[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61146339A - Method and apparatus for rotating fluidized contact reaction - Google Patents

Method and apparatus for rotating fluidized contact reaction

Info

Publication number
JPS61146339A
JPS61146339A JP59266438A JP26643884A JPS61146339A JP S61146339 A JPS61146339 A JP S61146339A JP 59266438 A JP59266438 A JP 59266438A JP 26643884 A JP26643884 A JP 26643884A JP S61146339 A JPS61146339 A JP S61146339A
Authority
JP
Japan
Prior art keywords
reaction
tube
pipe
gas
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59266438A
Other languages
Japanese (ja)
Inventor
Kiyoyuki Horii
清之 堀井
Toshiaki Murata
逞詮 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59266438A priority Critical patent/JPS61146339A/en
Publication of JPS61146339A publication Critical patent/JPS61146339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To obtain the high degree of reaction by rotating the gaseous raw material for reaction from the bottom of a vertical reaction pipe to the top and fluidizing the catalyst particles in the gas stream. CONSTITUTION:In the fluidized contact reaction of the petroleum purification and the chemical industry or the like, a cone pipe 21 wherein the diameter is gradually enlarged is connected to the lower part of a reaction pipe 1 and furthermore a cylindrical pipe 22 having the same diameter as the large diameter of the cone pipe 21 is connected to the cone pipe 21. An introduction pipe 24 of the gaseous raw material for reaction is fitted in the angle slanted to a base plate 23 toward the central line of the cylindrical pipe 22 and also a collection chamber 11 of catalyst particles having a diameter larger than the reaction pipe 1 is provided to the upper part of the reaction pipe 1 and a conduit 12 for circulating the catalyst particles from the lower part of the collection chamber 11 to the lower part of the reaction pipe 1 is provided. The gaseous raw material for reaction is rotated from the lower part of the reaction pipe 1 to the upper part and the catalyst particles are fluidized in the gas stream. By such method, high degree of reaction is obtained in the fluidized contact reaction.

Description

【発明の詳細な説明】 i肚工11 − ヒの利 この発明は、石油精製、化学工業、公パ害防1ト窄の分
野で有用な流動接触反応方法及び装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a fluid catalytic reaction method and apparatus useful in the fields of petroleum refining, chemical industry, and public pollution control.

えに1遣 微粒状の触媒を充填した反応器に1反応原料ガスを導入
して流動触媒層を形成させると共に接触反応を行なわせ
る方法は、反応熱の授受が容易で均一な温度分布が得ら
れること、触媒の再生−使用のサイクルを行わせるのが
容易なこと等の理由で広く用いられている0例えば石油
精製におけるFCCプロセスでは、第1の流動触媒層に
おいて炭化水素を軽質化し、劣化した触媒をigi統的
に抜き出し第2の流動触媒層に導いて空気により再生し
て第1の流動触媒層に連続的に補給するという方法が用
いられている。
The method of introducing a reaction raw material gas into a reactor filled with a finely divided catalyst to form a fluidized catalyst bed and carrying out a catalytic reaction allows for easy exchange of reaction heat and a uniform temperature distribution. For example, in the FCC process in petroleum refining, hydrocarbons are lightened and degraded in the first fluidized catalyst bed. A method is used in which the catalyst is systematically extracted, guided to a second fluidized catalyst bed, regenerated with air, and continuously replenished to the first fluidized catalyst bed.

