JPS61290036A - Molding method for laminated plate - Google Patents
Molding method for laminated plateInfo
- Publication number
- JPS61290036A JPS61290036A JP60131426A JP13142685A JPS61290036A JP S61290036 A JPS61290036 A JP S61290036A JP 60131426 A JP60131426 A JP 60131426A JP 13142685 A JP13142685 A JP 13142685A JP S61290036 A JPS61290036 A JP S61290036A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- molded
- airtight chamber
- container
- vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、電子機器部品として用いる多層プリント配線
板並びに銅張積層板、非銅張積層板等の積層板をオート
クレーブにて成形する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for molding, in an autoclave, multilayer printed wiring boards, copper-clad laminates, non-copper-clad laminates, and other laminates used as electronic device parts. be.
従来の技術
従来、多層プリント配線板並びに該多層プリント配線板
に用いる銅張積層板、非銅張積層板等の積層板を成形す
る技術として、一般に、熱盤ブレス方式が知られている
。BACKGROUND ART Conventionally, a hot plate press method is generally known as a technique for molding multilayer printed wiring boards and laminates such as copper-clad laminates and non-copper-clad laminates used in multilayer printed wiring boards.
熱盤ブレス方式は、被成形材を複数のプレート金型(#
を面板ともいう)を介して熱盤間に多数枚重ね載置した
後、大気中で加熱加圧して前記被成形材におけるプリプ
レグの樹脂部を一旦軟化させ。The hot platen press method uses multiple plate molds (#
After stacking a large number of sheets between hot platens via a face plate (also referred to as a face plate), the resin portion of the prepreg in the material to be molded is temporarily softened by heating and pressurizing in the atmosphere.
然る後、硬化させて被成形材を接着硬化せしめ成形する
ものである。After that, it is cured to bond and harden the material to be molded and then molded.
また、被成形材を真空加熱加圧し成形する技術も知られ
ている。Furthermore, a technique is also known in which a material to be molded is vacuum-heated and pressurized to shape it.
この技術は、定盤(プラテン)20上に、被成形材1を
鏡面板30を挟んで多段に積載配置し。In this technique, materials to be formed 1 are stacked and arranged in multiple stages on a surface plate (platen) 20 with a mirror plate 30 interposed therebetween.
更に、ブリーザ41を被せ、その上に耐熱性があり且つ
柔軟性のある真空バッグフィルム42にて被覆しシーラ
ント43にて密封して圧力容器内に収容し密閉した後、
前記真空バッグフィルム内を減圧すると共に前記容器内
に高圧ガスを供給し。Furthermore, after covering the breather 41 with a heat-resistant and flexible vacuum bag film 42 and sealing with a sealant 43, the container is placed in a pressure vessel and sealed.
The pressure inside the vacuum bag film is reduced and high pressure gas is supplied into the container.
該ガスを加熱して被成形材を加熱加圧し接着硬化せしめ
成形するものである。The gas is heated to heat and pressurize the material to be molded to harden the adhesive and form it.
発明が解決しようとする問題点
しかしながら、これらの技術には、下記のような問題点
を抱えている。Problems to be Solved by the Invention However, these techniques have the following problems.
一般に、被成形材のプリプレグは若干の水分や積層時の
空気、塗工紙布に内包されている空気および未反応の樹
脂原料の揮発性物質などが気泡として含まれたまま加熱
加圧成形されるため、積層板(被成形材)内部にボイド
が発生し、積層板の特性を著しく低下させている。In general, the prepreg material to be molded is molded under heat and pressure while containing some moisture, air during lamination, air contained in the coated paper fabric, and volatile substances from unreacted resin raw materials as air bubbles. As a result, voids are generated inside the laminate (material to be formed), which significantly deteriorates the properties of the laminate.
そのため、熱盤プレス方式では、前記気泡を無くするよ
う加熱により軟化したプリプレグの含浸樹脂を高圧力に
て流動させてプリプレグに内包されている気泡を外部に
押し出させる手段を試みているが、プリプレグの端部(
周辺部)は放熱されており加熱温度が低くなる。Therefore, in the hot plate press method, in order to eliminate the air bubbles, an attempt has been made to flow the impregnated resin of the prepreg, which has been softened by heating, at high pressure and push out the air bubbles contained in the prepreg. The end of (
The surrounding area) is radiated with heat and the heating temperature is lower.
一方、プリプレグの中央部は蓄熱されて加熱温度が高く
なり、従って、この時プリプレグの中央部では高温加熱
されるために含浸樹脂の溶融粘度が高くなっているもの
の、プリプレグの端部では加熱温度が高温でないため、
含浸樹脂の溶融粘度が低く、熱盤による高圧力(一般に
は40kg/cm以上)でプリプレグの溶融樹脂が多量
に流出して積層板端部の厚みは中央部に比べて薄くなり
板厚のばらつきが生じ、更に、高圧力で加圧されている
ため、ストレスによる収縮が大きく、その結果多層回路
板の回路線がずれ、その上9反りやねじれ等も発生し製
品として問題がある。On the other hand, the central part of the prepreg accumulates heat and the heating temperature becomes high. Therefore, at this time, although the central part of the prepreg is heated to a high temperature and the melt viscosity of the impregnated resin becomes high, the heating temperature at the end part of the prepreg becomes high. is not high temperature,
The melt viscosity of the impregnated resin is low, and a large amount of the molten resin from the prepreg flows out due to the high pressure (generally 40 kg/cm or more) from the hot platen, resulting in the thickness of the laminate ends being thinner than the center, resulting in variations in board thickness. Furthermore, since the multilayer circuit board is pressurized at high pressure, the stress causes a large amount of contraction, which causes the circuit wires of the multilayer circuit board to become misaligned, as well as warping and twisting, which poses problems as a product.
そこで、従来、特開昭56−121734号。Therefore, conventionally, Japanese Patent Application Laid-Open No. 121734/1983.
特開昭59−62113号、特開昭59−76257号
等に示されているような各種の改善策がなされているが
、それぞれ一長一短があり課題として残されている。Although various improvement measures have been taken, such as those shown in Japanese Patent Application Laid-open No. 59-62113 and Japanese Patent Application Laid-Open No. 59-76257, each has its advantages and disadvantages, and issues remain to be solved.
また、真空加熱加圧し成形する技術は9例えば。For example, there are 9 techniques for molding by vacuum heating and pressurizing.
被成形材を加熱加圧プログラムに従い加熱し加圧した場
合、被成形材は、一般に、4層、6層に成形したとして
も1〜2u前後と薄いものであるが。When a material to be formed is heated and pressurized according to a heating and pressing program, the material to be formed is generally as thin as about 1 to 2 μm even if it is formed into 4 or 6 layers.
