[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61203561A - Battery electrode - Google Patents

Battery electrode

Info

Publication number
JPS61203561A
JPS61203561A JP60043147A JP4314785A JPS61203561A JP S61203561 A JPS61203561 A JP S61203561A JP 60043147 A JP60043147 A JP 60043147A JP 4314785 A JP4314785 A JP 4314785A JP S61203561 A JPS61203561 A JP S61203561A
Authority
JP
Japan
Prior art keywords
alloy
negative electrode
hydrogen
electrode
flatness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60043147A
Other languages
Japanese (ja)
Inventor
Munehisa Ikoma
宗久 生駒
Hiroshi Kawano
川野 博志
Yoshio Moriwaki
良夫 森脇
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60043147A priority Critical patent/JPS61203561A/en
Publication of JPS61203561A publication Critical patent/JPS61203561A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To improve the flatness of the discharge curve of the negative electrode of an alkaline storage battery or a similar battery and to increase its cycle life by forming the negative electrode from an alloy represented by general formula LnNialphaMnbeta which is thermally treated at a temperature below the melting point of the alloy. CONSTITUTION:A hydrogen occlusion alloy which can electrochemically occlude or release hydrogen is used as the negative electrode for an alkaline storage battery or a similar battery. The negative electrode is made by heating an alloy represented by general formula LnNialphaMnbeta (Ln is lanthanum or a Misch metal containing lanthanum.; 4<alpha+beta<5.5; 0<beta) either in a vacuum or in an atmosphere of an inactive gas or hydrogen gas at a temperature of at least 900 deg.C for at least 1hr. As a result, the homogeneity of the alloy is improved and hydrogen occluded into the alloy remains in a constant energy state. Therefore, it is possible to improve the flatness of the discharge curve and to increase the cycle life of the electrode.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気化学的に水素の吸蔵・放出が可能な水素
吸蔵合金を負極に用いた電池用電極に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a battery electrode using a hydrogen storage alloy capable of electrochemically absorbing and desorbing hydrogen as a negative electrode.

#来の甥街 従来、鉛蓄電池、ニッケルーカドミウム蓄電池がよく知
られているが、これらの蓄電池は重量または体積の単位
当りのエネルギー密度が比較的小さい欠点がある。そこ
で、電気化学的に水素を多量に吸蔵・放出が可能な合金
を負極とし、正極にはニッケル酸化物を用いたエネルギ
ー密度の大きいニッケルー水素蓄電池が提案されている
Lead-acid batteries and nickel-cadmium batteries have been well known in the past, but these batteries have the disadvantage of having a relatively low energy density per unit of weight or volume. Therefore, a nickel-hydrogen storage battery with high energy density has been proposed, which uses an alloy that can electrochemically absorb and release large amounts of hydrogen as the negative electrode and nickel oxide as the positive electrode.

負極には、L al’J isやLaNi4Cu 、 
LaNi4Co 。
For the negative electrode, L al'J is, LaNi4Cu,
LaNi4Co.

L aN i4.7AR0,3等の水素吸蔵合金が用い
られていた(たとえば特公昭59−49671号公報)
。しかし、これらの合金は高温(46℃)での放電容量
カ小さイ(50mAh/r〜200 mAh/? )欠
点があった。そこで、特に高温での特性を改善するため
に、LaNi4.26Mn0.76(Int 、Sym
p 、Hydr ideEnergy Storage
 P、486(197B ) )が用いられていた。
Hydrogen storage alloys such as L aN i4.7AR0,3 were used (for example, Japanese Patent Publication No. 59-49671)
. However, these alloys have the disadvantage of a small discharge capacity (50 mAh/r to 200 mAh/?) at high temperatures (46° C.). Therefore, in order to improve the characteristics especially at high temperatures, LaNi4.26Mn0.76 (Int, Sym
p, Hydro Energy Storage
P, 486 (197B)) was used.

発明が解決しようとする問題点 しかし、この場合のL aN i4.2sMn o 、
 7sは、放電曲線の平担性が悪く、数十サイクルの充
放電により放電容量が低下するという問題がある。
Problems to be solved by the invention However, in this case, L aN i4.2sMno,
7s has a problem in that the flatness of the discharge curve is poor and the discharge capacity decreases after several tens of charging and discharging cycles.

