Office), and the like.
本発明による組成物をプリント回路等の導体間に適用す
る例を示せば第1図1第2図のとおりである。まず絶縁
フィルムFの表面に複数の平行導体へ+ B+ CI
がある場合、これに本発明の組成物をスクリーン印すリ
すると 1,0μm以トの導電性粒子[1の間に0.5
μm以下の′PP電性拉子粒子が混在しそれらの粒子は
熱硬化性樹脂絹成物Hがバインダーとして塗布されてい
る。An example of applying the composition according to the present invention between conductors such as a printed circuit is shown in FIG. 1 and FIG. 2. First, connect multiple parallel conductors to the surface of the insulating film F + B + CI
If the composition of the present invention is screen printed on the conductive particles of 1.0 μm or more [0.5 between 1
PP electrically conductive particles of .mu.m or less are mixed together, and these particles are coated with thermosetting resin silk composition H as a binder.
これに同様な基板即ち絶縁フィルムFの上に複数の平行
導体△2 、B2 、C2がある基板を前記平行導体A
+ B+ CI と互いに対向するように配置するとA
lA2間、Bl 82間、C+02間では導電的に触き
、AI A2とBl 82 。A similar substrate, that is, a substrate with a plurality of parallel conductors Δ2, B2, and C2 on an insulating film F, is connected to the parallel conductor A.
+ B + CI When placed opposite each other, A
There is conductive contact between lA2, Bl 82, and C+02, and AI A2 and Bl 82.
8182とC+0217!]は絶縁的に8き異方導電性
を示すものである。8182 and C+0217! ] indicates anisotropic conductivity of 8 in terms of insulation.
本発明では大小2種のり電性粒子を併用することにより
塗膜形式時の厚み方向の導電性と面方向の絶縁性がばら
つかずに一定とすることができる。その理由は、塗膜が
導電性を発揮するには導電性粒子相互が接触していなけ
ればならないが0.5μm以下の小さな導電性微粒子の
みでは従来のように多量の導電性微粒子を混合した場合
、隣接回路間に絶縁で対向回路間に導電性を満足させる
含有量範囲が狭く、逆に 1.0μII1以上の大きい
3jP電性粒子のみでは粒子相互間が1つでも絶縁され
ると、抵抗値のバラツキの大きい異方性導電接着剤とな
るが、本発明のように導電性粒子を大小2種併合すると
きは、大きい導電性粒子の間に小さい導電性粒子が入り
こんで各粒子が電気的に接続することができるので電気
的性質が安定するのである。In the present invention, by using two types of electroconductive particles, large and small, it is possible to maintain constant conductivity in the thickness direction and insulation in the surface direction in the form of a coating film without variation. The reason for this is that in order for a coating film to exhibit conductivity, conductive particles must be in contact with each other, but if only small conductive particles of 0.5 μm or less are used, it is not possible to mix a large amount of conductive particles as in the past. , the content range that satisfies conductivity between opposing circuits while insulating adjacent circuits is narrow; conversely, if only one large 3JP conductive particle of 1.0μII1 or more is insulated between particles, the resistance value will decrease. However, when two types of conductive particles, large and small, are combined as in the present invention, small conductive particles are inserted between large conductive particles, making each particle electrically conductive. Since it can be connected to a
この場合、熱硬化性樹脂を用いるので熱圧着時に樹脂が
硬化する過程で、対向する電極間では粒子径0.5μf
f1以下の導電性粒子と粒子径1.0μm以上の導電性
粒子が熱シールしたときのIJII圧では平面方向では
硬化過程の樹脂により絶縁されて、上下の対向した電極
間では加圧により導電性粒子が導体間を電気的に導通す
ることができる。すなわちこの場合大径の導電性粒子、
1列えばlI八へは多波の凹凸を表面に有するので第2
図における△IIへ2 、8182 、 CIC2の各
電極間を動き難く、主として樹脂分がより間隙の大きい
G部に押出されて流れこむのでこの部分の樹脂含有mが
増大しAlA2間。In this case, since a thermosetting resin is used, during the process of curing the resin during thermocompression bonding, the particle size is 0.5 μf between the opposing electrodes.
At IJII pressure when conductive particles of f1 or less and conductive particles of particle size 1.0 μm or more are heat-sealed, they are insulated in the planar direction by the resin in the curing process, and conductivity increases between the upper and lower opposing electrodes by applying pressure. The particles can provide electrical continuity between the conductors. That is, in this case, large-diameter conductive particles,
If there is one row, the second row will have multi-wave unevenness on the surface.
To ΔII in the figure, it is difficult to move between the electrodes 2, 8182, and CIC2, and the resin content is mainly pushed out and flows into the G part, which has a larger gap, so the resin content m in this part increases, and the gap between AlA2 and AlA2 increases.
BI B2間、CI 02間で導電的に働き、AlA2
とBI B2 、BI 82とCI C2との間は絶縁
的に働き異方導電性を示すものである。砥粒をもつ顔わ
1は熱シール時に樹脂が溶は流動性含示丈際、位置ずれ
を防1Fする動きがある。It acts conductively between BI B2 and CI 02, and AlA2
and BI B2 , and between BI 82 and CI C2 act insulatively and exhibit anisotropic conductivity. The face 1 with abrasive grains has a movement that prevents displacement when the resin melts during heat sealing and exhibits fluidity.