が “ しようと る、J 点 この場合微粒状の触媒は非常な撹乱状態にあるので、個
々の触媒粒子について見れば反応塔内または再生塔内の
滞留時間が平均値から大きく異なるものが生じる。従っ
て触媒のある部分は既に活性を失っているにも拘わらず
反応塔内に残留して循環し、またある部分は活性が十分
残存しているにも拘わらず反応塔から抜き出されて再生
塔に送られることになる。再生塔においても同様な現象
を生じる。これは反応塔または再生塔の空間利用効率の
低下やエネルギー消費の増加につながる。
In this case, the fine particulate catalyst is in a highly disturbed state, so when looking at individual catalyst particles, the residence time in the reaction tower or regeneration tower will differ greatly from the average value. Therefore, some parts of the catalyst remain in the reaction tower and circulate even though they have already lost their activity, and some parts are extracted from the reaction tower and circulated in the regeneration tower even though they still have sufficient activity. A similar phenomenon occurs in the regeneration tower. This leads to a decrease in the space utilization efficiency of the reaction tower or regeneration tower and an increase in energy consumption.

本発明は上記の従来の流動層とは異なり、触媒粒子が流
動化状態で旋回運動をしながら反応に関与する接触反応
方法及び装置を提供するものであり、従来の流動触媒反
応における問題点を解決するほか、従来は流動触媒によ
っては実施されていなかった化学反応への応用も期待で
きる。
Unlike the conventional fluidized bed described above, the present invention provides a catalytic reaction method and apparatus in which catalyst particles participate in the reaction while rotating in a fluidized state, and solves the problems in the conventional fluidized catalytic reaction. In addition to solving problems, it is also expected to be applied to chemical reactions that have not previously been carried out using fluidized catalysts.

本発明者等は、さきに管路内における螺旋気流という状
態において化学反応が促進されることを見出し特許出願
(特願昭58−16124号)を行っているが、本発明
はその発明思想を触媒を用いる接触反応に拡大したもの
である。
The present inventors have previously discovered that chemical reactions are promoted in the state of spiral airflow in pipes, and have filed a patent application (Japanese Patent Application No. 16124/1982). This is an extension of catalytic reactions using catalysts.

即ち本発明は、垂直反応管中に下部から上部へ進行する
反応原料ガスの旋回流を形成させ、該ガス流中に触媒粒
子を流動させて該ガスの接触反応を促進することよりな
る旋回流動接触反応方法及びこの方法を実施するための
装置に関する。
That is, the present invention provides a swirling flow in which a swirling flow of reaction raw material gas is formed in a vertical reaction tube from the bottom to the top, and catalyst particles are made to flow in the gas flow to promote a catalytic reaction of the gas. The present invention relates to a catalytic reaction method and an apparatus for carrying out the method.

第1図及び第2図は本発明方法を実施するための装置の
基本概念を示すもの〒、垂直反応管l中に下部から上部
へ進行するガスの旋回流を形成させる。
FIGS. 1 and 2 show the basic concept of an apparatus for carrying out the method of the invention, in which a swirling flow of gas is formed in a vertical reaction tube 1 proceeding from the bottom to the top.

反応管に旋回流を形成させるためには、本願発明者等の
発明に係る特願昭58−164192号等に記載された
螺旋気流生成装置を用いる0図において記号2で示され
たのがその一例で、反応管1の下部に連結され反応管と
逆方向に徐々に径が拡大している形状のコーン管21、
コーン管の大口径部に接続された同口径の円筒管22、
円筒管の他端を閉鎖する底板23、及び円筒管の側面の
底板から離れた位置に円筒管の中心線に向け且つ底板方
向に傾けた角度で取り付けた反応原料ガス送入管24か
ら構成されている。
In order to form a swirling flow in the reaction tube, the spiral airflow generating device described in Japanese Patent Application No. 164192/1987, etc., which was invented by the inventors of the present application, is used. As an example, a cone tube 21 connected to the lower part of the reaction tube 1 and having a diameter gradually expanding in the opposite direction to the reaction tube;
A cylindrical pipe 22 of the same diameter connected to the large diameter part of the cone pipe,
It consists of a bottom plate 23 that closes the other end of the cylindrical tube, and a reaction raw material gas feed pipe 24 that is attached to the side of the cylindrical tube at a position away from the bottom plate, facing the center line of the cylindrical tube and at an angle inclined toward the bottom plate. ing.

