[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61124526A - Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic - Google Patents

Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic

Info

Publication number
JPS61124526A
JPS61124526A JP24346684A JP24346684A JPS61124526A JP S61124526 A JPS61124526 A JP S61124526A JP 24346684 A JP24346684 A JP 24346684A JP 24346684 A JP24346684 A JP 24346684A JP S61124526 A JPS61124526 A JP S61124526A
Authority
JP
Japan
Prior art keywords
steel sheet
rolling
silicon steel
annealing
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24346684A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimizu
洋 清水
Yoshiaki Iida
飯田 嘉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24346684A priority Critical patent/JPS61124526A/en
Publication of JPS61124526A publication Critical patent/JPS61124526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To improve magnetic characteristic and production efficiency, by regulating biting of steel sheets against rolls of every respective stands, to prescribed angles, at the final cold rolling of Si bearing steel by tandem rolling mill. CONSTITUTION:One time or 2 times cold rollings contg. intermediate annealing are applied to Si bearing steel hot rolled plate. Thereat, the final cold rolling is carried out at >=50% draft by tandem rolling mill. Biting angle alpha of steel sheet against rolls at each stand is regulated to >=0.02 deg.. Next, decarbonization annealing, final finishing annealing are applied to obtain the titled steel sheet having main orientation of (110) [001].

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気特性の良好な一方向性けい素鋼板の製
造方法に関し、とくに磁気特性の効果的な改善を生産能
率の向上に併せて実現しようとするものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a method for manufacturing unidirectional silicon steel sheets with good magnetic properties, and in particular, to an effective improvement of magnetic properties as well as an increase in production efficiency. This is what we are trying to achieve.

(従来の技術) 一方向性けい素鋼板は、主としてトランスその他の電気
機器の鉄心として使用されるもので、励磁特性と鉄損特
性とが共に良好であることが必要とされる。とりわけ最
近では、省エネルギー、省資源に対する社会的要請がま
すます強まり、電気機器使用時の電力損をとくに重視し
た低鉄損材料が待望されている。かかる要望に応えるべ
く最近では、製品板厚を従来以上に薄くしたり、2次粒
径の微細化および磁区幅の細分化技術の適用など種々の
方策が講じられている。このためけい素鋼板の製造工程
はますます複雑なものとなり、かかる工程の複雑化に起
因した製造コストの増大が問題になっていた。
(Prior Art) Unidirectional silicon steel sheets are mainly used as iron cores for transformers and other electrical equipment, and are required to have good excitation characteristics and iron loss characteristics. In particular, recently, social demands for energy conservation and resource conservation have become stronger and stronger, and there has been a long-awaited demand for low iron loss materials that place particular emphasis on power loss when electrical equipment is used. In order to meet such demands, various measures have recently been taken, such as making the product plate thinner than before, making the secondary grain size finer, and applying techniques for refining the magnetic domain width. For this reason, the manufacturing process of silicon steel sheets has become increasingly complicated, and an increase in manufacturing costs due to the complexity of the process has become a problem.

ところで従来から一方同性けい素鋼板の冷間圧延には、
ゼンジミア−や4段ないし6段のリバース圧延機が用い
られていて、一方向の連続式圧延であるタンデム圧延は
不向き、とりわけ高磁束密度の方向性けい素鋼板を製造
する場合には不向きとされていた。
By the way, conventionally, cold rolling of homogeneous silicon steel sheets
Sendzimir and 4- to 6-high reverse rolling mills are used, and tandem rolling, which is continuous rolling in one direction, is not suitable, especially when producing grain-oriented silicon steel sheets with high magnetic flux density. was.