面積は330wX500n+m、500m1+X500
mn+。Area is 330wX500n+m, 500m1+X500
mn+.
600ffIffl×600ffI11等と広く、シか
も、加熱は熱風を用いているため被成形材の表面より加
熱される。そのため、被成形材は第11図に示すように
多段に積載された被成形材の上下面及び西側面から加熱
されるが、被成形材の芯部における。端部(周辺部)3
5から中央部36への熱伝達が遅く。The range is 600ffIffl x 600ffI11, etc., and since hot air is used for heating, the surface of the material to be formed is heated. Therefore, as shown in FIG. 11, the material to be formed is heated from the upper and lower surfaces and the west side of the material to be formed, which are stacked in multiple stages, but at the core of the material to be formed. End (peripheral) 3
5 to the central portion 36 is slow.
従って、被成形材の端部(周辺部)35と中央部36と
は第12図のグラフの実線と二点鎖線で示すような温度
差が生じる。Therefore, a temperature difference occurs between the end portion (peripheral portion) 35 and the center portion 36 of the material to be formed, as shown by the solid line and the two-dot chain line in the graph of FIG.
その温度差により、被成形材のプリプレグは熱硬化性樹
脂を含浸させたものを用いているため。Due to this temperature difference, the material to be molded, prepreg, is impregnated with thermosetting resin.
その特性により被成形材の端部(周辺部)35が溶融し
ているにもかかわらず、その中央部36は未だ溶融せず
、従って、加圧による上からの押圧と減圧による横から
の真空引きを行う手段を用いても、なお、プリプレグに
内在している気泡(ガス)の押し出しができず、従って
、プリプレグ外部の真空中に排出させることが困難であ
りプリプレグ内部に気泡が残留する。Due to its characteristics, even though the edges (periphery) 35 of the material to be formed are melted, the central part 36 is not yet melted, and therefore, pressure from above due to pressurization and vacuum from the side due to reduced pressure Even if a pulling means is used, the bubbles (gas) contained in the prepreg cannot be pushed out, and therefore, it is difficult to discharge them into the vacuum outside the prepreg, and the bubbles remain inside the prepreg.
そこで、この気泡の残留をなくするため、被成形材1の
昇温速度をゆっくりにして被成形材の端部(周辺部)3
5と中央部36との温度差を少なくし気泡の残留を防止
しているが9反面、昇温が遅いため成形時間が長くなり
、生産能率を低下させるという新たな問題が生じている
。Therefore, in order to eliminate the residual air bubbles, the rate of temperature increase of the material to be formed 1 is slowed down and the edge (periphery) 3 of the material to be formed is reduced.
Although the temperature difference between the central part 36 and the central part 36 is reduced to prevent bubbles from remaining,9 the temperature rise is slow, resulting in a longer molding time and a new problem of lowering production efficiency.
更に、高価な真空バッグフィルムを用いているため、再
使用が効かず不経済であり、しかも、真空バッグフィル
ムの袋作りや密封する際の作業性も悪く自動化への対応
ができない等の問題点を抱えている。Furthermore, since expensive vacuum bag film is used, reuse is not effective and it is uneconomical, and furthermore, the workability of making and sealing bags with vacuum bag film is poor and cannot be automated. I am holding.
このような状況下において、近年、半導体技術の発達に
伴い回路が高密度になり9回路幅は細く。Under these circumstances, in recent years, with the development of semiconductor technology, circuits have become denser and the width of the circuits has become narrower.
回路間隔も狭くなってきている。Circuit spacing is also becoming narrower.
更に、多層化の傾向とともに加工の際のドリル径の減少
、NGマシンによる小型チップ部品の実装が普及してお
り1回路の高密度と相まって板厚が均一で2反りやねじ
れ少なく、多層回路板の回路線のずれのない寸法安定性
の良好な多層プリント配線板が切望されている。Furthermore, with the trend toward multilayering, the diameter of the drill during processing is decreasing, and mounting of small chip parts using NG machines is becoming widespread.Coupled with the high density of 1 circuit, the board thickness is uniform, 2 there is less warping and twisting, and multilayer circuit boards. There is a strong need for a multilayer printed wiring board with good dimensional stability without misalignment of circuit lines.
本発明は前述の各種問題点を解決することを目的として
開発したものである。The present invention was developed with the aim of solving the various problems mentioned above.
問題点を解決するための手段
本発明である積層板の成形方法は、積層板をオートクレ
ーブにて真空加熱加圧成形するにおいて。Means for Solving the Problems The method of forming a laminate according to the present invention involves vacuum heating and pressure forming of a laminate in an autoclave.
被成形材を空隙をもたせて収容でき且つ該被成形材を上
面より加圧でき側面からの圧力は防止できるようにした
開閉可能な気密室を設け、前記気密室と外部の減圧手段
とを着脱して連通、遮断可能に設け、前記気密室内に被
成形材を収容し密封して圧力容器内に搬入し、前記気密
室を減圧手段に接続して気密室内を減圧し1次いで、前
記容器内に高圧蒸気を付与して被成形材を加圧加熱し接
着硬化せしめ成形するものである。An airtight chamber that can be opened and closed is provided in which the material to be formed can be accommodated with a gap, the material to be formed can be pressurized from the top surface, and pressure from the sides can be prevented, and the airtight chamber and external pressure reducing means can be attached and detached. The material to be formed is housed in the airtight chamber, sealed and carried into a pressure vessel, and the airtight chamber is connected to a pressure reducing means to reduce the pressure in the airtight chamber. The material to be molded is heated under pressure by applying high-pressure steam to the material to cure the adhesive and then molded.
実施例 以下、添付図面に従い本発明の詳細な説明する。Example Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
最初に、説明に先立ち本発明でいう積層板について説明
する。First, prior to the explanation, the laminate as used in the present invention will be explained.
本発明でいう積層板とは、多層プリント配線板並びに該
多層プリント配線板に用いる銅張積層板。The laminate used in the present invention refers to a multilayer printed wiring board and a copper-clad laminate used for the multilayer printed wiring board.
非銅張積層板(例えばアルミニウム張積層板)等の積層
板のことをいう。Refers to laminates such as non-copper-clad laminates (for example, aluminum-clad laminates).
被成形材とは2前記積層板を成形するための材料であり
、内層回路板を含み、プリプレグ、銅箔なとより構成し
たものである。The material to be molded is a material for molding the above-mentioned laminate, and includes an inner layer circuit board, and is composed of prepreg, copper foil, etc.
プリプレグとは2紙、ガラス布などの基材にフェノール
樹脂ワニスやエポキシ樹脂ワニスなど熱硬化性樹脂ワニ
スを含浸させて樹脂含浸シートを作成し、この樹脂含浸
シートを乾燥させてBステージ化したものである。What is prepreg? 2 A resin-impregnated sheet is created by impregnating a base material such as paper or glass cloth with thermosetting resin varnish such as phenolic resin varnish or epoxy resin varnish, and this resin-impregnated sheet is dried to become B-staged. It is.