この螺旋気流生成装置と垂直反応管との連結は第1図の
如く曲管3を介して行われていてもよいし、第2図の如
く垂直反応管の下部に直結されていてもよい。
The spiral airflow generating device and the vertical reaction tube may be connected through a bent tube 3 as shown in FIG. 1, or directly connected to the lower part of the vertical reaction tube as shown in FIG.

さらに反応管lの上部には、反応管の径より大きい径を
有する触媒粒子捕集室11を設ける。必要に応じてこの
触媒粒子捕集室の下部から触媒粒子を抜き出して反応管
入口または触媒再生管入口に循環させるための導管12
を設けてもよい、反応終了後のガスは出口管13から排
出される。
Furthermore, a catalyst particle collection chamber 11 having a diameter larger than the diameter of the reaction tube is provided above the reaction tube 1. A conduit 12 for extracting catalyst particles from the lower part of the catalyst particle collection chamber and circulating them to the reaction tube inlet or catalyst regeneration tube inlet as necessary.
After the reaction, the gas is discharged from the outlet pipe 13.

螺旋気流生成装置2の構成を機能面から説明すると、ま
ず反応原料ガス送入管24は円筒管の側面に底板23か
ら離れた位置に取り付けであるので円筒管の底板付近に
はガスのたまりが出来る。
To explain the configuration of the spiral airflow generation device 2 from a functional perspective, first, the reaction raw material gas inlet pipe 24 is attached to the side of the cylindrical tube at a position away from the bottom plate 23, so gas accumulates near the bottom plate of the cylindrical tube. I can do it.

底板方向に傾けた送入角度で取り付けた反応原料ガス送
入管から送入されたガスは上記のガスのたまりに斜めに
あたり1反転してコーン管の方に向かうが、この際ガス
のたまりはクッションのような作用をして送入ガスの微
細な脈動や送入時に生じた乱れを消去し圧力落差のない
均圧状態でガスをコーン管の方へ押し戻す。ガス送入管
を円筒管の中心線に向けて取り付けるのは、ここで旋回
ベクトルを生じるのを避けるためである。
The gas fed from the reaction raw material gas feed pipe installed at a feed angle tilted toward the bottom plate hits the above gas pool diagonally and turns once and heads toward the cone tube, but at this time, the gas pool is It acts like a cushion, eliminating minute pulsations in the gas being fed and disturbances that occur during feeding, and pushing the gas back toward the cone tube in an even pressure state with no pressure drop. The reason for installing the gas inlet tube toward the center line of the cylindrical tube is to avoid generating a swirl vector here.

かくしてガス送入管24の取付位置から先の円筒部フは
、ガスは均圧な非圧縮状態で本質的に長袖方向のベクト
ルのみを与えられてコーン管の方へ移動するようになる
Thus, in the cylindrical portion beyond the mounting position of the gas feed pipe 24, the gas is in an uncompressed state with equal pressure and is essentially given only a vector in the long sleeve direction, and moves toward the cone pipe.

コーン管21は円筒管の径が次第に縮小して反応管の径
に等しくなるような形状を有しているので、円筒体中を
流れてきたガスはここで次第に速度が増加し、高速で反
応管底部に送入されるようになる。
The cone tube 21 has a shape in which the diameter of the cylindrical tube gradually decreases to become equal to the diameter of the reaction tube, so the gas flowing through the cylindrical body gradually increases in speed and reacts at high speed. It is now fed into the bottom of the tube.

このような状態で送入された場合、ガスはそのままピス
トンフローの状態を保ちつつ出口まで進行することが予
想されるが、気流平均速度が20m/秒以上になると反
応管内に安定な螺旋気流、即ち反応管断面に関しては旋
回流をなしつつ長袖方向に進行する安定な気流が生成す
る。
If the gas is fed under such conditions, it is expected that the gas will continue to flow to the outlet while maintaining the state of piston flow, but if the average speed of the airflow exceeds 20 m/s, a stable spiral airflow will occur inside the reaction tube. That is, with respect to the cross section of the reaction tube, a stable airflow is generated that travels in the long sleeve direction while forming a swirling flow.