というのはタンデム圧延では、冷延再結晶後の集合組織
の違いからリバース圧延差のすぐれた磁気特性は得られ
ないからであり、加えて、最近電磁特性の改善策として
いくつか提案されているパス間時効処理が利用し難いこ
とも理由の一つである。たとえば特公昭54−2918
2号公報では、81〜95%の強冷延を複数パスで行う
際に、300〜600℃の温度範囲で1〜30秒間保持
することを提案しているが、タンデム圧延でこれを行う
ためには、中間に加熱設備を設置する必要がある上に、
著しく低速で圧延を行わねばならず、タンデム圧延の特
長である効率よい圧延が活用できない。また特開昭57
−4306号公報では、電磁鋼板を予熱するインダクタ
ーを冷間圧延機入側に設置することを提案しているが、
高けい素鋼板の冷間圧延についてはリバース圧延機を用
いることが前提となっていて、タンデム圧延におけるパ
ス間時効処理は考えられない。
This is because tandem rolling cannot provide the excellent magnetic properties of reverse rolling due to the difference in texture after cold rolling recrystallization.In addition, several methods have been recently proposed to improve electromagnetic properties. One of the reasons is that it is difficult to use inter-pass aging processing. For example, the special public official court 54-2918
Publication No. 2 proposes holding the temperature in the temperature range of 300 to 600°C for 1 to 30 seconds when performing 81 to 95% hard cold rolling in multiple passes, but since this is done by tandem rolling, In addition to requiring the installation of heating equipment in the middle,
Rolling must be performed at extremely low speeds, and the efficient rolling that is a feature of tandem rolling cannot be utilized. Also, JP-A-57
Publication No. 4306 proposes installing an inductor to preheat the electromagnetic steel sheet on the entrance side of the cold rolling mill.
Cold rolling of high-silicon steel sheets is based on the assumption that a reverse rolling mill is used, and interpass aging treatment in tandem rolling is not considered.

(発明が解決しようとする問題点) 上述したように従来は、製造工程の複雑化に起因して製
造コストの増大を招くほか、生産能率が低いところに問
題を残していた。
(Problems to be Solved by the Invention) As described above, in the past, the manufacturing process has become complicated, resulting in an increase in manufacturing costs, and there have been problems in that the production efficiency is low.

この発明は、上記した如き最近の事情に鑑みて開発され
たもので、単にけい素鋼板の性能向上という要請に応え
るだけでなく、冷間圧延をタンデム圧延機を用いて効率
的に実施すると共に、かかる効率的生産によって製造コ
ストの低減も併せて実現し得るけい素鋼板の有利な製造
方法を提案することを目的とする。
This invention was developed in view of the recent circumstances as described above, and not only meets the demand for improving the performance of silicon steel sheets, but also efficiently performs cold rolling using a tandem rolling mill. The object of the present invention is to propose an advantageous manufacturing method for silicon steel sheets that can also reduce manufacturing costs through such efficient production.

(問題点を解決するための手段) さて発明者らは、上記の目的を達成すべく、タンデム圧
延による磁気特性の改善につき、鋭意研究を重ねた結果
、タンデム圧延時における各スタンドでの鋼板の圧延ロ
ールに対するかみ込み角度をコントロールすることによ
って冷延再結晶後の集合組織を有利に改善することがで
き、かくしてパス間時効など特別な処理を加えなくても
優れた電磁特性を有する高磁束密度一方向性けい素鋼板
が得られることを新たに知見し、この発明を完成するに
至ったのである。
(Means for Solving the Problems) In order to achieve the above object, the inventors have conducted extensive research into improving magnetic properties through tandem rolling, and have found that By controlling the biting angle with respect to the rolling rolls, the texture after cold rolling recrystallization can be advantageously improved, resulting in high magnetic flux density with excellent electromagnetic properties without special treatment such as interpass aging. It was discovered that a unidirectional silicon steel sheet could be obtained, and this invention was completed.