銅張積層板とは、前記プリプレグを定寸法に切断し、該
プリプレグを複数枚重ねてプリプレグの片面または両面
に#lWiを貼り合わせ加熱加圧し接着硬化成形したも
のである。A copper-clad laminate is obtained by cutting the above prepreg into a fixed size, stacking a plurality of sheets of the prepreg, pasting #lWi on one or both sides of the prepreg, and applying heat and pressure to adhesively cure and mold.
多層プリント配線板とは、1例として片面銅張積層板、
プリプレグ、内層回路板、プリプレグ。Examples of multilayer printed wiring boards include single-sided copper-clad laminates,
Prepreg, inner layer circuit board, prepreg.
片面銅張積層板を順次積層し加熱加圧し接着硬化せしめ
成形したもので、その後、孔明け〜ホーニング〜メッキ
〜ラミネート〜焼付、現像〜2次銅メッキ〜・・・・・
〜外形加工などの各処理工程を経て製品となるものであ
る。Single-sided copper-clad laminates are sequentially laminated, heated and pressed to harden the adhesive, and then formed.Then, the process is followed by drilling, honing, plating, laminating, baking, developing, and secondary copper plating.
-It becomes a product after going through various processing steps such as external processing.
更に1本発明で用いる特殊な用語について説明する6
ボイドとは、積層板に用いるプリプレグには若干の水分
、積層時の空気、塗工紙布に内包されている空気および
未反応の樹脂原料の揮発性物質等が気泡として含まれて
おり、その状態のまま加熱加圧成形した場合に積層板内
部に発生するガス状の物体のことをいう。そして、この
ボイドの残溜は積層板の特性を著しく低下させる。In addition, we will explain the special terms used in the present invention.6 Void refers to the presence of some moisture in the prepreg used for the laminate, air during lamination, air contained in coated paper cloth, and unreacted resin raw materials. This is a gaseous substance that contains volatile substances as bubbles and is generated inside the laminate when it is heated and press-molded in that state. The remaining voids significantly deteriorate the properties of the laminate.
真空バッグフィルムとは、耐熱性があり、しかも柔軟性
のあるフィルムで被成形材を外部から遮断し、真空圧に
よって被成形材に密着させるものである。そして、一般
に、ナイロン6、ナイロン66、ポリテトラフルオロエ
チレン等のプラスチックフィルムが用いられている。A vacuum bag film is a heat-resistant and flexible film that isolates a material to be molded from the outside and brings it into close contact with the material by vacuum pressure. Generally, plastic films such as nylon 6, nylon 66, and polytetrafluoroethylene are used.
ブリーザとは、真空バッグフィルム内が減圧され、容器
内に圧力が負荷された時でも空気や反応によって発生し
たガス(気泡)を通過させ均一な圧力負荷を維持できる
ようにしたもので、一般に。A breather is a device that allows air and gas (bubbles) generated by a reaction to pass through to maintain a uniform pressure load even when the inside of the vacuum bag film is reduced in pressure and pressure is applied to the container.
耐熱性のあるガラスクロスが用いられている。Heat-resistant glass cloth is used.
シーラントとは、被成形材を定盤(プラテン)に対して
完全に密封し、成形中密封性を確保するもので、一般に
、粘着性のある粘土状の物体が用いられている。The sealant completely seals the material to be molded to the platen and ensures hermeticity during molding, and generally a sticky clay-like substance is used.
定盤(プラテン)とは、被成形材を積層載置すると共に
被成形材の上面より加圧される圧力を受圧する平板状の
治具であり、一般に、加熱による歪が少なく、かつ上面
を平滑に加工した金属製の平板が用いられている。A surface plate (platen) is a flat jig that stacks materials to be formed and receives pressure from the top surface of the materials. A flat, smooth metal plate is used.
次に、実施例の構成を説明する。Next, the configuration of the embodiment will be explained.
本発明実施例の装置は、被成形材1を収容する気密室を
台車38上の棚に載せて搬入、搬出できるよう設けた圧
力容器2と、前記容器2内に高圧蒸気を供給して被成形
材1を加圧加熱する加圧加熱手段Aと、前記容器2内に
高圧空気を供給して冷却時の被成形材1に圧力を付与す
る高圧空気供給手段Bと、前記容器2内に供給された高
圧空気を容器2内部後方に設置した熱交換器4を介して
冷却する冷却手段Cと、前記冷却手段Cにより冷却され
た空気を容器2内に搬入せしめた気密室へと送風し循環
するように設けた循環手段りと、被成形材1を空隙をも
たせて収容でき且つ該被成形材を上面より加圧でき側面
からの圧力は防止できるようにした開閉可能な気密室E
と、前記気密室Eと外部の減圧手段とを着脱して連通、
遮断可能に設けた着脱手段Fと、前記気密室E内と前記
容器2内とを減圧して高真空にする減圧手段Gとより構
成したものである。The apparatus according to the embodiment of the present invention includes a pressure vessel 2 in which an airtight chamber containing a material to be formed 1 can be carried in and out by placing it on a shelf on a trolley 38, and a pressure vessel 2 in which high-pressure steam is supplied into the container 2. A pressurizing and heating means A that pressurizes and heats the molded material 1; a high-pressure air supply means B that supplies high-pressure air into the container 2 to apply pressure to the molded material 1 during cooling; A cooling means C cools the supplied high-pressure air via a heat exchanger 4 installed at the rear inside the container 2, and the air cooled by the cooling means C is blown into an airtight chamber carried into the container 2. A circulation means provided for circulation, and an openable and closable airtight chamber E that can accommodate the material to be formed 1 with a gap and can pressurize the material to be formed from the top surface while preventing pressure from the sides.
and connecting and detaching the airtight chamber E and an external pressure reduction means,
It is composed of detachable attachment/detachment means F which can be shut off, and depressurization means G which reduces the pressure inside the airtight chamber E and the inside of the container 2 to create a high vacuum.
次に、各手段および各部材についてその詳細を説明する
。Next, details of each means and each member will be explained.
被成形材1は、内層回路板、プリプレグ、銅箔などより
成り、積載して成形するものである。The material to be formed 1 is made of an inner layer circuit board, prepreg, copper foil, etc., and is stacked and formed.