もちろん螺旋気流そのものは気体であるから肉限では直
接観察できないが、次に述べる実験により螺旋気流の存
在を確認できる。
Of course, since the spiral airflow itself is a gas, it cannot be observed directly with the naked eye, but the existence of the spiral airflow can be confirmed by the experiment described below.

実験l 第1図に示すような構造で、内径1゜5インチの透明プ
ラスチックチューブよりなる垂直管1に螺旋気流生成装
置2から送入した空気流が下部から上部へと流れるよう
にする。第4図に垂直管lの部分拡大図を示す。
Experiment 1 The structure was as shown in Fig. 1, and the air flow introduced from the spiral airflow generating device 2 was made to flow from the bottom to the top of the vertical tube 1 made of a transparent plastic tube with an inner diameter of 1.5 inches. FIG. 4 shows a partially enlarged view of the vertical pipe 1.

この上昇する気流中に合成樹脂ペレット(径5mm、長
さ5mmの円柱状)を送入すると、気流速度が十分に速
い場合にはペレットはこの垂直管を下部から上部へ瞬間
的に通過するが、気流速度を調節してペレットに働く重
力による下向きのベクトルと気流による上向きのベクト
ルが釣合うようにすると、ペレットは垂直管中の一定位
置1例えば第4図のA−A ’の位置に留り、その運動
が肉眼で観察できるようになる。第5図は第4図のA−
A ’線における断面図であるが、ペレット4は矢印で
示すような旋回運動をしていることが観察できる。A−
A’部分を手で押えてせばめてやると、この部分の流速
が増加するのでペレットは上方へ飛び出し、やや上部の
釣合点B−B ’へ移動してこの断面での旋回運動を続
行する。この場合ペレット4は管内壁14に直接接触し
てはいない。即ち管内壁14に近い部分には旋回流に基
〈遠心力により圧縮された気層5が環状に形成されてい
る(図では環状気層の厚みを誇張して描いているが、実
際は1mm以下、ミクロンオーダーの厚みである)、従
ってペレットは環状気層との境界部分で螺旋気流の上向
きベクトルと重力の下向きベクトルの釣合のもとに、一
定平面で螺旋気流の回転ベクトルにより旋回している。
When a synthetic resin pellet (cylindrical shape with a diameter of 5 mm and a length of 5 mm) is fed into this rising airflow, if the airflow velocity is sufficiently fast, the pellet will instantly pass through this vertical tube from the bottom to the top. , by adjusting the airflow velocity so that the downward vector due to gravity acting on the pellet and the upward vector due to the airflow are balanced, the pellet will remain at a fixed position 1 in the vertical tube, for example at the position A-A' in Figure 4. The movement can be observed with the naked eye. Figure 5 is A- of Figure 4.
Although it is a cross-sectional view taken along the A' line, it can be observed that the pellet 4 is making a swirling motion as shown by the arrow. A-
When part A' is held down by hand and squeezed, the flow velocity in this part increases, so the pellet flies upward, moves to the equilibrium point B-B' slightly above, and continues the swirling movement in this cross section. In this case, the pellet 4 is not in direct contact with the tube inner wall 14. That is, in a portion close to the inner wall 14 of the tube, an annular air layer 5 is formed that is compressed by centrifugal force based on the swirling flow (the thickness of the annular air layer is exaggerated in the figure, but it is actually less than 1 mm). , the thickness is on the order of microns), therefore, at the boundary with the annular air layer, the pellets are rotated by the rotating vector of the spiral airflow in a fixed plane under the balance between the upward vector of the spiral airflow and the downward vector of gravity. There is.