すなわちこの発明は、含けい素鋼熱延板に、1回または
中間焼鈍を含む2回の冷間圧延を施して所定の製品板厚
としたのち、脱炭焼鈍ついで最終仕上げ焼鈍を施すこと
からなる(110)  (001)を主方位とする一方
向性けい素鋼板の製造方法において、最終冷間圧延を、
タンデム圧延機によって50%以上の圧下率で行うに際
し、各スタンド毎の鋼板の圧延ロールに対するかみ込み
角度αをいずれも0.02°以上とすることからなる電
磁特性の良好な一方向性けい素鋼板の製造方法である。
In other words, this invention involves cold rolling a silicon-containing hot-rolled steel sheet once or twice including intermediate annealing to obtain a predetermined product thickness, followed by decarburization annealing and final finish annealing. In the method for manufacturing a unidirectional silicon steel sheet whose main orientation is (110) (001), the final cold rolling is performed by
A unidirectional silicone material with good electromagnetic properties, in which the biting angle α of the steel plate with respect to the rolling roll for each stand is 0.02° or more when rolling is carried out with a tandem rolling mill at a reduction rate of 50% or more. This is a method for manufacturing steel plates.

この発明において、圧延スタンド毎の鋼板の圧延ロール
に対するかみ込み角度を上記の範囲に規制したのは、以
下に述べる実験結果に基づく。
In this invention, the reason why the angle of engagement of the steel plate with respect to the rolling rolls of each rolling stand is regulated within the above range is based on the experimental results described below.

S i : 3.40wt%(以下単に%で示す)、C
:o、oso%、 Mn :0.08%、 S e :
 0.025%およびS b : 0.030%を含有
する厚さ3.0龍のけい素鋼熱延鋼板を、1次冷延で0
.80〜0.90mm厚とし、ついで1000℃、1 
minの中間焼鈍を行ったのち2次冷延を施して0.0
3mmの製品板厚に仕上げた。この2次冷延は、タンデ
ム圧延機を用いて行ったが、その際、圧下配分(2〜1
0パス)とロール径(150〜600 u”)とを変更
して、かみ込み角度を種々に変化させた。ついでこれら
の鋼板に、脱炭焼鈍と高温箱焼鈍とを施して最終製品と
した。
Si: 3.40wt% (hereinafter simply expressed as %), C
:o, oso%, Mn: 0.08%, Se:
0.025% and Sb: 0.030%, a silicon steel hot-rolled steel sheet with a thickness of 3.0 was first cold-rolled to 0.03%.
.. The thickness was set to 80 to 0.90 mm, and then heated to 1000°C for 1
After performing intermediate annealing for 0.0 min, secondary cold rolling was performed.
Finished with a product board thickness of 3mm. This secondary cold rolling was carried out using a tandem rolling mill, and at that time, the rolling reduction distribution (2 to 1
The bite angle was varied by changing the roll diameter (150 to 600 u"). These steel plates were then subjected to decarburization annealing and high-temperature box annealing to produce the final product. .

得られた各製品の!磁特性(磁束密度、鉄損)と2次冷
延時における各スタンドのかみ込み角度との関係につい
て調べた結果を第1図に示す。ここに第2図に示した記
号αで定義されるかみ込み角度は、ロール径が大きくか
つ板厚が薄い場合には次式 R:ロール半径 で近似できることから、この発明でも上掲式によってか
み込み角度を求めた。
of each product obtained! Figure 1 shows the results of an investigation into the relationship between magnetic properties (magnetic flux density, iron loss) and the bite angle of each stand during secondary cold rolling. Here, the bite angle defined by the symbol α shown in FIG. Find the angle of entry.

第1図から明らかなように、かみ込み角度αを0.02
°以上とすることによって、Bl+1が1.90T以上
で鉄損も低い一方向性けい素鋼板が得られている。
As is clear from Figure 1, the biting angle α is 0.02
By setting it to 1.90 T or more, a unidirectional silicon steel plate with low core loss can be obtained.

またこの発明において、最終冷間圧延の圧下率を50%
以上としたのは、これに満たない圧下率では最終仕上げ
焼鈍後においてゴス方位の十分な発達が達成されないか
らである。
In addition, in this invention, the rolling reduction rate of the final cold rolling is 50%.
The reason for this is that if the rolling reduction is less than this, sufficient development of the Goss orientation will not be achieved after the final finish annealing.