第3図は導電性粒子の2有mと抵抗値どの関係を示すグ
ラフぐ実線【ま曲記第2図の対向する導体間(シール間
)を示す。FIG. 3 is a graph showing the relationship between the conductive particles' 2 m and the resistance value.
モして■は粒子1¥0.5μm以下のカーボンブラック
のみを配合した場合、炙りは粒子径1μm以上の導電性
粒子のみを配合した場合、■は■;(シー 5:95で
配合した本発明の実施例を示す。For example, ■ is when only carbon black with a particle size of 1 yen or less than 0.5 μm is blended, and for roasting, when only conductive particles with a particle size of 1 μm or more are blended. An example of the invention is shown.
第3図Qへ、Qe 、Qc点は熱圧着前のホール効果に
も接触抵抗にJ、るjg導電性示さない含有量で、熱圧
着時には隣接する導体A、B、C・・・方向では絶縁さ
れ、厚さ方向AI A2.8+82 、CI C2・・
・のみ導電性を示す含有ff1PA。Points Qe and Qc in Fig. 3 are the contents that do not exhibit conductivity due to the Hall effect or contact resistance before thermocompression bonding, and during thermocompression bonding, adjacent conductors A, B, C... Insulated, thickness direction AI A2.8+82, CI C2...
・Containing ff1PA that shows conductivity only.
Pa 、Pcに移る。第3図の場合A、B、C・・・の
間の抵抗値を犬にして絶縁性にするため、QA点あるい
は08点を左に寄せると(すなわら各粒子の含有量を小
にすると)、熱圧着時にPA点あるいはPa点を帯電域
に保つことができない。一方QA点あるいは08点を右
に寄せると(すなわち各粒子の含有量を犬にすると)A
、8.C・・・間の絶縁性を十分にすることができない
。すなわち両者を満足する範囲が狭いので、製造条件の
僅かな相違により不良化する原因となる。Move to Pa and Pc. In the case of Fig. 3, in order to make the resistance value between A, B, C, etc. as small as possible and make it insulating, move the QA point or 08 point to the left (in other words, reduce the content of each particle). ), it is not possible to maintain the PA point or Pa point in the charged region during thermocompression bonding. On the other hand, if the QA point or 08 point is moved to the right (that is, if the content of each particle is set to dog), A
, 8. C... cannot provide sufficient insulation between them. In other words, since the range that satisfies both is narrow, slight differences in manufacturing conditions can cause defects.
そこで第3図の■と■との導電性粒子を組合せて第3図
の■とした。第3図■のグラフを構成する導電性粒子は
カーボンブラックでなくともコロイド導電性を示す粒子
であればよく、異方導電性組成物中の含有量はそれぞれ
単独でF5接導体171絶縁である組成QA点を選ぶ。Therefore, the conductive particles ``■'' and ``■'' in FIG. 3 were combined to form ``■'' in FIG. The conductive particles constituting the graph in Figure 3 (■) do not need to be carbon black as long as they exhibit colloidal conductivity, and the content of each in the anisotropic conductive composition is F5 contact conductor 171 insulation. Select the composition QA point.
次に第3図■のグラフを構成する導電性粒子は砥粒とし
て適する粗面凹凸状の導電性粒子でカルボニル法による
ニッケル粉、スタンプ法によるニッケル合金粉、アトマ
イ法によるニッケル合金粉。Next, the conductive particles that make up the graph in Figure 3 (■) are rough conductive particles suitable as abrasive grains, including nickel powder produced by the carbonyl method, nickel alloy powder produced by the stamp method, and nickel alloy powder produced by the atomy method.
あるいは低粒(S! C,Al 203 、WC。Or low grain (S! C, Al 203, WC.
S!3N4.TaC)等ニニツ’7 /L/ 、 金、
iF+8いは白金族金属等のメッキしたもの等を用い
る。S! 3N4. TaC) etc.'7 /L/, gold,
Use iF+8 or one plated with platinum group metal.
これも導電性粒子によって、これら単独で隣接々[次間
絶縁である尋°市性粒子の含有量Q8は異なるので実験
によって適性値を求める。This also depends on the conductive particles, and since the content Q8 of inter-adjacent particles differs depending on the conductive particles, the appropriate value is determined by experiment.
以上のQA、および0日の合成によってQc点を推定す
る。Qc点での異方導電性組成物のコネクターとしての
rIfI面状態は第1図のように隣接間で十分絶縁がと
れ2つのコネクターを位置合わせして第2図のように熱
圧着すると第3図のグラフで示すように、Qc点が熱圧
着時に樹脂が第2図G部に流出するので導電性粒子の含
有ffiオよびAI A2.8+ 82.0I 02−
間の低抗圃はPc点に移り、その領域は必ず導電性の領
域に入る。それ故隣接方向A、B。The Qc point is estimated by combining the above QA and day 0. The state of the rIfI surface of the anisotropically conductive composition as a connector at the Qc point is as shown in Figure 1, with sufficient insulation between the adjacent connectors, and when the two connectors are aligned and thermocompressed as shown in Figure 2, the third As shown in the graph in the figure, the Qc point is determined by the conductive particle content ffiO and AI A2.8+ 82.0I 02- as the resin flows out to the G section in Figure 2 during thermocompression bonding.