加圧加熱手段Aは、第1図、第2図に示すように、一般
には、容器2内に10kg/−前後の高圧蒸気を自動弁
5を介して供給するよう設けたもので、自動弁6を通じ
て排出され、また、復水はトラップ7を介して排水され
る。更に、容器2内が所定の圧力を越えた時に減圧する
ための安全弁11を設けている。As shown in FIGS. 1 and 2, the pressurizing heating means A is generally provided to supply high-pressure steam of around 10 kg/- into the container 2 via an automatic valve 5. 6 and the condensate is drained through trap 7. Furthermore, a safety valve 11 is provided to reduce the pressure inside the container 2 when it exceeds a predetermined pressure.
高圧空気供給手段Bは、容器2の外部に配設したコンプ
レッサー12より自動弁13を介し容器2内部に連通し
て設けたものであり、供給された高圧空気は自動弁9に
よって排気される。The high-pressure air supply means B is provided so that a compressor 12 disposed outside the container 2 communicates with the inside of the container 2 via an automatic valve 13, and the supplied high-pressure air is exhausted by the automatic valve 9.
冷却手段Cは、容器2の外部より内部の熱交換器4に冷
却水を供給するようにしたもので、冷却水を供給する自
動弁14を容器2を貫通し熱交換器4に連通して設け、
更に、該熱交換器の下方より容器2の下部を連通して排
水用自動弁15を設けたものである。The cooling means C is configured to supply cooling water from the outside of the container 2 to the heat exchanger 4 inside the container 2, and an automatic valve 14 for supplying cooling water is passed through the container 2 and communicated with the heat exchanger 4. established,
Furthermore, an automatic drainage valve 15 is provided to communicate with the lower part of the container 2 from below the heat exchanger.
なお、冷却手段の他の例として、熱交換器4および循環
手段りの替りに、第3図に示すように容器2の外部に加
圧ポンプ16を配設し、該加圧ポンプにて加圧された冷
水を自動弁17を介して容器2内部に供給し、気密室E
内に収容した被成形材1を冷却するようにしてもよい。As another example of the cooling means, instead of the heat exchanger 4 and the circulation means, a pressure pump 16 is provided outside the container 2 as shown in FIG. Pressurized cold water is supplied to the inside of the container 2 via the automatic valve 17, and the airtight chamber E is
The molded material 1 accommodated therein may be cooled.
更に、冷却時における被成形材1への加圧は高圧空気を
用いて、その加圧状態を制御するようにしてもよい。Furthermore, high pressure air may be used to pressurize the material to be formed 1 during cooling, and the pressurized state may be controlled.
また、冷却手段の別の例として、容器2の外部で冷却す
る手段を設け、冷却ガス(空気)を容器2内に供給する
ようにしてもよい。Further, as another example of the cooling means, cooling means may be provided outside the container 2 and cooling gas (air) may be supplied into the container 2.
循環手段りは、容器2の内部にファン18を設け、更に
、該ファンを駆動するモータ19を容器2の外部に気密
を保持できるようにして設置したものである。そして、
ファン18により送られる冷却ガスは第1図に示す風胴
板21の外周を通り抜け、該風胴板と被成形材1との間
を矢印に示すようにUターンして循環できるよう構成し
たものである。The circulation means includes a fan 18 provided inside the container 2, and a motor 19 for driving the fan installed outside the container 2 so as to be airtight. and,
The cooling gas sent by the fan 18 passes through the outer periphery of the wind barrel plate 21 shown in FIG. 1, and is configured to circulate between the wind barrel plate and the material to be formed 1 by making a U-turn as shown by the arrow. It is.
気密室Eは、第4図、第5図に示すように定盤20上に
積載した被成形材1を、方形の枠より成る側圧防止部材
Hにて適宜な隙間を設けて囲い。As shown in FIGS. 4 and 5, the airtight chamber E surrounds the material to be formed 1 loaded on a surface plate 20 with an appropriate gap provided by a side pressure prevention member H made of a rectangular frame.
定盤2oと側圧防止部材Hとはシール部材りにてシール
し、更に、前記被成形材lを密封するため。The surface plate 2o and the lateral pressure prevention member H are sealed by a sealing member, and the molded material 1 is further sealed.
側圧防止部材Hの上部には被成形材1を押圧する平板状
の抑圧部材Jを側圧防止部材Hに上下移動可能に設け、
シール部材Kにてシールして側圧防止部材Hの内部を密
封するように設け、しかも。A flat plate-shaped suppression member J that presses the material to be formed 1 is provided on the upper part of the lateral pressure prevention member H so as to be movable up and down on the lateral pressure prevention member H.
It is provided so that the inside of the side pressure prevention member H is sealed by sealing with the seal member K.
被成形材1を簡単に挿入、取り出しでき、気密室Eを容
易に分解9組立できるよう構成したものである。The molded material 1 can be easily inserted and removed, and the airtight chamber E can be easily disassembled and assembled.
着脱手段Fは、前記気密室2内を減圧するため。The attachment/detachment means F is for reducing the pressure inside the airtight chamber 2.
定盤20の真空路22出口部のカプラー27を減圧手段
Gの配管先端部のカプラー27に着脱して。The coupler 27 at the outlet of the vacuum path 22 of the surface plate 20 is attached to and detached from the coupler 27 at the tip of the piping of the pressure reducing means G.
前記気密室Eと連通、遮断できるよう設けたものである
。It is provided so as to be able to communicate with and shut off from the airtight chamber E.
なお、前記定盤20と押圧部材Jとは、被成形材1に接
する面を平面状にして且つその表面を平滑に仕上げた熱
伝導性のよい平面板を形成している。Incidentally, the surface plate 20 and the pressing member J form a flat plate with good thermal conductivity, whose surface in contact with the material to be formed 1 is flat and whose surface is smoothed.
第6図は気密室Eの他の実施例を示したもので。FIG. 6 shows another embodiment of the airtight chamber E.
気密室Eは、側圧防止部材Hの上面で且っ押圧部材Jの
外周に方形枠の押え板26と一体化せしめたシール部材
Kを介在せしめ上下移動可能に設け。The airtight chamber E is provided on the upper surface of the lateral pressure prevention member H and on the outer periphery of the pressing member J with a sealing member K integrated with a rectangular frame presser plate 26 interposed therein so as to be movable up and down.
高圧蒸気による上方からの加圧により、前記シール部材
にと押圧部材Jとを下方へと作用させ被成形材1を加圧
するよう構成したものである。The molded material 1 is configured to be pressurized by applying pressure from above using high-pressure steam to cause the sealing member and the pressing member J to act downwardly.
減圧手段Gは、第1図、第2図に示すように容器2外部
に設置された真空ポンプ23がら自動弁24と自動弁2
5とで分岐して容器2内部へ連通して配管したものであ
る。そして、自動弁24の先端部は容器2の内部にて開
放されており、自動弁25の先端部には第2図および第
4図に示すように真空用のカプラー27を設け、該カプ
ラー27は、気密室E内部を減圧するため、定盤20の
真空路22の配管部のカプラー27と着脱できるよう設
けている。As shown in FIGS. 1 and 2, the pressure reducing means G includes a vacuum pump 23 installed outside the container 2, an automatic valve 24, and an automatic valve 2.