(作 用) この発明における素材の好適成分組成範囲は次のとおり
である。
(Function) The preferred composition range of the material in this invention is as follows.

C: 0.01〜0.08% Cの含有量については、上記の範囲が、冷延再結晶集合
組織中に適量のゴス方位粒を存在せしめ、2次再結晶に
おいてゴス粒が成長し易いマトリックスを形成させるの
に好都合だからである。
C: 0.01-0.08% Regarding the content of C, the above range allows for the presence of an appropriate amount of Goss-oriented grains in the cold-rolled recrystallized texture, and facilitates the growth of Goss grains in secondary recrystallization. This is because it is convenient for forming a matrix.

Si:2.0〜4.0% 上記したStの下限は、変態によって集合組織を損なう
ことなく高温での鈍化が行える量として定まり、一方上
限は加工性の限界から4%程度にすることが望ましい。
Si: 2.0 to 4.0% The lower limit of St mentioned above is determined as the amount that allows dulling at high temperatures without damaging the texture due to transformation, while the upper limit can be set to about 4% due to the limit of workability. desirable.

その他インヒビターとして硫化物(たとえばMn5) 
、Se化物(たとえばMn5e)および窒化物(たとえ
ばA j2 N、 B N)などを含有させる必要があ
り、その範囲はとくに限定しないが、好ましくはS、S
e、AJおよびBなどにつき、単独添加および併用の場
合いずれにおいても0.005〜0.10%程度とする
のが好ましい。
Other inhibitors include sulfides (e.g. Mn5)
, Se oxide (for example, Mn5e), and nitride (for example, A j2 N, B N), etc., and the range is not particularly limited, but preferably S, S
For e, AJ, B, etc., it is preferable to set the amount to about 0.005 to 0.10%, whether added alone or in combination.

さて上記の成分を含むスラブは、まずインヒビターを固
溶し得る1250℃以上の高温に加熱されたのち、熱間
圧延によって1.5〜3.5M厚の熱延板とする。つい
で冷間圧延を施すが、1回冷延法による場合は、900
〜1120℃、0.5〜10a+inの均一化焼鈍を施
したのちに冷延して、0.15〜0.35mの最終板厚
に仕上げる。また2回冷延法による場合は、1回目の冷
延で0.4〜1.5 w@の中間厚みとしたのち、還元
性雰囲気中で850〜1120℃、0.5〜10m1n
の中間焼鈍を施してから、2回目の冷延で0.15〜0
.35mmの製品板厚に仕上げる。
Now, the slab containing the above-mentioned components is first heated to a high temperature of 1250°C or higher that can dissolve the inhibitor, and then hot-rolled into a hot-rolled plate having a thickness of 1.5 to 3.5M. Next, cold rolling is performed, but in the case of one-time cold rolling method, the rolling temperature is 900.
After homogenizing annealing at ~1120° C. for 0.5 to 10 a+in, the sheet is cold rolled to a final thickness of 0.15 to 0.35 m. In addition, in the case of two-time cold rolling, after the first cold rolling has an intermediate thickness of 0.4 to 1.5 w@
After an intermediate annealing of 0.15 to 0, the second cold rolling
.. Finish to a product board thickness of 35mm.

この発明ではかかる冷延工程において、最終冷延を、タ
ンデム圧延機を用いて全圧下率50%以上の条件下に連
続して仕上げるものとし、しかも各スタンドにおける鋼
板の圧延ロールに対するかみ込み角度αをいずれも0.
02°以上にするわけである。ここにかみ込み角度αは
、ロール径と圧下配分とによって定まるから、これらを
適切に選択することによっていずれのスタンドにおいて
もα≧0.02°とすることが肝要である。
In this invention, in the cold rolling process, the final cold rolling is carried out continuously using a tandem rolling mill under the condition of a total rolling reduction of 50% or more, and the biting angle α of the steel plate with respect to the rolling rolls in each stand is Both are 0.
The angle is set to 02° or more. Here, since the biting angle α is determined by the roll diameter and the rolling distribution, it is important to appropriately select these so that α≧0.02° in any stand.