The low resistance field in between moves to point Pc, and that region is definitely a conductive region. Hence the adjacent directions A, B.
C1・・・は十分なる絶縁10VJΩ以上を保ち、接合
抵抗はAI A2.8182.0I 02・・・間で0
.5〜1.5Ω/ 0.IX 4ww2になる。また接
着性、異方導電性の特性を考慮すると、樹脂の選び方で
導電性粒子、lSl脂、溶剤のインキとしての組成バラ
ンスが不適性のyA合がある。一般に導電性粒子を少に
して密着性を良くするとチクソ性に欠け、粘性のある気
泡の出易いインキとなってピンホールを生じ易い皮膜と
なる。そこで溶剤に溶けない熱硬化性または熱可塑性の
粉体樹脂を導電性粒子の代用として用いるのが好ましい
。この粉体樹脂は、溶剤に溶けず印刷皮膜の指触乾燥時
顔料として働くため表面のべたつきがなく、熱圧着する
ときに溶け、密着性を改善する働きとなればよい。C1... maintains sufficient insulation of 10VJΩ or more, and the junction resistance is 0 between AI A2.8182.0I 02...
.. 5~1.5Ω/0. It becomes IX 4ww2. Furthermore, when considering the characteristics of adhesiveness and anisotropic conductivity, there are cases where the compositional balance of conductive particles, lSl resin, and solvent as an ink is inappropriate due to the selection of resin. Generally, if the amount of conductive particles is reduced to improve adhesion, the resulting ink lacks thixotropy and tends to generate viscous bubbles, resulting in a film that is prone to pinholes. Therefore, it is preferable to use a thermosetting or thermoplastic powder resin that does not dissolve in solvents as a substitute for the conductive particles. This powder resin does not dissolve in solvents and acts as a pigment when the printed film is dry to the touch, so that the surface does not become sticky, and it melts during thermocompression bonding to improve adhesion.
以下実施態様を説明すると本発明の異方導電性組成物は
目的に応じ使用直前に硬化剤、触媒が添加される2液タ
イプと潜在性硬化剤を添加した1液タイプが用いられる
。熱圧着の工程で熱硬化性樹脂を完全に硬化させてもよ
いし又は熱圧着の工程で仮接着(半硬化)させ恒温s等
で加熱して後硬化さぼてもよい。また恒温器に入れられ
る耐熱性の部品でないときは熱硬化性樹脂の主剤と硬化
剤触媒とを別々に混入した異方導電性組成物を作製し、
2層にコーティングするか又はそれぞれを対向する回路
端子に別々に塗布し両波着面を密着さぜ短時間で硬化さ
でもよい。The embodiments will be described below. Depending on the purpose, the anisotropically conductive composition of the present invention may be of a two-part type, in which a curing agent and catalyst are added immediately before use, or a one-part type, in which a latent curing agent is added. The thermosetting resin may be completely cured in the thermocompression bonding process, or may be temporarily bonded (semi-cured) in the thermocompression bonding process and then heated at a constant temperature S or the like to skip post-curing. In addition, if the component is not a heat-resistant component that can be placed in a constant temperature chamber, an anisotropically conductive composition is prepared in which the main component of the thermosetting resin and the curing agent catalyst are mixed separately.
It may be coated in two layers, or it may be applied separately to opposing circuit terminals, and both corrugated surfaces may be brought into close contact and cured in a short time.
(発明の効果)
本発明による異方導電性組成物は、小径0.5μm以下
と多数の突起を有する大径1.0μm以上の2種の導電
性粒子の組み合せ、溶剤可溶性あるいは液状の熱硬化性
樹脂と溶剤不溶性の熱硬化性あるいは熱可塑性樹脂との
2つのタイプの使い分け、そしてそれらの組み合せによ
る適性配合によって熱圧時に導体の隣接方向は十分絶縁
で対向方向に導電性をもつ異方導電性皮膜が得られる。(Effects of the Invention) The anisotropically conductive composition according to the present invention is a combination of two types of conductive particles, one having a small diameter of 0.5 μm or less and a large diameter of 1.0 μm or more having numerous protrusions, and a solvent-soluble or liquid thermosetting composition. By properly using two types of thermosetting resin and solvent-insoluble thermosetting or thermoplastic resin, and by combining them properly, anisotropic conduction can be achieved with sufficient insulation in the adjacent direction of the conductor and conductivity in the opposite direction during hot pressing. A sexual film is obtained.
印刷し易い一方の基板に印刷し指触乾燥しコネクターに
することも、接合しようどり°る回路コネクターのみで
なく、電子部品の受動素子(コンデンリ一一、コイル)
、能動素子(IC,ダイオード、トランジスタ)の端子
接続に用いることができる。Printing on one board that is easy to print and drying it to the touch can be used not only for circuit connectors that are to be joined, but also for passive elements of electronic components (condensers, coils).
It can be used for terminal connection of active elements (IC, diode, transistor).
またテープ状にした受動素子、能動素子の端子部分を異
方導電性組成物のインキあるいはワニスとして皮膜構成
したものをプリント基板側に接合することができる。2
つの物体を電気的。Further, a tape-shaped passive element or an active element whose terminal portions are coated with ink or varnish of an anisotropically conductive composition can be bonded to the printed circuit board side. 2
Electrical objects.