この釣合状態から気流の流速を増せば、ペレット自身も
螺旋流を描きつつ上昇する。この旋回現象はペレットが
多数の場合にも観察される。
If the flow velocity of the airflow is increased from this equilibrium state, the pellet itself will also rise while drawing a spiral flow. This swirling phenomenon is also observed when there are a large number of pellets.

従ってペレットの代りに触媒粒子を用いれば、触媒粒子
はガス速度に応じて一定レベルで旋回する旋回流動状態
になるか、ゆっくりと上昇する旋回流動状態になる。
Therefore, if catalyst particles are used instead of pellets, the catalyst particles will be in a swirling flow state in which they swirl at a constant level or in a swirling flow state in which they slowly rise depending on the gas velocity.

本発明においては、この旋回流動状態にある触媒を用い
て反応を行わせるものであり、反応に関与させるガス状
の組成物を螺旋気流生成袋W2から送入して反応管1内
に反応原料ガスの螺旋気流を生成させると共に、触媒粒
子を旋回流動状態として接触させる。
In the present invention, the reaction is carried out using the catalyst in this swirling flow state, and the gaseous composition involved in the reaction is fed from the spiral air flow generating bag W2 to introduce the reaction raw materials into the reaction tube 1. A spiral gas flow is generated, and the catalyst particles are brought into contact with each other in a swirling flow state.

反応系に送入するガスは、必ずしも反応原料ガスのみに
限られるものではなく、触媒粒子の旋回流動状態を改善
するため、または反応熱の稀釈等の目的で、不活性ガス
を共存させてもよい。
The gas fed into the reaction system is not necessarily limited to the reaction raw material gas, but may also include an inert gas for the purpose of improving the swirling flow state of the catalyst particles or diluting the reaction heat. good.

反応の種類、触媒の性質等に応じて、触媒層が全体とし
て一定レベルで旋回する流動状態で反応させることもで
きるし、また旋回しながら少しづつ上昇してオーバーフ
ローした触媒が触媒粒子捕集室で11捕集され導管12
を経て反応管入口に′@環する流動状態で反応させるこ
ともできる。
Depending on the type of reaction, the properties of the catalyst, etc., the reaction can be carried out in a fluid state in which the catalyst layer as a whole swirls at a constant level, or it can be carried out in a fluid state in which the catalyst layer as a whole swirls at a constant level, or it can be carried out in a fluid state in which the catalyst layer as a whole swirls at a constant level. 11 is collected in the conduit 12
It is also possible to carry out the reaction in a fluid state in which the mixture is circulated through the inlet of the reaction tube.

触媒粒子捕集室は反応管よりも大きい径を有するので、
ここでガス速度は低下し、反応管部分で重力による下向
きのベクトルとバランスしていた触媒流粒子は沈降して
反応管に戻るか、捕集室の壁に沿って沈積し、導管12
を経て反応管入口に循環する。
Since the catalyst particle collection chamber has a larger diameter than the reaction tube,
The gas velocity now decreases, and the catalyst flow particles that were in balance with the downward gravitational vector in the reaction tube section either settle back into the reaction tube or are deposited along the walls of the collection chamber, leaving the conduit 12.
It is circulated to the inlet of the reaction tube.

触媒の使用と再生を繰り返す場合、例えば空気酸化によ
る触媒の再生を行う場合には、第3図に示す如く反応管
と同様な再生管1′を併設し、反応管1からオーバーフ
ローする触媒を触媒粒子捕集室11、導管12を経て再
生管1′の下部に送入し、螺旋気流生成装置2′から空
気を送入して旋回流動状態で酸化再生し、再生管1′か
らオーバーフローする触媒を触媒粒子捕集室11′、導
管12′を経て反応管lの下部に送入する。
When using and regenerating the catalyst repeatedly, for example when regenerating the catalyst by air oxidation, a regeneration tube 1' similar to the reaction tube is installed as shown in Fig. 3, and the catalyst overflowing from the reaction tube 1 is The catalyst is introduced into the lower part of the regeneration pipe 1' through the particle collection chamber 11 and the conduit 12, and oxidized and regenerated in a swirling flow state by introducing air from the spiral airflow generator 2', and overflows from the regeneration pipe 1'. is fed into the lower part of the reaction tube 1 via the catalyst particle collection chamber 11' and the conduit 12'.