かくして得られた冷延板は、その後750〜850℃の
湿水素中で脱炭焼鈍を施し、ついで鋼板表面に焼鈍分離
剤を塗布してから、1100℃以上の高温で2次再結晶
と純化のための箱焼鈍が施されて、製品となる。なおこ
の後必要に応じて表面に上塗りコーディングを施して製
品とすることもできる。
The cold-rolled sheet thus obtained is then decarburized annealed in wet hydrogen at 750 to 850°C, then an annealing separator is applied to the surface of the steel sheet, and then secondary recrystallization and purification are performed at a high temperature of 1100°C or higher. The product is then subjected to box annealing. After this, if necessary, the surface can be coated with a top coat to produce a product.

(実施例) 実施例I C: 0.040%、  S i :3.20%、 M
 n :0.075%、  S : 0.020%およ
びS b : 0.030%を含有する組成になるけい
素鋼連続鋳造スラブを、1330℃で3h加熱後、熱間
圧延を施して2.On+厚の熱延板とした。ついで1次
冷延で0.6(b−の中間厚に仕上げたのち、NzHz
r昆合ガス申合ガス中0℃、3m1nの中間焼鈍を施し
てから、5スタンドのタンデム圧延機で2次冷延を施し
て0.23m厚の冷延板とした。この2次冷延に際して
は、ロール径が200 mm、400mの2種類の圧延
ロールを用い、また圧下配分を表1に示したように種々
に変化させる条件下に圧延を行った。
(Example) Example I C: 0.040%, Si: 3.20%, M
A continuously cast silicon steel slab having a composition containing n: 0.075%, S: 0.020% and Sb: 0.030% was heated at 1330° C. for 3 hours, and then hot rolled. A hot-rolled sheet with On+ thickness was obtained. Then, after finishing it to an intermediate thickness of 0.6 (b-) by primary cold rolling, NzHz
After performing an intermediate annealing of 3 ml at 0° C. in a mixed gas, a secondary cold rolling was performed using a 5-stand tandem rolling mill to obtain a cold-rolled sheet with a thickness of 0.23 m. In this secondary cold rolling, two types of rolling rolls with roll diameters of 200 mm and 400 m were used, and the rolling was carried out under conditions in which the rolling reduction distribution was varied as shown in Table 1.

その後各冷延板に、湿水素中で800℃、  5m1n
の脱炭焼鈍を施し、ついでMgOを主成分とする焼鈍分
離剤を塗布してから、水素中で1200℃、10hの仕
上げ焼鈍を施した。
After that, each cold-rolled plate was heated at 800°C in wet hydrogen for 5 m1n.
Decarburization annealing was performed, and then an annealing separation agent containing MgO as a main component was applied, followed by final annealing at 1200° C. for 10 hours in hydrogen.

かくして得られた各製品板の磁気特性について調べた結
果を表1に併記する。
Table 1 also shows the results of investigating the magnetic properties of each product board thus obtained.

同表から明らかなように、各スタンドにおけるかみ込み
角度がいずれも0.02 @以上である場合(条件、3
.5)にとりわけ優れた磁気特性が得られた。
As is clear from the table, when the bite angle of each stand is 0.02 @ or more (condition, 3
.. 5), particularly excellent magnetic properties were obtained.

実施例2 C: 0.052  %、   S  i  :3.0
8 %、  M  n  :  0.080  %。
Example 2 C: 0.052%, Si: 3.0
8%, Mn: 0.080%.

S : 0.022%、 A、 / : 0.026%
およびN : 0.0075%を含有する組成になるけ
い素鋼連続鋳造スラブを、1330℃で3h加熱後、熱
間圧延して2.0wm厚の熱延板とした。ついで112
0℃、  2m1nの均一化焼鈍を施したのち、5スタ
ンドのタンデム圧延機を用いて、表2に示した条件下に
冷間圧延を施し、0.30mm厚に仕上げた。
S: 0.022%, A, /: 0.026%
A continuously cast silicon steel slab having a composition containing 0.0075% of N was heated at 1330° C. for 3 hours and then hot rolled into a hot rolled plate with a thickness of 2.0 wm. Then 112
After homogenizing annealing at 0° C. and 2 ml, it was cold rolled using a 5-stand tandem rolling mill under the conditions shown in Table 2, and finished to a thickness of 0.30 mm.