物理的に接合するには、上述の2枚の基板のうち 1枚
を熱板にしてその間に異方導電性組成物をはさんで熱シ
ールツる。すなわち部品自身の重量を利用するか、ある
いは重りをのせて恒温槽内において加熱シールする方法
、または熱ロールを通過させてシールする方法等が採ら
れる。To physically join them, one of the two substrates described above is used as a hot plate, and the anisotropically conductive composition is sandwiched between them and heat sealed. In other words, the weight of the part itself is used, a weight is placed on the part and the part is heat-sealed in a thermostatic oven, or the part is passed through a heat roll for sealing.
熱源は一定温度に保った熱板の他、通電加熱。The heat source is a heating plate kept at a constant temperature, as well as electrical heating.
誘電加熱あるいは超音波等の部分加熱等ホットメルト接
合方式、マイクロ波、超音波接合方式をそのまま代用す
ることができる。A hot melt bonding method such as dielectric heating or partial heating using ultrasonic waves, microwave bonding, or ultrasonic bonding method can be used as a substitute.
異方導電性組成物によるコネクター接合の応用分野とし
て表3のように区分できる。The application fields of connector bonding using anisotropically conductive compositions can be classified as shown in Table 3.
表 3
特に本発明の異方導電性組成物は、バインダーとして熱
硬化性樹脂を用いるためバインダーとしてホットメルト
樹脂や、合成ゴムを使用した異方導電性組成物に比較し
て第4図の回路方向9回路直角方向の7り離強度が2〜
3倍、引張りせ/v所強度および耐熱性、耐瀞特性、耐
溶剤性も大幅に向上した。以下実施例について説明する
。なお実施例中の%1部は特記ない限り重呈%9m役部
を表わす。Table 3 In particular, since the anisotropically conductive composition of the present invention uses a thermosetting resin as a binder, the circuit shown in FIG. Direction 9 circuit The 7 separation strength in the right angle direction is 2~
The tensile shear/v point strength, heat resistance, shear resistance, and solvent resistance were also significantly improved. Examples will be described below. Note that %1 parts in the examples represent weighted %9m parts unless otherwise specified.
実施例1
表4に示す熱硬化性樹脂組成物に表5に示す組成の導電
性粒子中10〜20%混入し異方導電性組成物を作成し
た。ポリエステルフィルム基材のフレキシブル銅張板(
ポリエステル50μm。Example 1 10 to 20% of the conductive particles having the composition shown in Table 5 were mixed into the thermosetting resin composition shown in Table 4 to prepare an anisotropic conductive composition. Flexible copper clad board with polyester film base material (
Polyester 50μm.
電解銅箔35μm)に通常のエツチング法r:導体回路
幅0.5m、隣接する回路間1.Ow、回路長さ50m
、回路数22本からなる配線パターンを作成し、その端
子に上記異方導電性組成物を用いC幅5寵、厚さ30μ
mに印刷し、120℃で10分間加熱乾燥した。Regular etching method on electrolytic copper foil (35 μm): conductor circuit width 0.5 m, distance between adjacent circuits 1. Ow, circuit length 50m
A wiring pattern consisting of 22 circuits was created, and the above anisotropically conductive composition was used for the terminals to form a wiring pattern with a width of 5 cm and a thickness of 30 μm.
The printed paper was printed on the paper and dried by heating at 120° C. for 10 minutes.
次に厚さ0.8vmのガラス布基材、エポキシ樹脂片面
銅張板に上記配線パターンを同じくエツチング法で作成
したプリント配線板に上記異方導電性組成物を印刷した
フレキシブルプリント配線板を配線位置に合せて200
℃、 10k11/cjにて20秒間熱圧着した。この
製品の特性を表6に示す。導電性粒子の含有量が15%
の場合の性能を表19に示す。なお導電性粒子中の粒径
0.5μmの粒子は16%である。Next, the above wiring pattern was formed on a 0.8vm thick glass cloth base material and an epoxy resin single-sided copper clad board.A flexible printed wiring board on which the above anisotropically conductive composition was printed was then wired onto a printed wiring board that was also created using the same etching method. 200 according to the position
℃ and 10k11/cj for 20 seconds. Table 6 shows the characteristics of this product. Conductive particle content is 15%
Table 19 shows the performance in the case of . Note that particles with a particle size of 0.5 μm in the conductive particles accounted for 16%.
表 4 樹脂組成
表 5 導電性粒子
表 6
実施例2
表7に示すエポキシ樹脂組成物に表8の導電性粒子を固
形9換σで40〜60%混入し異方導電性組成物を作製
した。なお導電性粒子中の粒径0.5μl1lLJ、下
の粒子は4%である。Table 4 Resin composition table 5 Conductive particle table 6 Example 2 An anisotropically conductive composition was prepared by mixing 40 to 60% of the conductive particles shown in Table 8 in the epoxy resin composition shown in Table 7 in terms of solid 9% σ. . The particle size of the conductive particles was 0.5 μl 1 LJ, and the lower particles were 4%.