このようにして形成された旋回流動触媒層においては、
従来の流動触媒層とは異なる現象が認められる。
In the swirling fluidized catalyst bed formed in this way,
A phenomenon different from that of conventional fluidized catalyst beds is observed.

実験lから明らかなように、反応管内部には安定な螺旋
気流が形成されている。11+3g旋気流を管路断面に
投影して見れば回転運動であり、その回転に伴う遠心力
により内部の気体粒子は外側に投げ出される結果、管内
壁に沿って圧縮された薄い気層を形成し、内部は気体密
度が低くなる。
As is clear from Experiment 1, a stable spiral airflow is formed inside the reaction tube. If you look at the 11+3g whirlpool flow projected onto the cross section of the pipe, it is a rotational motion, and the centrifugal force accompanying the rotation throws the gas particles inside to the outside, forming a compressed thin layer of gas along the inner wall of the pipe. , the gas density is low inside.

また螺旋気流を生成する気流平均速度は従来の流動触媒
層を形成させるための気流速度よりも大きく、その運動
エネルギーの一部が旋回運動の工ネルキーに転換されて
いるので、反応用ガス及び触媒粒子に与えられる運動エ
ネルギーは従来の流動層に比べて遥かに大きい。
In addition, the average velocity of the airflow that generates the spiral airflow is higher than the airflow velocity that forms the conventional fluidized catalyst bed, and a part of the kinetic energy is converted into the energy of the swirling motion, so the reaction gas and catalyst The kinetic energy imparted to the particles is much greater than in a conventional fluidized bed.

この結果、従来の流動触媒反応に比し高い反応率が得ら
れる。また従来の流動触媒反応では試みられなかった各
種の反応への応用も期待できる。
As a result, a higher reaction rate can be obtained than in conventional fluidized catalytic reactions. It is also expected to be applied to various reactions that have not been attempted with conventional fluidized catalytic reactions.

反応管の形状は第1図及び第2図に示した直管状のもの
に限定されるものではない、第6図に示す如く径の異な
る反応管を複数段連設し、それぞれに比重及び特性の異
なる触媒の旋回流動層を構成させて段階的反応を行わせ
ることもできる。
The shape of the reaction tube is not limited to the straight tube shown in FIGS. 1 and 2. As shown in FIG. It is also possible to perform a stepwise reaction by constructing a swirling fluidized bed of different catalysts.

また反応の進行に伴なうガス量の増減を考慮して、第7
図及び第8図に示す如くテーパー状または逆テーパー状
にしてもよい。
In addition, considering the increase and decrease in the amount of gas as the reaction progresses, the seventh
It may be tapered or reversely tapered as shown in FIG. 8 and FIG.

また@旋気流生成装置も図示のものに限定されるもので
はなく、例えば特願昭59−239528号記載のもの
その他、実験lに示したような固体粒子の旋回運動を生
じさせるようなものならばすべて使用できる。
Also, the swirling flow generating device is not limited to the one shown in the figure; for example, the device described in Japanese Patent Application No. 59-239528, or any other device that generates swirling motion of solid particles as shown in Experiment 1, may be used. All can be used.

実施例1 第2図のように、下部に螺旋気流生成装置を設けた直径
1.5cm、長さ1mの反応管中にゼオライl−X −
N a触媒粒子5gを充填し、N2ガスを送入して触媒
粒子を旋回流動させ、ジイソブチレンを1.25g/g
Cat −h r−”の割合で送入して300℃で接触
分解反応を行った。ガス化率は38.6%であった。
Example 1 As shown in Fig. 2, zeolite l-X-
Filled with 5 g of Na catalyst particles, fed N2 gas to swirl and flow the catalyst particles, and diisobutylene at 1.25 g/g.
A catalytic cracking reaction was carried out at 300° C. by feeding the gas at a rate of “Cat -hr-”.The gasification rate was 38.6%.

比較例1 螺旋気流生成装置を設けない直径1.5cm、長さ1m
の反応管を使用してN2ガスによる通常の流動層を形成
させた以外は、実施例1と同様な方法で試験を行った。
Comparative Example 1 Diameter 1.5 cm, length 1 m without spiral airflow generation device
The test was conducted in the same manner as in Example 1, except that a normal fluidized bed was formed using N2 gas using a reaction tube.

ガス化率は24.1%であった・ 実施例2 触媒としてゼオライ) X −Caを用いた以外は実施
例1同様な方法で試験を行った。ガス化率は55.2%
であった。
The gasification rate was 24.1%.Example 2 A test was conducted in the same manner as in Example 1 except that zeolite (X-Ca) was used as the catalyst. Gasification rate is 55.2%
Met.

比較例2 触媒としてゼオライ)X−Caを用いた以外は実施例3
と同様な方法で試験を行った。ガス化率は35.9%で
あった。
Comparative Example 2 Example 3 except that zeolite)X-Ca was used as a catalyst
The test was conducted in a similar manner. The gasification rate was 35.9%.

衾」LD」Ll 実施例および比較例から明らかなように、触媒粒子を旋
回流動状態で反応に関与させることにより、従来の流動
触媒反応に比し高い反応率が得られる。
衾"LD"Ll As is clear from the Examples and Comparative Examples, by involving the catalyst particles in the reaction in a swirling fluid state, a higher reaction rate can be obtained than in the conventional fluid catalytic reaction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明方法を実施するための装置の
基本概念を示すもので、第1図は反応管と螺旋気流生成
装置とを分離した形式のもの、第2図はそれらを直結し
て一体化したものを示す。 第3図は第2図に示した形式のものを2基並列して触媒
反応と触媒の再生とを連続的に行う装置を示す、第4図
及び第5図は反応管内に螺旋気流が生成し、送入された
固体粒子が旋回運動を行うことを示す実験の説明図であ
る。第6図、第7図、及び第8図は反応管の形状例であ
る。
Figures 1 and 2 show the basic concept of an apparatus for carrying out the method of the present invention. Figure 1 shows a type in which a reaction tube and a spiral airflow generator are separated, and Figure 2 shows a type in which they are separated. Indicates something that is directly connected and integrated. Figure 3 shows an apparatus in which two units of the type shown in Figure 2 are arranged in parallel to continuously carry out catalytic reactions and catalyst regeneration. Figures 4 and 5 show a spiral airflow generated in the reaction tube. FIG. 3 is an explanatory diagram of an experiment showing that the introduced solid particles perform a swirling motion. FIG. 6, FIG. 7, and FIG. 8 are examples of shapes of reaction tubes.

Claims (1)