5 and is connected to the inside of the container 2 for piping. The tip of the automatic valve 24 is opened inside the container 2, and the tip of the automatic valve 25 is provided with a vacuum coupler 27 as shown in FIGS. is provided so as to be detachable from the coupler 27 of the piping section of the vacuum path 22 of the surface plate 20 in order to reduce the pressure inside the airtight chamber E.
ここで2本発明において、被成形材を積層載置する状態
を説明する。Here, in the present invention, the state in which the materials to be formed are stacked will be described.
第7図に示すように定盤20上には真空路を設けた通気
板28を配置し2次いで、鏡面板30〜離型フィルム3
1〜銅箔32〜プリプレグ33〜内層回路板34〜プリ
プレグ33〜銅箔32〜離型フィルム31〜鋺面板30
〜離型フィルム31〜銅箔32〜プリプレグ33〜内層
回路板34〜プリプレグ33〜銅箔32〜離型フィルム
31〜鏡面板30と順次積載し、この積重ねを複数段に
重ねる。As shown in FIG. 7, a ventilation plate 28 provided with a vacuum path is arranged on the surface plate 20, and then a mirror plate 30 to a release film 3 are arranged.
1~Copper foil 32~Prepreg 33~Inner layer circuit board 34~Prepreg 33~Copper foil 32~Release film 31~Front plate 30
-Release film 31 -Copper foil 32 -Prepreg 33 -Inner layer circuit board 34 -Prepreg 33 -Copper foil 32 -Release film 31 -Mirror plate 30 are sequentially stacked, and this stacking is stacked in multiple stages.
そして、前記被成形材1を側圧防止部材Hにて囲みシー
ル部材I、にてシールし、更に、被成形材1の上に抑圧
部材Jを載せ、シール部材Kにより被成形材1を密封し
、その密封状態を確認する。Then, the material to be formed 1 is surrounded by a lateral pressure prevention member H and sealed with a sealing member I, furthermore, a suppressing member J is placed on the material to be formed 1, and the material to be formed 1 is sealed with a sealing member K. , check its sealing condition.
なお、この密封する手段として、先に側圧防止部材H2
抑圧部材J、シール部材Kを一体的に組合せ定盤20上
に積載した被成形材1に被せるようにして密封してもよ
く、また、成形後の取り外しも前記どちらの手段を用い
てもよく手段に限定されない。In addition, as a means for this sealing, the lateral pressure prevention member H2 is first installed.
The suppressing member J and the sealing member K may be integrally combined and sealed by covering the material to be formed 1 loaded on the surface plate 20, and either of the above-mentioned means may be used for removal after forming. Not limited to means.
次に、その作用を第8図に示す加熱加圧プログラムに従
い説明する。Next, its operation will be explained according to the heating and pressurizing program shown in FIG.
気密室E内部に収容し密封して準備された被成形材1を
、第1図および第2図に示す台車38の棚に載せ圧力容
器2内に搬入する。次に、定盤20のカプラー27を減
圧手段Gの容器内配管部のカプラー27に接続して扉3
を閉じ容器2を密閉する。The material to be formed 1, which has been prepared by being housed and sealed inside the airtight chamber E, is placed on a shelf of a cart 38 shown in FIGS. 1 and 2 and carried into the pressure vessel 2. Next, the coupler 27 of the surface plate 20 is connected to the coupler 27 of the container internal piping part of the pressure reducing means G, and the door 3
and seal container 2.
次に、真空ポンプ23と自動弁24と自動弁25とを作
動させて容器2内部と気密室E内部とを減圧い容器2内
部が真空になった時点で自動弁24を逆作動させて容器
2内部への減圧を停止させる。Next, the vacuum pump 23, the automatic valve 24, and the automatic valve 25 are operated to reduce the pressure inside the container 2 and the airtight chamber E. When the inside of the container 2 becomes vacuum, the automatic valve 24 is reversely operated to reduce the pressure inside the container 2 and the airtight chamber E. 2 Stop the vacuum inside.
次いで、自動弁5を作動させて容器2内に高圧蒸気を供
給して気密室E内に収容した被成形材1を加圧加熱する
。Next, the automatic valve 5 is operated to supply high-pressure steam into the container 2 to pressurize and heat the molded material 1 housed in the airtight chamber E.
この時、容器2内部が真空になっているため。At this time, the inside of container 2 is in a vacuum.
高圧蒸気は容器2内部に均一に分布し、この高圧蒸気の
静水圧特性と気密室Eの機能により、被成形材1は上方
からの加圧により押し圧され、上下面より加熱される。The high-pressure steam is uniformly distributed inside the container 2, and due to the hydrostatic characteristics of this high-pressure steam and the function of the airtight chamber E, the material to be formed 1 is pressed by pressure from above and heated from the upper and lower surfaces.
このように、被成形材1は上下方向より加熱され、被成
形材1の上下面より熱伝達が行なわれるが、第4図に示
す気密室り内の隙間部37が高真空になっているため被
成形材1の端部(周辺部)の放熱がなく、被成形材1の
プリプレグ平面上端部(周辺部)35と中央部36とは
、はぼ均一に加熱でき、従って、前記被成形材1のプリ
プレグ平面上の中央部36と端部(周辺部)35との温
度差がなくなり、各段毎のプリプレグ平面上の中央部3
6と端部(周辺部)35との溶融粘度はほぼ等しくなる
。In this way, the material to be formed 1 is heated from above and below, and heat is transferred from the upper and lower surfaces of the material to be formed 1, but the gap 37 in the airtight chamber shown in FIG. 4 is in a high vacuum. Therefore, there is no heat dissipation from the ends (periphery) of the material 1 to be formed, and the upper end (periphery) 35 and center 36 of the prepreg plane of the material 1 to be formed can be heated almost uniformly. There is no temperature difference between the center part 36 on the prepreg plane of the material 1 and the end part (peripheral part) 35, and the center part 3 on the prepreg plane of each stage is reduced.
The melt viscosities of the melt viscosity at the end portion 6 and the end portion (periphery portion) 35 are approximately equal.
そして、積層された被成形材1の加熱が進行し。Then, heating of the stacked materials 1 to be formed progresses.
プリプレグ樹脂部の溶融粘度が最小になると、プリプレ
グ樹脂部内に存在している気泡は、樹脂部の上方へ浮い
た状態となるが、上からの圧力と横からの真空引きによ
り、プリプレグと銅箔との間を通り、プリプレグの端部
(周辺部)へと移動し真空中へ排出される。When the melt viscosity of the prepreg resin part reaches its minimum, the air bubbles existing in the prepreg resin part float above the resin part, but due to the pressure from above and the vacuum from the side, the prepreg and copper foil It moves to the edge (periphery) of the prepreg and is discharged into vacuum.