表 7 樹脂組成
エポキシ樹脂(エポトートYD−128、束都化成社)
70部表 8 導電性粒子
カーボンブラック(EC>
1部カーボンブラック(AB>
3.。Table 7 Resin composition Epoxy resin (Epototh YD-128, Takuto Kaseisha)
70 parts Table 8 Conductive particle carbon black (EC>
1 part carbon black (AB>
3. .
ニッケル(# 287ニツケル、インコ社)3611ニ
ッケル合金(フクロダイFR401,福田金属社)
60!!次に実施例1と同じ方法で、上記異方導電性組
成物を用いてプリント配線板同志を200℃。Nickel (#287 Nickel, Inco Co., Ltd.) 3611 nickel alloy (Fukurodai FR401, Fukuda Kinzoku Co., Ltd.)
60! ! Next, in the same manner as in Example 1, printed wiring boards were heated at 200°C using the anisotropically conductive composition.
10に9 / r:rjにて20秒間加熱圧着した後、
恒温器で150℃、2時間のIt/Ii化を行った。こ
の製品の特性を表9に示す。After heating and pressing at 10 to 9/r:rj for 20 seconds,
It/Ii conversion was performed at 150° C. for 2 hours in a constant temperature chamber. Table 9 shows the characteristics of this product.
表 9 導電性粒子の含有量が45%の性能を表19に示す。Table 9 Table 19 shows the performance when the content of conductive particles was 45%.
実施例3
表10に示すフェノール樹脂組成物9表11に示ず導電
性粒子を用いた以外は、実施例1と同じ方法で、プリン
ト配線板同志を250℃。Example 3 Phenol resin composition 9 shown in Table 10 A printed wiring board was heated to 250° C. in the same manner as in Example 1, except that conductive particles not shown in Table 11 were used.
5r/aiにて10秒間加熱圧着した後、恒温器で15
0℃、30分の後硬化を行った。なお導電性粉子中の粒
径0.5μm以下の粒子は16%である。After heating and pressing at 5r/ai for 10 seconds, heat and press in a thermostat for 15 seconds.
Post-curing was performed at 0° C. for 30 minutes. Note that the content of particles with a particle size of 0.5 μm or less in the conductive powder was 16%.
表 10 樹脂組成
フェノール樹脂(ミレ・功ブRN、三井東圧化学社)6
0部へキサメチレンテトラミン
3nエポキシ樹脂(TEPIC,日産化学社)37
1!エチルセロソルブ
30#シクロヘキサン
30//表 11 導電性粒子
カーボンブラック(E C)
2 I!カーボンブラック(AB >
4 ”表 12
表12より導電性粒子の含有Φは40〜50%の間で最
も好ましい適性値を定めることができる。Table 10 Resin composition phenolic resin (Mire Kobu RN, Mitsui Toatsu Chemical Co., Ltd.) 6
0 parts hexamethylenetetramine
3n epoxy resin (TEPIC, Nissan Chemical Co., Ltd.) 37
1! ethyl cellosolve
30# cyclohexane
30//Table 11 Conductive particle carbon black (EC)
2 I! Carbon black (AB >
4'' Table 12 From Table 12, the most preferable value for the content Φ of the conductive particles can be determined between 40 and 50%.
導電性物質の含有量45%の性能を表19に示す。Table 19 shows the performance when the conductive material content is 45%.
実施例4
表13に示すポリウレタン樹脂組成物を7(インダーと
して用い、表14に示す導電性粒子を樹脂固形分換算で
48%混入し異方導電性組成物を作製した。なd5導電
性粒子中の粒径0.5μm以下の粒子は13%である。Example 4 An anisotropic conductive composition was prepared by using the polyurethane resin composition shown in Table 13 as an inder and mixing 48% of the conductive particles shown in Table 14 in terms of resin solid content. The proportion of particles with a particle size of 0.5 μm or less was 13%.
表 13 樹脂組成
ポリエステルポリオール(デスモーフエン610.住友
バネエル社)60部脂肪族ポリイソシアネート(スミジ
ュールN75.住友バイエル社) 40#エチルセロ
ソルブ
201!シクロヘキサン
20I!表 14
導電性粒子その他ニッケル(Ni # 287.
インコ社)78部シリカ(アエロジルR−9722日本
アエロジル社)10!lコロイドチタン(ブラックチタ
ン、三菱金民社) 10.。Table 13 Resin composition Polyester polyol (Desmorphen 610, Sumitomo Baneel) 60 parts Aliphatic polyisocyanate (Sumidur N75, Sumitomo Bayer) 40# Ethyl cellosolve
201! cyclohexane
20I! Table 14
Conductive particles Other nickel (Ni #287.
Inco) 78 parts Silica (Aerosil R-9722 Nippon Aerosil) 10! l Colloidal titanium (black titanium, Mitsubishi Kinminsha) 10. .