【特許請求の範囲】 1 垂直反応管中に下部から上部へ進行する反応原料ガ
スの旋回流を形成させ、該ガス流中に触媒粒子を流動さ
せて該ガスの接触反応を促進することよりなる旋回流動
接触反応方法。 2 垂直反応管、反応管下部に連結され反応管と逆方向
に徐々に径が拡大している形状のコーン管、コーン管の
大口径部に接続された同口径の円筒管、円筒管の他端を
閉鎖する底板、円筒管の側面の底板から離れた位置に円
筒管の中心線に向け且つ底板方向に傾けた角度で取り付
けられた反応原料ガス送入管、及び反応管上部に設けら
れた反応管の径より大きい径を有する触媒粒子捕集室と
から構成される旋回流動接触反応装置。
[Claims] 1. A method comprising forming a swirling flow of a reaction raw material gas proceeding from the bottom to the top in a vertical reaction tube, and flowing catalyst particles into the gas flow to promote a catalytic reaction of the gas. Swirling flow catalytic reaction method. 2 Vertical reaction tubes, cone tubes connected to the bottom of the reaction tube and gradually increasing in diameter in the opposite direction to the reaction tube, cylindrical tubes with the same diameter connected to the large diameter part of the cone tube, cylindrical tubes, etc. A bottom plate that closes the end, a reaction raw material gas inlet pipe installed at a position away from the bottom plate on the side of the cylindrical tube at an angle toward the center line of the cylindrical tube and tilted toward the bottom plate, and a tube provided at the top of the reaction tube. A swirling flow catalytic reaction device comprising a catalyst particle collection chamber having a diameter larger than that of a reaction tube.
JP59266438A 1984-12-19 1984-12-19 Method and apparatus for rotating fluidized contact reaction Pending JPS61146339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59266438A JPS61146339A (en) 1984-12-19 1984-12-19 Method and apparatus for rotating fluidized contact reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59266438A JPS61146339A (en) 1984-12-19 1984-12-19 Method and apparatus for rotating fluidized contact reaction

Publications (1)

Publication Number Publication Date
JPS61146339A true JPS61146339A (en) 1986-07-04

Family

ID=17430936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59266438A Pending JPS61146339A (en) 1984-12-19 1984-12-19 Method and apparatus for rotating fluidized contact reaction

Country Status (1)

Country Link
JP (1) JPS61146339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332589A (en) * 2006-06-13 2007-12-27 Tanigaki Kenko:Kk How to move the excavator on the frame

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332589A (en) * 2006-06-13 2007-12-27 Tanigaki Kenko:Kk How to move the excavator on the frame

Similar Documents

Publication Publication Date Title
US4701307A (en) Vented riser
US4288235A (en) Low residence time solid-gas separation device and system
JPS6125413B2 (en)
JPS59120237A (en) Apparatus and method for separating fluid cracking catalyst particles from gaseous hydrocarbons
US4692311A (en) Apparatus for the separation of fluid cracking catalyst particles from gaseous hydrocarbons
US2888096A (en) Horizontal centrifugal separator
US4433984A (en) Low residence time solid-gas separation device and system
EP0241966A1 (en) Apparatus for contacting particulate solids with a fluid
JP2001515097A (en) Separation / stripping equipment and its use in fluidized bed catalytic cracking
US2637625A (en) Gaseous diffusion process
JPH11514700A (en) Method and apparatus for converting hydrocarbons using a fluidized bed reactor
US2671102A (en) Separation of finely divided solids from gaseous suspensions thereof
US2901420A (en) Process of separating catalyst particles from hydrocarbon vapors
US6113777A (en) Direct turn separator for particles in a gaseous mixture and its use for fluidized bed thermal or catalytic cracking
JPS61120895A (en) FCC sealed cyclone device and its operating method
US2436225A (en) Apparatus for contacting solids with gaseous fluids
CN87103557A (en) Solid separator about crude separation
JP2002510246A (en) Process for producing liquid and optionally gaseous products from gaseous reactants
US2472427A (en) Hydrocarbon synthesis with fluidized catalyst regeneration
JP2024528883A (en) Reactor and method for producing carbonaceous materials - Patents.com
JPS61146339A (en) Method and apparatus for rotating fluidized contact reaction
RU2694840C1 (en) Catalyst and transport gas distributors for boiling bed reactor-regenerator circulation systems
US5552119A (en) Method and apparatus for contacting solid particles and fluid
US3475326A (en) Transfer line apparatus and method
CN103977747A (en) State slurry bed reactor, and method using slurry bed reactor for slurry bed reaction