その後湿水素中で800℃+  5m1nの脱炭焼鈍を
施したのち、鋼板表面にMgOを主成分とする焼鈍分離
剤を塗布してから、水素中で1200℃、10hの仕上
げ焼鈍を施した。
After that, decarburization annealing was performed at 800° C. + 5 ml in wet hydrogen, an annealing separator containing MgO as a main component was applied to the surface of the steel sheet, and finish annealing was performed at 1200° C. for 10 hours in hydrogen.

かくして得られた製品板の磁気特性について調べた結果
を表2に併記する。
Table 2 also shows the results of investigating the magnetic properties of the product board thus obtained.

同表より明らかなように、いずれのパスともかみ込み角
度が0.02°以上の場合(条件7.8)に、磁気特性
の改善が達成されている。
As is clear from the same table, when the bite angle is 0.02° or more in any pass (condition 7.8), the magnetic properties are improved.

(発明の効果) かくしてこの発明によれば、冷間圧延の最終冷延工程に
おけるタンデム圧延機の各スタンドのかみ込み角度をコ
ントロールするという簡単な操作で、磁気特性の向上を
、生産能率の向上ひいては製造コストの低減に併せ、効
果的に達成することができる。
(Effects of the Invention) Thus, according to the present invention, magnetic properties can be improved and production efficiency can be improved by simply controlling the bite angle of each stand of a tandem rolling mill in the final cold rolling process of cold rolling. As a result, this can be achieved effectively as well as reducing manufacturing costs.

【図面の簡単な説明】 第1図は、最終冷延におけるタンデム圧延機各スタンド
のかみ込み角度αが、最終製品の鉄損w+tzs。およ
び磁束密度に及ぼす影響を示したグラフ、 第2図は、かみ込み角度αの説明図である。 グ(キロ囚π) 手続補正書 昭和60年1月18日 昭和59年 特 許 願第243466号2発明の名称 電磁特性の良好な一方向性けい素鋼板の製造方法よ補正
をする者 事件との関係 特許1flliiff人(125)川崎
製鉄株式会社 L#4aiF第4aiF14〜15 行(F) r コ
コ”C’ jh :各スタンドの入側、出側板厚差のH
」を「ここでΔh:各スタンドの入側、出側板厚差」 
に訂正する。 1第2図を別紙のとおりに訂正する。
[Brief Description of the Drawings] Fig. 1 shows that the biting angle α of each stand of the tandem rolling mill in the final cold rolling is the iron loss w+tzs of the final product. FIG. 2 is an explanatory diagram of the biting angle α. Procedural Amendment January 18, 1985 Patent Application No. 243466 2 Title of Invention: A method for producing unidirectional silicon steel sheets with good electromagnetic properties Relationship Patent 1 fliiff person (125) Kawasaki Steel Corporation L#4aiF 4aiF 14-15 row (F) r Coco"C' jh: H of the difference in plate thickness between the entrance and exit sides of each stand
"Here, Δh: Difference in board thickness between entrance and exit sides of each stand."
Correct to. 1 Correct Figure 2 as shown in the attached sheet.