カーボンブラック(E C)
2 IIこの異方導電性組成物をメタルマスクスク
リーン(厚さ75μm)にて印刷回路基板に幅40nで
印刷し80℃で10分指触乾燥後、150℃:掬/dに
て20秒間熱圧着した。ここで用いられた印1611回
路基板はポリエステルフィルム(厚さ15μm)に銀レ
ジン皮膜を回路幅0.lWl、回路間0.1m、回路長
さ60n+、回路数30本印刷したもので銀レジン皮膜
の抵抗はRo = 0.05Ωを示してJ3す、熱圧着
後の対向電極間の抵抗は10〜15Ω、隣接電極間の抵
抗は1012Ω以上であった。耐電圧性は100Vで異
常なしであった。この製品の特性を表19に示す。Carbon black (EC)
2 II This anisotropic conductive composition was printed with a width of 40 nm on a printed circuit board using a metal mask screen (thickness 75 μm), dried to the touch at 80°C for 10 minutes, and then heated at 150°C: scoop/d for 20 seconds. It was crimped. The mark 1611 circuit board used here is a polyester film (thickness 15 μm) with a silver resin film coated with a circuit width of 0. 1Wl, circuit distance 0.1m, circuit length 60n+, number of circuits printed 30, the resistance of the silver resin film is Ro = 0.05Ω, and the resistance between the opposing electrodes after thermocompression bonding is 10~ The resistance between adjacent electrodes was 1012Ω or more. The voltage resistance was 100V with no abnormality. Table 19 shows the characteristics of this product.
実施例5
市販の変性アクリル系接着剤(ボンドコニセットAG−
1,コニシ社)の主剤とブライマーとにそれぞれ表15
に示される導電性粒子を48%混入し異方導電性組成物
を作製した。なお導電性粒子中の粒径0,5μm以下の
粒子は6%である。この接着剤を実施例1のプリント配
線板の端子に幅5m、プライマーは厚さ5μm。Example 5 Commercially available modified acrylic adhesive (Bondconiset AG-
1, Table 15 for the main agent and braimer of Konishi Co., Ltd.
An anisotropically conductive composition was prepared by mixing 48% of the conductive particles shown in . Note that the proportion of particles with a particle size of 0.5 μm or less in the conductive particles was 6%. This adhesive was applied to the terminals of the printed wiring board of Example 1 with a width of 5 m, and a primer with a thickness of 5 μm.
主剤はメタルマスクスクリーンを使用して厚さ100μ
mに印刷し、直ちに50℃、 2に9/Crjで20
秒間圧着した。この製品の特性を表19に示す。The main material is 100μ thick using a metal mask screen.
Immediately print at 50℃ and 20℃ at 29/Crj.
It was crimped for seconds. Table 19 shows the properties of this product.
表 15 導電性粒子
ニッケル(#287ニツケル、インコ社)74部炭化ケ
イ素(#8000Si C,昭和電工社)201!カー
ボンブラツク(EC) 2〃カーボ
ンブラツク(AB) ’ 4ノ!実
施例6
表16に示すカチオンm台系触媒(ルイス酸系)を配合
したエポキシ樹脂組成物をバインダーとして用い、表1
7に示す導電性粒子を固形9換ので45%混入した胃方
導電性粗成物を作製した。なおη電性粒子中の粒径0.
5μmの粒子は20%で必る。この接着剤を実施例1の
プリント配線板に200メツシユ、厚さ 120Iim
のスクリーンを用いて幅5nに印tii11した。これ
を90°Cで8分間指触乾燥後、220°C,8幻/d
にて10秒間熱圧着した。対向電極の抵抗値のバラツキ
は0.1%以下と良好であった。この製品の性能を表1
9に示す。Table 15 Conductive particles nickel (#287 Nickel, Inco) 74 parts Silicon carbide (#8000Si C, Showa Denko) 201! Carbon Black (EC) 2〃Carbon Black (AB) '4No! Example 6 Using an epoxy resin composition containing the cation m-type catalyst (Lewis acid type) shown in Table 16 as a binder,
A gastric conductive crude material was prepared in which 45% of the conductive particles shown in No. 7 were mixed in solid form. Note that the particle size of the η-electric particles is 0.
5 μm particles are required at 20%. 200 meshes of this adhesive were applied to the printed wiring board of Example 1, and the thickness was 120 Im.
A width of 5n was marked using a tii11 screen. After drying this to the touch at 90°C for 8 minutes, 220°C, 8 phantom/d
Thermocompression bonding was carried out for 10 seconds. The variation in resistance value of the counter electrode was as good as 0.1% or less. Table 1 shows the performance of this product.
9.
表 16 iマ脂組成物脂環式エポキシ
樹脂(CY−179、旭電化社> 100部融媒(
700C,旭電化社)1,2
エヂルセロソルブ 20
,7表 17 導電性粒子その他比較例1
表18に示す熱可塑性樹脂組成物に実施例2の導電性粒
子を固形分換算で40%混入し、異方導電性組成物を作
製した。Table 16 i Ma fat composition alicyclic epoxy resin (CY-179, Asahi Denka Co., Ltd. > 100 parts melting medium (
700C, Asahi Denka) 1,2 Eil Cellosolve 20
, 7 Table 17 Conductive Particles and Others Comparative Example 1 40% of the conductive particles of Example 2 were mixed in the thermoplastic resin composition shown in Table 18 in terms of solid content to prepare an anisotropically conductive composition.
表 18 樹脂組成物
数に実施例1と同じ方法で上記異方導電性組成物を用い
て100℃、 3酌/cdにて10秒間実施例1のプ
リント配線基板同志を熱圧着した。この製品の特性を表
19に示す。Table 18 Resin Composition Number The printed wiring boards of Example 1 were bonded together by thermocompression at 100° C. and 3 cm/cd for 10 seconds using the above anisotropically conductive composition in the same manner as in Example 1. Table 19 shows the characteristics of this product.