続いて、被成形材1の温度を更に上昇させ、規定温度に
至りでしばらくその温度を維持し、被成形材1を接着硬
化させる。Subsequently, the temperature of the material to be formed 1 is further increased, and once it reaches a specified temperature, that temperature is maintained for a while to bond and harden the material to be formed.
次に、自動弁5を逆作動させて高圧蒸気の供給を止め2
次いで、自動弁13を作動させて高圧空気を容器2内に
供給すると共に、自動弁6を作動させて高圧蒸気を排出
い被成形材1は高圧蒸気に替わって高圧空気により加圧
され所定の圧力を維持するよう制御する。Next, the automatic valve 5 is operated in reverse to stop the supply of high pressure steam 2.
Next, the automatic valve 13 is operated to supply high-pressure air into the container 2, and the automatic valve 6 is operated to discharge high-pressure steam, so that the material to be formed 1 is pressurized with high-pressure air instead of high-pressure steam, and is pressurized to a predetermined level. Control to maintain pressure.
続いて、自動弁14を作動させ冷却水を熱交換器4に供
給して容器2内の高圧空気(高圧ガス)を冷却すると共
に、冷却された高圧空気は循環手段りのファン18によ
り送風され容器2内を循環して気密室E内の被成形材1
を冷却する。Next, the automatic valve 14 is operated to supply cooling water to the heat exchanger 4 to cool the high pressure air (high pressure gas) in the container 2, and the cooled high pressure air is blown by the fan 18 of the circulation means. The material to be formed 1 is circulated in the container 2 and placed in the airtight chamber E.
to cool down.
次に、自動弁9を作動させて前記容器2内の圧力を徐々
に低下させる。Next, the automatic valve 9 is operated to gradually reduce the pressure inside the container 2.
そして、被成形材1が冷却されると、全ての作動を停止
させ、扉3を開き被成形材1を外部へ搬出し一工程が完
了する。When the material to be formed 1 is cooled, all operations are stopped, the door 3 is opened, and the material to be formed 1 is carried out to the outside, completing one process.
なお、冷却の際、前記気密室E内に空気を導入する手段
を用いると冷却されたガスの冷却熱は気密室〜空気〜被
成形材1へと伝達されて被成形材を短時間に冷却するこ
とができる。Note that during cooling, if a means for introducing air into the airtight chamber E is used, the cooling heat of the cooled gas is transmitted from the airtight chamber to the air to the workpiece 1, thereby cooling the workpiece in a short time. can do.
ここで1寸法:330mmX500閣のプリプレグ、t
R箔および内層回路板を第7図に示すように鏡面板にて
挟み、順次重ねて60IIIII+程度の高さに積載す
る。この時、温度検出器40を被成形材1の端部(周辺
部)、35と中央部36とに適宜挿入する。そして、第
8図に示す加熱加圧プログラムの条件にて成形したとこ
ろ、各被成形材1のプリプレグの中央部と端部(周辺部
)とは、第9図に示すように温度差が無くなり、その結
果、ボイドの無い均一な板厚の6層銅張積層板を所定時
間内で成形することができた。Here, 1 dimension: 330mm x 500mm prepreg, t
The R foil and the inner layer circuit board are sandwiched between mirror plates as shown in FIG. 7, and stacked one on top of the other to a height of about 60III+. At this time, temperature detectors 40 are appropriately inserted into the ends (periphery), 35, and center 36 of the material to be formed 1. Then, when molding was carried out under the conditions of the heating and pressing program shown in Fig. 8, there was no temperature difference between the central part and the end part (periphery) of the prepreg of each material to be formed 1, as shown in Fig. 9. As a result, a six-layer copper-clad laminate with uniform thickness and no voids could be formed within a predetermined time.
なお1本発明で用いる加熱加圧プログラムは第。Note that the heating and pressurizing program used in the present invention is No. 1.
8図に示す条件以外のもの2例えば第10図に示すよう
なものでもよく2本発明の実施例に限定されるものでは
ない。Conditions other than those shown in FIG. 8 may be used, such as those shown in FIG. 10, and the conditions are not limited to the embodiments of the present invention.
発明の効果 以上1本発明によると下記のような効果を奏する。Effect of the invention According to the present invention, the following effects are achieved.
積層板をオートクレーブにて真空加熱加圧成形するにお
いて、被成形材を空隙をもたせて収容でき且つ該被成形
材を上面より加圧でき側面からの圧力は防止できるよう
にした開閉可能な気密室を設け、前記気密室と外部の減
圧手段とを着脱して連通、遮断可能に設け、前記気密室
内に被成形材を収容し密封して圧力容器内に搬入し、前
記気密室を減圧手段に接続して気密室内を減圧し2次い
で、前記容器内に高圧蒸気を付与して被成形材を加圧加
熱し接着硬化せしめ成形するようにしたから、被成形材
への加圧は気密室の側圧防止部材により妨げられ静水圧
によって被成形材上面より均等に加圧される。An openable and closable airtight chamber capable of accommodating a material to be formed with a gap in vacuum heating and pressure forming of a laminate in an autoclave, and capable of pressurizing the material from the top and preventing pressure from the sides. the airtight chamber and an external pressure reducing means are provided so that they can be connected and disconnected, the material to be formed is accommodated in the airtight chamber, sealed and carried into a pressure vessel, and the airtight chamber is used as the pressure reduction means. The connection was made to reduce the pressure inside the airtight chamber, and then apply high pressure steam to the container to pressurize and heat the material to be molded to harden the adhesive and form it. This is prevented by the side pressure prevention member and is evenly pressurized from the upper surface of the material to be formed by hydrostatic pressure.
更に、被成形材への加熱は気密室内を真空にしているた
め、側面からの熱伝達は行なわれず、しかも、被成形材
端部の放熱もなく、上下面より均等に熱伝達される。Furthermore, since the airtight chamber is kept in a vacuum during heating of the material to be formed, heat is not transferred from the side surfaces, and there is no heat dissipation from the ends of the material to be formed, and heat is evenly transferred from the upper and lower surfaces.
その結果、被成形材の各プリプレグの中央部と端部との
温度差が無くなり樹脂は一様な溶融状態となって流動し
やすくなるため、加圧によりプリプレグの溶融樹脂は中
央部から端部へと均一に移動し少量の流出にもかかわら
ず、真空引きにより気泡を真空中に排出することができ
、ボイドのない、しかも、樹脂の欠損のない板厚の均一
な積層板を所定時間内で成形することができる。As a result, there is no temperature difference between the center and edges of each prepreg of the material to be molded, and the resin becomes uniformly molten, making it easier to flow. Even though there is a small amount of spillage, the air bubbles can be expelled into the vacuum by vacuuming, and a laminate of uniform thickness without voids and without resin loss can be produced within a predetermined time. It can be molded with.
また、被成形材に加圧する圧力が従来の熱盤ブレス方式
に比べて低圧であるため、ストレスによる収縮が少なく
、多層回路板の回路線のずれが無くなり回路の高密度化
に対応することができる。In addition, since the pressure applied to the material to be molded is lower than that of the conventional hot platen press method, there is less shrinkage due to stress, and there is no misalignment of circuit lines on multilayer circuit boards, making it possible to accommodate higher circuit densities. can.
更に9反りやねじれも少なくなり、板厚の均一と相まっ
て寸法安定性の良い高品質な積層板が得られる。Furthermore, warping and twisting are reduced, and combined with uniform plate thickness, a high-quality laminate with good dimensional stability can be obtained.
更に、樹脂の流出が少なくしてボイドを除去でき、しか
も、樹脂の欠損がないため、板厚をほとんど変えること
なく多層が可能となり高多層化の要求に対応することが
できる。Furthermore, since the outflow of resin is reduced and voids can be removed, and there is no loss of resin, it is possible to form multiple layers with almost no change in board thickness, thus meeting the demand for higher multilayers.
更に、再使用可能で且つ被成形材を簡単に挿入。Furthermore, it is reusable and the material to be formed can be easily inserted.
取り出しできる気密室を設けているから、従来の再使用
不可能で且つ高価な真空バッグフィルムが不要となり、
経済的であると共に作業性もよくなり自動化への対応も
期待できる。Since it has an airtight chamber that can be taken out, there is no need for conventional vacuum bag film that cannot be reused and is expensive.
It is economical, has good workability, and can be expected to be compatible with automation.
更に、加圧加熱手段に高圧蒸気を用いているから、蒸気
が保有している高熱エネルギーにより被成形材を加熱で
きるため、従来の加熱ガスによる加熱手段に比し短時間
で成形することができる。Furthermore, since high-pressure steam is used as the pressurized heating means, the material to be molded can be heated by the high thermal energy contained in the steam, so it can be molded in a shorter time than with conventional heating means using heating gas. .
第1図は本発明に係る装置の一実施例を示す一部破断し
た概略側面図。第2図は前記第1図に示した装置の概略
縦断面図ゆ第3図は冷却手段の他の実施例を示す概略縦
断面図。第4図は被成形材を収容する気密室の概略縦断
面図。第5図は第4図の上面図。第6図は気密室の他の
実施例の概略縦断面図。第7図は本発明において被成形
材を積層載置する状態を示す概略縦断面図。第8図は本
発明の被成形材を成形する加熱加圧プログラムの一実施
例を示す図。第9図は本発明の被成形材を第8図で設定
した加熱加圧プログラムに従って成形した実測値を示し
たものである。第10図は本発明の被成形材を成形する
加熱加圧プログラムの他の実施例を示す図。第11図は
被成形材を積載し真空バッグフィルムにて被覆し密封せ
しめる従来の方法を示す概略縦断面図。第12図は被成
形材を成形する加熱加圧プログラムの従来技術の一実施
例を示す図である。
これらの図において
AJI圧加熱手段、B:高圧空気供給手段、C:冷却手
段、D:循環手段、E:気密室、F着脱手段、G:減圧
手段、H:側圧防止部材、J:押圧部材、にニシール部
材、L:シール部材、1:被成形材、2・圧力容器、3
:扉、4:熱交換器。
5.6,9:自動弁、7:トラップ、1に安全弁、12
コンプレッサー、13,14,15゜17=自動弁、
16・加圧ポンプ、18.ファン。
19:モータ、20:定盤、21:風肩板、22:真空
路、23:真空ポンプ、24,25:自動弁。
26:押え板、27:カブラ−,28:通気板。
30−鏡面板、31;離型フィルム、32:銅箔。
33ニブリプレグ、34:内層回路板、35:被成形材
の端部、36:被成形材の中央部、37:隙間部、38
;台車、40:温度検出器、41:ブリーザ、42:真
空バッグフィルム、43ニジ−ラント。
第3図
第5図FIG. 1 is a partially cutaway schematic side view showing one embodiment of the device according to the present invention. 2 is a schematic vertical sectional view of the apparatus shown in FIG. 1, and FIG. 3 is a schematic vertical sectional view showing another embodiment of the cooling means. FIG. 4 is a schematic longitudinal cross-sectional view of an airtight chamber that accommodates the material to be formed. FIG. 5 is a top view of FIG. 4. FIG. 6 is a schematic vertical sectional view of another embodiment of the airtight chamber. FIG. 7 is a schematic vertical cross-sectional view showing a state in which materials to be formed are stacked and placed in the present invention. FIG. 8 is a diagram showing an embodiment of a heating and pressing program for molding a material to be molded according to the present invention. FIG. 9 shows actual measurement values obtained by molding the material to be molded according to the present invention according to the heating and pressing program set in FIG. 8. FIG. 10 is a diagram showing another embodiment of the heating and pressing program for molding the material to be molded according to the present invention. FIG. 11 is a schematic vertical sectional view showing a conventional method of loading materials to be formed, covering them with a vacuum bag film, and sealing them. FIG. 12 is a diagram showing an example of a prior art heating and pressing program for molding a material to be molded. In these figures, AJI pressure heating means, B: high pressure air supply means, C: cooling means, D: circulation means, E: airtight chamber, F attachment/detachment means, G: pressure reduction means, H: lateral pressure prevention member, J: pressing member , Ni seal member, L: seal member, 1: molded material, 2・pressure vessel, 3
: Door, 4: Heat exchanger. 5.6,9: automatic valve, 7: trap, safety valve at 1, 12
Compressor, 13, 14, 15° 17 = automatic valve,
16. Pressure pump, 18. fan. 19: Motor, 20: Surface plate, 21: Wind shoulder plate, 22: Vacuum path, 23: Vacuum pump, 24, 25: Automatic valve. 26: Presser plate, 27: Cover, 28: Ventilation plate. 30-mirror plate, 31; release film, 32: copper foil. 33 Nibbly preg, 34: Inner layer circuit board, 35: End portion of material to be formed, 36: Center portion of material to be formed, 37: Gap portion, 38
; Trolley, 40: Temperature detector, 41: Breather, 42: Vacuum bag film, 43 Nizi-lant. Figure 3 Figure 5
Claims (1)
おいて、被成形材を空隙をもたせて収容でき且つ該被成
形材を上面より加圧でき側面からの圧力は防止できるよ
うにした開閉可能な気密室を設け、前記気密室と外部の
減圧手段とを着脱して連通、遮断可能に設け、前記気密
室内に被成形材を収容し密封して圧力容器内に搬入し、
前記気密室を減圧手段に接続して気密室内を減圧し、次
いで、前記容器内に高圧蒸気を付与して被成形材を加圧
加熱し接着硬化せしめ成形することを特徴とする積層板
の成形方法。An openable and closable airtight chamber capable of accommodating a material to be formed with a gap in vacuum heating and pressure forming of a laminate in an autoclave, and capable of pressurizing the material from the top and preventing pressure from the sides. providing the airtight chamber and an external pressure reduction means so that they can be connected and disconnected, and storing the material to be formed in the airtight chamber, sealing it, and transporting it into a pressure vessel;
Forming of a laminate, characterized in that the airtight chamber is connected to a pressure reducing means to reduce the pressure inside the airtight chamber, and then high pressure steam is applied to the container to pressurize and heat the material to be formed to harden the adhesive and form it. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60131426A JPS61290036A (en) | 1985-06-17 | 1985-06-17 | Molding method for laminated plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60131426A JPS61290036A (en) | 1985-06-17 | 1985-06-17 | Molding method for laminated plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61290036A true JPS61290036A (en) | 1986-12-20 |
Family
ID=15057681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60131426A Pending JPS61290036A (en) | 1985-06-17 | 1985-06-17 | Molding method for laminated plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61290036A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5256235A (en) * | 1991-08-13 | 1993-10-26 | Howell Richard E | Method for forming long thin flexible laminates |
JPH06334343A (en) * | 1992-09-04 | 1994-12-02 | Hitachi Ltd | Manufacture of multilayered wiring board and high density multilayered wiring board |
JP2008501555A (en) * | 2004-06-09 | 2008-01-24 | インダストリアル コンポジテス エンジニアリング プロプライエタリー リミテッド | Method for forming or curing polymer composite |
JP2012119475A (en) * | 2010-11-30 | 2012-06-21 | Toyoda Iron Works Co Ltd | Cooling device for electronic component and manufacturing method of the same |
JP2012153133A (en) * | 2010-11-26 | 2012-08-16 | Ashida Mfg Co Ltd | Autoclave molding method and autoclave molding apparatus |
WO2020170395A1 (en) * | 2019-02-21 | 2020-08-27 | 株式会社芦田製作所 | Cooling method for autoclave molding device |
WO2021038805A1 (en) * | 2019-08-29 | 2021-03-04 | 株式会社芦田製作所 | Autoclave molding device |
-
1985
- 1985-06-17 JP JP60131426A patent/JPS61290036A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5256235A (en) * | 1991-08-13 | 1993-10-26 | Howell Richard E | Method for forming long thin flexible laminates |
US5391253A (en) * | 1991-08-13 | 1995-02-21 | Howell; Richard E. | Apparatus for forming laminates |
JPH06334343A (en) * | 1992-09-04 | 1994-12-02 | Hitachi Ltd | Manufacture of multilayered wiring board and high density multilayered wiring board |
JP2008501555A (en) * | 2004-06-09 | 2008-01-24 | インダストリアル コンポジテス エンジニアリング プロプライエタリー リミテッド | Method for forming or curing polymer composite |
JP4836205B2 (en) * | 2004-06-09 | 2011-12-14 | インダストリアル コンポジテス エンジニアリング プロプライエタリー リミテッド | Method for forming or curing polymer composite |
JP2012153133A (en) * | 2010-11-26 | 2012-08-16 | Ashida Mfg Co Ltd | Autoclave molding method and autoclave molding apparatus |
KR101325808B1 (en) * | 2010-11-26 | 2013-11-05 | 가부시키가이샤 아시다세이사쿠쇼 | Autoclave Molding Method and Autoclave Molding Apparatus |
EP2457708B1 (en) * | 2010-11-26 | 2014-07-02 | Kabushiki Kaisha Ashida Seisakusho | Autoclave molding method |
US8828309B2 (en) | 2010-11-26 | 2014-09-09 | Kabushiki Kaisha Ashida Seisakusho | Autoclave molding method and autoclave molding apparatus |
JP2012119475A (en) * | 2010-11-30 | 2012-06-21 | Toyoda Iron Works Co Ltd | Cooling device for electronic component and manufacturing method of the same |
US9163886B2 (en) | 2010-11-30 | 2015-10-20 | Toyoda Iron Works Co., Ltd. | Method for manufacturing a cooling device for electronic component |
WO2020170395A1 (en) * | 2019-02-21 | 2020-08-27 | 株式会社芦田製作所 | Cooling method for autoclave molding device |
JPWO2020170395A1 (en) * | 2019-02-21 | 2021-03-11 | 株式会社芦田製作所 | Cooling method for autoclave molding equipment |
WO2021038805A1 (en) * | 2019-08-29 | 2021-03-04 | 株式会社芦田製作所 | Autoclave molding device |
JPWO2021038805A1 (en) * | 2019-08-29 | 2021-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10315257A (en) | Apparatus and method for vacuum laminating | |
US4909886A (en) | Process for producing copper-clad laminate | |
US5039371A (en) | Apparatus for roll-consolidation of thermoplastic composite laminates | |
JP3627090B2 (en) | Lamination molding method and lamination molding apparatus | |
JPS63251207A (en) | Molding method and apparatus for printed-circuit board | |
JPS61290036A (en) | Molding method for laminated plate | |
JPS61277428A (en) | Molding method of laminated plate | |
EP0392226A1 (en) | Vacuum, continuous batch process for producing laminates and apparatus for such process | |
JPS6319897A (en) | Method of molding multilayer printed interconnection board | |
JPH0328287B2 (en) | ||
JPS61230916A (en) | Forming of laminated plate | |
JP3243607B2 (en) | Vacuum laminating apparatus and vacuum laminating method | |
JPS61287744A (en) | Method of molding laminated board | |
JP3608102B2 (en) | Laminator and laminate molding method | |
JPH0435129Y2 (en) | ||
JPS6143543A (en) | Manufacture of multi-layer printed wiring board | |
JP2990825B2 (en) | Method for manufacturing multilayer printed circuit board | |
JPH04345813A (en) | Continuous production of laminated plate and equipment thereof | |
JPS61293836A (en) | Forming jig for laminated sheet | |
JP3243598B2 (en) | Vacuum laminating apparatus and vacuum laminating method | |
JPS61228957A (en) | Jig for molding laminated board | |
TW469213B (en) | A vacuum lamination apparatus | |
JPS62117729A (en) | Joining and curing of flexible printed wiring board | |
JP4622118B2 (en) | Wiring board molding equipment | |
JP2003163464A (en) | Method for manufacturing wiring board |