Claims (1)

【特許請求の範囲】 1、含けい素鋼熱延板に、1回または中間焼鈍を含む2
回の冷間圧延を施して所定の製品板厚としたのち、脱炭
焼鈍ついで最終仕上げ焼鈍を施すことからなる、(11
0)〔001〕を主方位とする一方向性けい素鋼板の製
造方法において、最終冷間圧延を、タンデム圧延機によ
って50%以上の圧下率で行うに際し、各スタンド毎の
鋼板の圧延ロールに対するかみ込み角度αをいずれも0
.02°以上とすることを特徴とする電磁特性の良好な
一方向性けい素鋼板の製造方法。
[Claims] 1. Hot-rolled silicon-containing steel sheet subjected to one or intermediate annealing 2.
After the product is cold-rolled twice to obtain a predetermined thickness, it is decarburized and then subjected to final finish annealing (11
0) In the method for manufacturing unidirectional silicon steel sheets with the main orientation being [001], when the final cold rolling is performed with a tandem rolling mill at a reduction rate of 50% or more, the steel sheet of each stand is Both biting angles α are 0.
.. A method for producing a unidirectional silicon steel sheet with good electromagnetic properties, characterized in that the angle is 02° or more.
JP24346684A 1984-11-20 1984-11-20 Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic Pending JPS61124526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24346684A JPS61124526A (en) 1984-11-20 1984-11-20 Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24346684A JPS61124526A (en) 1984-11-20 1984-11-20 Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic

Publications (1)

Publication Number Publication Date
JPS61124526A true JPS61124526A (en) 1986-06-12

Family

ID=17104304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24346684A Pending JPS61124526A (en) 1984-11-20 1984-11-20 Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic

Country Status (1)

Country Link
JP (1) JPS61124526A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989000611A1 (en) * 1987-07-21 1989-01-26 Kawasaki Steel Corporation Method of producing directional silicon steel sheet having excellent magnetic characteristics and continuous intermediate annealing equipment
JPH0280106A (en) * 1988-09-17 1990-03-20 Kawasaki Steel Corp Method for cold rolling unidirectionally oriented silicon steel sheet
CN111868271A (en) * 2018-03-22 2020-10-30 日本制铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120617A (en) * 1981-01-19 1982-07-27 Kawasaki Steel Corp Method for rolling of hot rolled steel strip for production of unidirectional silicon steel plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120617A (en) * 1981-01-19 1982-07-27 Kawasaki Steel Corp Method for rolling of hot rolled steel strip for production of unidirectional silicon steel plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989000611A1 (en) * 1987-07-21 1989-01-26 Kawasaki Steel Corporation Method of producing directional silicon steel sheet having excellent magnetic characteristics and continuous intermediate annealing equipment
JPH0280106A (en) * 1988-09-17 1990-03-20 Kawasaki Steel Corp Method for cold rolling unidirectionally oriented silicon steel sheet
CN111868271A (en) * 2018-03-22 2020-10-30 日本制铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
CN111868271B (en) * 2018-03-22 2022-01-14 日本制铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet

Similar Documents

Publication Publication Date Title
JP2009185386A (en) Method for producing non-grain-oriented electrical steel sheet
EP0234443B1 (en) Process for producing a grain-oriented electrical steel sheet having improved magnetic properties
JPWO2020067236A1 (en) Manufacturing method of grain-oriented electrical steel sheet and cold rolling equipment
JP2000017334A (en) Production of grain-oriented and nonoriented silicon steel sheet having low core loss and high magnetic flux density and continuous annealing equipment
US5330586A (en) Method of producing grain oriented silicon steel sheet having very excellent magnetic properties
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JPS61124526A (en) Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic
JP2804381B2 (en) Method for producing grain-oriented silicon steel sheet having uniform longitudinal magnetic properties
JP3331478B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3359385B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2680519B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH02259016A (en) Production of grain-oriented silicon steel sheet free from surface blister defect
JP3536304B2 (en) Manufacturing method of oriented silicon steel sheet with excellent surface properties and stable magnetic properties
JPS61124525A (en) Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic
JPS6169923A (en) Manufacture of non-orientation silicon steel plate of good surface
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP2002363646A (en) Method for producing specular grain oriented silicon steel sheet having no need of decarburizing annealing
JPS62278227A (en) Manufacture of silicon steel plate
JPH1096029A (en) Manufacture of grain-oriented silicon steel sheet having high magnetic flux density
JP3858280B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP2818290B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
JPH10259422A (en) Production of grain-oriented silicon steel sheet good in core loss characteristic