上表に示すとおり、この比較例のものは隣接@極間の絶
縁性、対向電極間の導電性は良好であるが、各実施例に
比較すると接着強さ耐熱性が劣る。As shown in the table above, this comparative example has good insulation between adjacent electrodes and good conductivity between opposing electrodes, but is inferior in adhesive strength and heat resistance compared to each of the examples.
比較例2
実施例1のバインダーにニッケル合金(フクダロイFR
−401.福田金属社)を表20に示す組成で混入し、
実施例1と同じ方法でプリント配線板同志を熱圧着した
。この製品は隣接電極間の抵抗幀が1010Ω以上の場
合、対向電極間の抵抗端が大きく、またバラツキがある
ためコネクターとして使用できない。Comparative Example 2 Nickel alloy (Fukudaloy FR) was added to the binder of Example 1.
-401. Fukuda Metal Co., Ltd.) with the composition shown in Table 20,
The printed wiring boards were bonded together by thermocompression in the same manner as in Example 1. This product cannot be used as a connector when the resistance between adjacent electrodes is 1010 Ω or more because the resistance between opposing electrodes is large and uneven.
第1図は3条の平行導体(回路)を有する基板に本発明
の組成物を塗布した状態の断面図、第2図は2枚の同様
な基板の間に本発明の組成物を塗布介在させた状態の断
面図、第3図は導電性粒子の含有学と抵抗値との関係を
示すグラフ、第4図I、I[は表19に示した引張せん
断強度、剥離強度(回路方向)に使用する試験片の概略
図である。Fig. 1 is a cross-sectional view of a substrate having three parallel conductors (circuits) coated with the composition of the present invention, and Fig. 2 is a cross-sectional view of the composition of the present invention coated between two similar substrates. Figure 3 is a graph showing the relationship between conductive particle content and resistance value, Figure 4 I and I [are tensile shear strength and peel strength (circuit direction) shown in Table 19. FIG. 2 is a schematic diagram of a test piece used for
Claims (1)
、粒子径1.0μm以上の多数の突起を有する導電性粒
子10〜75重量%、印刷用溶剤に可溶性の熱硬化性樹
脂組成物30〜80重量%、印刷用溶剤に不溶性の粉体
樹脂0〜70重量%からなり、総計で100重量%とな
るように、配合された固形成分と適量の印刷用溶剤とか
らなる異方導電性組成物。0.2 to 20% by weight of conductive particles with a particle size of 0.5 μm or less
, 10 to 75% by weight of conductive particles having a large number of protrusions with a particle diameter of 1.0 μm or more, 30 to 80% by weight of a thermosetting resin composition soluble in a printing solvent, and 0% of a powder resin insoluble in a printing solvent. An anisotropically conductive composition comprising a solid component and an appropriate amount of a printing solvent blended so that the total amount is 100% by weight.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19513984A JPS6174205A (en) | 1984-09-17 | 1984-09-17 | Anisotropically electroconductive composition |
US06/676,876 US4696764A (en) | 1983-12-02 | 1984-11-30 | Electrically conductive adhesive composition |
DE19843443789 DE3443789A1 (en) | 1983-12-02 | 1984-11-30 | ELECTRICAL CONDUCTIVE ADHESIVE |
GB08430356A GB2152060B (en) | 1983-12-02 | 1984-11-30 | Electrically conductive adhesive composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19513984A JPS6174205A (en) | 1984-09-17 | 1984-09-17 | Anisotropically electroconductive composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6174205A true JPS6174205A (en) | 1986-04-16 |
JPH0345842B2 JPH0345842B2 (en) | 1991-07-12 |
Family
ID=16336098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19513984A Granted JPS6174205A (en) | 1983-12-02 | 1984-09-17 | Anisotropically electroconductive composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6174205A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6280912A (en) * | 1985-10-02 | 1987-04-14 | セイコーエプソン株式会社 | Anisotropic conductive film |
JPS63316885A (en) * | 1987-06-19 | 1988-12-26 | キヤノン株式会社 | External circuit connection structure for liquid crystal panel |
JPH0329207A (en) * | 1988-12-05 | 1991-02-07 | Hitachi Chem Co Ltd | Composition for circuit connection and connection method and connection structure of semiconductor chip using the composition |
JPH06150996A (en) * | 1992-10-30 | 1994-05-31 | Shin Etsu Polymer Co Ltd | Thermal pressure connection member and manufacture thereof |
JPH0817269B2 (en) * | 1988-05-11 | 1996-02-21 | 株式会社ソフィアシステムズ | Circuit lighter |
JP2007123375A (en) * | 2005-10-26 | 2007-05-17 | Matsushita Electric Ind Co Ltd | Conductive paste composition, printed wiring board using the same, and manufacturing method therefor |
JP2007335392A (en) * | 2006-05-19 | 2007-12-27 | Hitachi Chem Co Ltd | Connecting method of circuit member |
US7670518B2 (en) | 2000-11-23 | 2010-03-02 | Hi-Tech Engineering Limited | Composite products |
JP2010242053A (en) * | 2009-04-07 | 2010-10-28 | Kanhin Kagaku Kofun Yugenkoshi | Ambient-curable anisotropic conductive adhesive |
US7923488B2 (en) * | 2006-10-16 | 2011-04-12 | Trillion Science, Inc. | Epoxy compositions |