問題点を解決するための手段 本発明は、前記問題点を解決するために、熱処理を施し
た一般式L nN i−化β合金を電池の負極であり、
これによって放電曲線の平担性が良好で、サイクル寿命
の優れた電池を提供する。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a negative electrode of a battery using a heat-treated β alloy of the general formula L nN i-
This provides a battery with good discharge curve flatness and excellent cycle life.

作  用 LnNi aMu β(4(α+β(5,6,0(β、
La単独あるいはLa f含むミツシュメタル)熱処理
′f、7Il!iすことにより、合金の均一性がより良
好になる。したがって熱処理を施さない。
Effect LnNiaMu β(4(α+β(5,6,0(β,
Mitsushmetal containing La alone or La f) heat treatment'f, 7Il! The uniformity of the alloy is improved by increasing the temperature. Therefore, no heat treatment is performed.

合金に比較して、吸蔵された水素はより一定のエネルギ
ー状態で合金中に存在する。
Compared to alloys, occluded hydrogen exists in alloys in a more constant energy state.

この結果、合金中の水素の放出全意味する放電極曲線の
平担性は良好になる。さらに、熱処理により非常に均一
な合金が形成されるため、アルカリ電解液中でも安定に
なり、充放電サイクルの繰り返しにより放電容量が低下
せず、サイクル寿命の優れた電極が得られる。
As a result, the flatness of the discharge electrode curve, which means the total release of hydrogen in the alloy, becomes good. Furthermore, since a very uniform alloy is formed by heat treatment, it is stable even in an alkaline electrolyte, and the discharge capacity does not decrease with repeated charge/discharge cycles, resulting in an electrode with excellent cycle life.

実施例 以下本発明をその実施例により説明する。市販ノランタ
ントランタンを含むミツシュメタル(希土類元素の混合
物、たとえばCe 45wt%、La30wt%、Nd
5wt%他)トニッケル、マンガンk 一定の組成比に
混合し、アーク溶解炉に入れて、10.””〜1O−5
Toir まで真空状態にした後、アルゴンガス雰囲気
中(減圧状態)でアーク放電し、加熱溶解させた。この
操作を4回繰り返し合金(無処理)企得た。熱処理は、
アーク溶解で得た合金を真空熱処理炉中(1o−’〜1
O−5Torr)にて1060℃で6時間行った。第3
図に示したように、熱処理を行った合金はプラトー圧力
の平担性が非常に良好であり、熱処理により非常に均一
な合金になっていることがわかる。
EXAMPLES The present invention will be explained below with reference to Examples. Mitsushmetal (a mixture of rare earth elements, e.g. Ce 45 wt%, La 30 wt%, Nd
5wt%, etc.) Nickel and manganese K were mixed at a certain composition ratio, placed in an arc melting furnace, and 10. ""~1O-5
After creating a vacuum state until the temperature reached 1, arc discharge was performed in an argon gas atmosphere (reduced pressure state) to heat and melt. This operation was repeated four times to prepare an alloy (untreated). Heat treatment is
The alloy obtained by arc melting was placed in a vacuum heat treatment furnace (1o-' to 1
The test was carried out at 1060° C. for 6 hours at 0-5 Torr. Third
As shown in the figure, the plateau pressure of the heat-treated alloy is very good, and it can be seen that the heat treatment has resulted in a very uniform alloy.

次に、これらの合金を粗粉砕後、ボールミルで38μm
以下の微粉末にして、ポリビニルアルコール5wt%水
溶液でペースト状にした後、発泡メタルに充填し、乾燥
、加圧(2toh/m) した後、リード全域り付は電
極とした。実験に供した電極を表に示した。
Next, after coarsely pulverizing these alloys, they were milled to 38 μm using a ball mill.
The following fine powder was made into a paste with a 5 wt % aqueous solution of polyvinyl alcohol, filled into a foamed metal, dried and pressurized (2 toh/m), and then the entire lead was attached as an electrode. The electrodes used in the experiment are shown in the table.

これらの電極を負極(合金的32)とし、参照電極とし
て酸化水銀電極(Ht/Hf0) f:用い、単極の放
電曲線の平担性を調べた結果の一例を第1図に示した。
These electrodes were used as negative electrodes (alloy 32), and a mercury oxide electrode (Ht/Hf0) was used as a reference electrode. An example of the results of examining the flatness of the monopolar discharge curve is shown in FIG.

充放電条件は、充電0.3Ax4hr、放電0.2Aで
ある。第1図から明らかなように、熱処理を施した合金
を用いた電極(1)の方が、無処理の合金を用いた電極
(2)より放電曲線の平担性が良好であることがわかる
。第1図には、結果の一例を示しただけであるが、表に
示した電極については同様な結果を示した。
The charging and discharging conditions are charging 0.3A x 4hr and discharging 0.2A. As is clear from Figure 1, electrode (1) using a heat-treated alloy has a better flatness of the discharge curve than electrode (2) using an untreated alloy. . Although FIG. 1 only shows one example of the results, the electrodes shown in the table showed similar results.

次にサイクル寿命について検討した結果を第2図と表に
示した。第2図と表から明らかなように、熱処理を施し
た合金−)ヲ用いた方が、サイクル寿命特性が優れてい
ることが、かかる。熱処理を施していない合金(4を用
いた場合、充放電の繰り返しにより、マンガンが!解、
液中に溶解し放電容量の。
Next, the results of examining the cycle life are shown in Figure 2 and the table. As is clear from FIG. 2 and the table, the cycle life characteristics are better when heat-treated alloys are used. When using an alloy (4) that has not been heat-treated, manganese is released due to repeated charging and discharging.
of discharge capacity dissolved in the liquid.

劣化がおこる。なお、熱処理温度は900〜1200℃
の範囲で効果があり、900C以下の温度では放電曲線
の平担性とサイ、クル寿命特性は改善されない。また、
1200C以上の高温では、熱処理により合金組成比が
変化し、放電容量の小さい合金になる。
Deterioration occurs. The heat treatment temperature is 900 to 1200°C.
It is effective in a temperature range of 900C or lower, and the flatness of the discharge curve and the cycle life characteristics are not improved. Also,
At high temperatures of 1200C or higher, the alloy composition ratio changes due to heat treatment, resulting in an alloy with a small discharge capacity.

なお、上記実施例ではアルカリ蓄電池について述べたが
、燃料電池の負極等の水素吸蔵電極にも使える。
In the above embodiment, an alkaline storage battery was described, but it can also be used as a hydrogen storage electrode such as a negative electrode of a fuel cell.

発明の効果 以上のように、熱処理tmしたLaN1 a庵β(4〈
α+β<S、S、O<β)で表わせる合金を用いた負極
は、放電曲線の平担性が良好で、サイクル寿命特性も優
れたものである。したがって、熱処理を施した前記合金
負極を用いたアルカリ蓄電池は放電曲線の平担性も良く
、サイクル寿命の優れたものであり、実用的にきわめて
有用である。
Effects of the invention As described above, heat-treated tm LaN1 aan β (4〈
A negative electrode using an alloy represented by α+β<S, S, O<β) has a good discharge curve flatness and excellent cycle life characteristics. Therefore, an alkaline storage battery using the heat-treated alloy negative electrode has a flat discharge curve, an excellent cycle life, and is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の電極音用いたアルカリ蓄電
池における放電曲線を示す図、第2図は同電池のサイク
ル寿命を示す図、第3図は合金のP−C−T曲線を示す
図である。 3・・・・熱処理、4・・・・・・無処理。 代理人の氏名 弁理士 中 尾 敏 雄 ほか1名第 
1 図 /−一一処処理 ?−−−−処f里 力(電 時 間 CAK) 第2図 3−−−熱処理−(Ltddi4sMha、5)4−−
−2.処flL(LttNi4..5Mrn05)o 
               5θ        
      lOθ充放電サイすル畝(キジ 第3図 5−−一黙処理。 乙−一一然刈シ塩
Fig. 1 is a diagram showing the discharge curve of an alkaline storage battery using an electrode sound according to an embodiment of the present invention, Fig. 2 is a diagram showing the cycle life of the same battery, and Fig. 3 is a diagram showing the P-C-T curve of the alloy. FIG. 3...Heat treatment, 4...No treatment. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure/-11 processing? ----Processing force (Electronic time CAK) Fig. 2 3--- Heat treatment - (Ltddi4sMha, 5) 4---
-2. processingflL(LttNi4..5Mrn05)o

lOθ charging/discharging cycle ridge (pheasant Fig. 3-5--Imtinct processing.

Claims (3)

【特許請求の範囲】[Claims] (1)合金の融点以下の温度で熱処理を施した一般式L
nNi_αMn_β(但しLnはランタン単独あるいは
ランタンを含むミッシュメタル、4<α+β<5.5、
O<β)で表わせる合金を負極に備えたことを特徴とす
る電池用電極。
(1) General formula L heat treated at a temperature below the melting point of the alloy
nNi_αMn_β (Ln is lanthanum alone or misch metal containing lanthanum, 4<α+β<5.5,
A battery electrode characterized in that the negative electrode is equipped with an alloy represented by O<β).
(2)熱処理は900℃以上の温度で1時間以上の加熱
である特許請求の範囲第1項記載の電池用電極。
(2) The battery electrode according to claim 1, wherein the heat treatment is heating at a temperature of 900° C. or higher for 1 hour or longer.
(3)熱処理は真空中、不活性ガス中、水素ガス中です
る特許請求の範囲第1項記載の電池用電極。
(3) The battery electrode according to claim 1, wherein the heat treatment is performed in vacuum, inert gas, or hydrogen gas.
JP60043147A 1985-03-05 1985-03-05 Battery electrode Pending JPS61203561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60043147A JPS61203561A (en) 1985-03-05 1985-03-05 Battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60043147A JPS61203561A (en) 1985-03-05 1985-03-05 Battery electrode

Publications (1)

Publication Number Publication Date
JPS61203561A true JPS61203561A (en) 1986-09-09

Family

ID=12655725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60043147A Pending JPS61203561A (en) 1985-03-05 1985-03-05 Battery electrode

Country Status (1)

Country Link
JP (1) JPS61203561A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294145A (en) * 1986-06-13 1987-12-21 Santoku Kinzoku Kogyo Kk Metallic alloy for hydrogen storage containing rare earth element and nickel
JPS63206443A (en) * 1987-02-23 1988-08-25 Sumitomo Heavy Ind Ltd Material for tritium storage and supply

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294145A (en) * 1986-06-13 1987-12-21 Santoku Kinzoku Kogyo Kk Metallic alloy for hydrogen storage containing rare earth element and nickel
JPS63206443A (en) * 1987-02-23 1988-08-25 Sumitomo Heavy Ind Ltd Material for tritium storage and supply

Similar Documents

Publication Publication Date Title
JP2752970B2 (en) Hydrogen storage electrode
JPS61285658A (en) Manufacture of hydrogen occlusion electrode
JPS61233969A (en) Electrode for storage battery
JPH03152868A (en) Treatment of hydrogen storage alloy for alkaline second battery
JPS61203561A (en) Battery electrode
JPS6215760A (en) Manufacture of hydrogen-occlusion electrode
JPS63264867A (en) Manufacture of hydrogen storage electrode
JP3432870B2 (en) Method for producing metal hydride electrode
JPS62119864A (en) Enclosed-type alkaline storage battery
JPH0763007B2 (en) Manufacturing method of hydrogen storage electrode
JPS6231947A (en) Manufacture of hydrogen occlusion electrode
JPH01132049A (en) Hydrogen storage electrode
JP3082341B2 (en) Hydrogen storage electrode
JPS60221962A (en) Sealed alkaline storage battery
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JPS6280961A (en) Alkaline storage battery
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JPS63314764A (en) Hydrogen absorbing electrode
JPH02301971A (en) Manufacture of metal-hydrogen alkaline storage battery
JP2916156B2 (en) Manufacturing method of sheet electrode and battery
JPS62139258A (en) Electrode for storage battery
JP3306154B2 (en) Hydrogen storage alloy and method for producing the same
JPS62223971A (en) Metal oxide-hydrogen battery
JPH04173933A (en) Hermetically sealed alkaline storage battery
JPS60193266A (en) Sealed type alkaline storage battery