WO2014196444A1 (en) * | 2013-06-03 | 2014-12-11 | 昭和電工株式会社 | Conductive resin composition for microwave heating |
CN104704729A (en) * | 2013-10-02 | 2015-06-10 | 三菱电机株式会社 | CR snubber circuit |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54146873A (en) * | 1978-05-10 | 1979-11-16 | Japan Synthetic Rubber Co Ltd | Method of making pressure conductive elastomer |
JPS59152936A (en) * | 1983-02-21 | 1984-08-31 | Kuraray Co Ltd | Hybrid resin composition having excellent electromagnetic shielding property and rigidity |
-
1984
- 1984-09-17 JP JP19513984A patent/JPS6174205A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54146873A (en) * | 1978-05-10 | 1979-11-16 | Japan Synthetic Rubber Co Ltd | Method of making pressure conductive elastomer |
JPS59152936A (en) * | 1983-02-21 | 1984-08-31 | Kuraray Co Ltd | Hybrid resin composition having excellent electromagnetic shielding property and rigidity |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6280912A (en) * | 1985-10-02 | 1987-04-14 | セイコーエプソン株式会社 | Anisotropic conductive film |
JPS63316885A (en) * | 1987-06-19 | 1988-12-26 | キヤノン株式会社 | External circuit connection structure for liquid crystal panel |
JPH0476478B2 (en) * | 1987-06-19 | 1992-12-03 | Canon Kk | |
JPH0817269B2 (en) * | 1988-05-11 | 1996-02-21 | 株式会社ソフィアシステムズ | Circuit lighter |
JPH0329207A (en) * | 1988-12-05 | 1991-02-07 | Hitachi Chem Co Ltd | Composition for circuit connection and connection method and connection structure of semiconductor chip using the composition |
JPH06150996A (en) * | 1992-10-30 | 1994-05-31 | Shin Etsu Polymer Co Ltd | Thermal pressure connection member and manufacture thereof |
US7670518B2 (en) | 2000-11-23 | 2010-03-02 | Hi-Tech Engineering Limited | Composite products |
JP2007123375A (en) * | 2005-10-26 | 2007-05-17 | Matsushita Electric Ind Co Ltd | Conductive paste composition, printed wiring board using the same, and manufacturing method therefor |
JP2007335392A (en) * | 2006-05-19 | 2007-12-27 | Hitachi Chem Co Ltd | Connecting method of circuit member |
US7923488B2 (en) * | 2006-10-16 | 2011-04-12 | Trillion Science, Inc. | Epoxy compositions |
JP2010242053A (en) * | 2009-04-07 | 2010-10-28 | Kanhin Kagaku Kofun Yugenkoshi | Ambient-curable anisotropic conductive adhesive |
WO2014196444A1 (en) * | 2013-06-03 | 2014-12-11 | 昭和電工株式会社 | Conductive resin composition for microwave heating |
CN104704729A (en) * | 2013-10-02 | 2015-06-10 | 三菱电机株式会社 | CR snubber circuit |
Also Published As
Publication number | Publication date |
---|---|
JPH0345842B2 (en) | 1991-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4696764A (en) | Electrically conductive adhesive composition | |
EP1732372B1 (en) | Wiring-connecting material and wiring-connected board production process using the same | |
EP0169059B1 (en) | Flexible, directly solderable conductive compositions, compositions useful in forming them, and their use as coatings on substrates | |
WO2010047200A1 (en) | Anisotropic electroconductive film | |
KR20110099793A (en) | Adhesive composition, circuit connecting material using the adhesive composition, method for connecting circuit member, and circuit connecting body | |
JPS6174205A (en) | Anisotropically electroconductive composition | |
EP0169060A2 (en) | Solderable conductive compositions, their use as coatings on substrates, and compositions useful in forming them | |
JP2001237006A (en) | Connection material | |
TW393494B (en) | Curable resin composition for overcoat of flexible circuit | |
TWI757584B (en) | conductive adhesive | |
KR101246516B1 (en) | Insulation-coated electroconductive particles | |
JPH06295617A (en) | Anithotropic conductive adhesive compound | |
KR100845875B1 (en) | Insulation-coated electroconductive particles | |
JPH05258830A (en) | Connecting method for circuit | |
JP4110589B2 (en) | Circuit connection member and circuit board manufacturing method | |
JPH073230A (en) | Anisotropically electro-conductive adhesive composition | |
JP2836337B2 (en) | Anisotropic conductive resin film adhesive | |
JPH0790236A (en) | Adhesive having anisotropic conductivity | |
JPH03110711A (en) | Anisotropic conductive adhesive composition | |
JPH0757805A (en) | Thermal pressure connection type connection member | |
JP3192549B2 (en) | Heat seal connector | |
JP3085714B2 (en) | Anisotropic conductive film | |
JP3199509B2 (en) | Film connector | |
JPH06181076A (en) | Heat seal connector | |
JPH1186942A (en) | Heat seal connector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |