[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6065732A - Production of quartz glass - Google Patents

Production of quartz glass

Info

Publication number
JPS6065732A
JPS6065732A JP17064383A JP17064383A JPS6065732A JP S6065732 A JPS6065732 A JP S6065732A JP 17064383 A JP17064383 A JP 17064383A JP 17064383 A JP17064383 A JP 17064383A JP S6065732 A JPS6065732 A JP S6065732A
Authority
JP
Japan
Prior art keywords
temperature
quartz glass
dry gel
lid
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17064383A
Other languages
Japanese (ja)
Other versions
JPH0124735B2 (en
Inventor
Motoyuki Toki
元幸 土岐
Sadao Kanbe
貞男 神戸
Satoru Miyashita
悟 宮下
Tetsuhiko Takeuchi
哲彦 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP17064383A priority Critical patent/JPS6065732A/en
Priority to DE19833390375 priority patent/DE3390375T1/en
Priority to GB08418301A priority patent/GB2140408B/en
Priority to US06/642,606 priority patent/US4681615A/en
Priority to NLAANVRAGE8320410,A priority patent/NL188795C/en
Priority to EP84900294A priority patent/EP0131057B1/en
Priority to PCT/JP1983/000450 priority patent/WO1984002519A1/en
Publication of JPS6065732A publication Critical patent/JPS6065732A/en
Priority to US07/008,226 priority patent/US4801318A/en
Priority to SG395/88A priority patent/SG39588G/en
Publication of JPH0124735B2 publication Critical patent/JPH0124735B2/ja
Priority to HK695/89A priority patent/HK69589A/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/26Wet processes, e.g. sol-gel process using alkoxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/34Wet processes, e.g. sol-gel process adding silica powder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To shorten the days required for manufacturing dry gels, by placing a lid having one or more holes thereon on a container for manufacturing the dry gel and allowing the dry gel to stand at a high temperature of the room temperature or above in the method for synthesizing the dry gel at low temperature by the sol-gel method. CONSTITUTION:Aqueous hydrochloric acid is added to hydrolyze ethyl silicate under vigorous agitation, and fine powdery silica is then added to the resultant solution, uniformly dispersed and adjusted to 4-6pH to form a sol solution 4. The resultant sol solution 4 is then contained in a container 3, and a lid 2 having one or more holes 1 is placed on the container 3. The covered container 3 is then allowed to stand at a temperature of room temperature or above and 100 deg.C or below to give a dry gel, which is then sintered to afford the aimed quartz glass. The area ratio between the holes 1 of the lid 2 and the whole lid 2 (opening ratio) is <=50%.

Description

【発明の詳細な説明】 本発明に、金縞アルコキシド、微粉末シリカを原料とし
、PHf4〜6に調世丁ゐゾル−ゲル法により、低温で
石英ガラスr製造する方法に寂いて、割れないでドライ
ゲル全作成すゐ方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses gold-stripe alkoxide and finely powdered silica as raw materials, and uses a sol-gel method with a pH of 4 to 6 to produce quartz glass at a low temperature. All about how to make dry gel.

石英ガラスは、工C襄這工程中で3つばやボード、拡散
炉等に使用されるようVCなり、その有用性が認められ
、更に水酸基の少ないものや、光学的均一性の良いもの
が開発されたことによって、各種の光学的用−mに使用
されんようになり、特に光進侶用の石英ガラスファイバ
ーは最近注目されている。このように、石英ガラスは個
々の分野に使用され、その利用範囲も広がっている。
Quartz glass became VC as it was used for 3-pieces, boards, diffusion furnaces, etc. during the engineering process, and its usefulness was recognized, and products with fewer hydroxyl groups and those with good optical uniformity were developed. As a result, quartz glass fibers have come to be used for various optical applications, and quartz glass fibers for optical transmitters have recently been attracting attention. In this way, quartz glass is used in individual fields, and its scope of use is expanding.

し刀為し、石英ガラスの!l!!造コストコスト、i%
1曲なことが問題になっていゐ。
Made of quartz glass! l! ! Manufacturing cost, i%
The problem is that it's only one song.

従って、石英ガラスの安価な製造方法が望まれている。Therefore, an inexpensive method of manufacturing quartz glass is desired.

その方法とし′C1金川アルコキシドを原料とする方法
と超微粉末ノリカ葡原料とする方法の二つの方法が試み
られている。
Two methods have been tried: one using 'C1 Kanagawa alkoxide as a raw material and the other using ultrafine Norica powder as a raw material.

次に、それぞれについて概説したい。Next, I would like to outline each.

金属アルコキシドを原料と丁ゐゾル−ゲル法により石英
ガラス金安価に製造しよりという試みに、野上ら(窯業
−会誌、87,37.1979年)や自機ら(窯業−会
誌、87,434.1979年)によってなされている
Nogami et al. (Ceramics Journal, 87, 37, 1979) and Jiki et al. .1979).

このゾル−ゲル法は原料のアルコキシドの祠dが谷易だ
ということからMlliの市い石英ガラスが得られると
いうことと、製造コヌトが従来のものより安1曲であめ
という峙徴葡有していゐ。
This sol-gel method has the advantage that it is possible to obtain commercially available quartz glass because the raw material alkoxide is of high quality, and that it is cheaper to manufacture than the conventional method. Teii.

この方法の概略は次の工りであめ。すなわち、シリコン
テトラアルコギシド、水、アルコール。
The outline of this method is as follows. i.e. silicon tetraalcogides, water, alcohol.

適当な触媒(塩酸やアンモニア等)を混合し、加水分解
させ、重会反応葡促進させ、ゲル化、収縮乾燥させてド
ライゲルとした恢、1000℃程度まで力ロ熱処理(焼
結)丁ゐと石英カラスと丁ゐことができる。
Mix a suitable catalyst (hydrochloric acid, ammonia, etc.), hydrolyze it, promote polymerization reaction, gel it, shrink and dry it to make a dry gel, and then heat it to about 1000℃ (sintering). Can be used with quartz crow.

この方法においての問題点に、ドライゲル作成中に割れ
が生じる1こめ、大きなドライゲルが得られにくいとい
うことと、ドライゲルを焼結し石英ガラスとする除に、
この時にも割れやクラックが生じ、大さな石英ガラスの
作成が困難だということであめ。
Problems with this method include the fact that cracks occur during dry gel preparation, and it is difficult to obtain large dry gels.
At this time, cracks and cracks also occurred, making it difficult to create large quartz glass.

これに対して、超微粉本シリカに、yA$+と丁ゐ方法
ば、ベル研死H[のRabinovicb E Mら(
Journalof Non−Crystalline
 5O1ide 47 (1982)435−459)
によって試みられている。これは、超倣紛木シリカ(C
ab−o−8i1.、Cabnt社)を水に〃口元、ヒ
ドロシルとじ罠恢、ゲル化し収縮乾燥させドライゲルと
した後、焼結し石英ガラスとするものである。この方法
の艮所は、前記の金属アルコキシド法と異なり、ドライ
ゲル作成中および焼結中に割れやクランクが生じに<<
、刀≧なり大きな石英ガラスの製造が可能だということ
である。
On the other hand, if ultrafine powdered silica is used in the yA$+ method, Bell Labs' Labinovicb EM et al.
Journal of Non-Crystalline
5O1ide 47 (1982) 435-459)
is being attempted by This is super-imitation powdered silica (C
ab-o-8i1. (Cabnt, Inc.) was soaked in water, hydrosil-bound, gelled, shrink-dried to form a dry gel, and then sintered to form quartz glass. The drawback of this method is that, unlike the metal alkoxide method described above, cracks and cranks may occur during dry gel preparation and sintering.
This means that it is possible to manufacture quartz glass as large as the sword.

し刀)し、この方法は二つの大きな欠点?有している。There are two big drawbacks to this method? have.

つまり、焼結温度が1450℃とかな9尚温であるとい
うことと、ゲル中にたくさんの気泡が入っていて、作成
した石英ガラス中にもたくさんの気泡が残留していると
いうことである。またヒドロシル中のSiO□譲度が筒
すぎるため、機械的に均質な石英ガラスにもしに〈<、
場合によってはそれがクラックの原因になることがある
。つ捷り、この方法は、気泡が存在する1こめ光学的に
均質にしにりく、また、ヒドロシルの不均實さのため機
械的にも均質にしにくいといつ致命旧な欠点會有してい
る。
In other words, the sintering temperature is 1,450 degrees Celsius or so, and there are many air bubbles in the gel, and many air bubbles remain in the quartz glass that is created. In addition, because the SiO□ yield in hydrosil is too cylindrical, it is difficult to
In some cases, it may cause cracks. However, this method has fatal disadvantages in that it is difficult to achieve optical homogeneity due to the presence of air bubbles, and it is also difficult to achieve mechanical homogeneity due to the non-uniformity of the hydrosil. .

このようなこと刀≧ら光学的および愼憶的均賀さ會待ち
合わせた重責の高い石英ガラスを製迫丁ゐためには、前
記の金属アルコキシド法ヶ用い友万が艮い7と思われる
。そういうことから、金属アルコキシド法【用いて、歩
留り艮く、大きな石英カラスを得る方法が望まれてい/
)。その方法の一つとして、昭オロ5゛ζ年 1−、月
 23日付出願の「石英ガラスの製造方法」がある。こ
れは、金属アルコキシドを力ロ水分屏し1こゾル中に超
畝粉木ンリ力ヶ加え、更にP Hτ4−6に調優したも
ので、ドライゲル作成中の割れの問題と、焼結中の割れ
やクラックの間’rM=同時に解決したものである。こ
の万1去を用いることで、刀為な9大きな石英ガラス(
41nchφ以上の大きさのもの)が低コストで製造す
ることができ/:)、l:つになった、しかし、この方
法にドライゲルの作Dy、紫室温で行なっているため、
ドライゲルの作成時間が10日以上必要であり、製造時
間が長ずざるという欠点を有している。
In order to manufacture quartz glass, which has a heavy responsibility such as optical and memorabilia, it seems impossible to use the metal alkoxide method described above7. For this reason, there is a desire for a method to obtain large quartz glass with a high yield using the metal alkoxide method.
). One such method is a ``method for manufacturing quartz glass'' filed on May 23, 1977. This is a product in which metal alkoxide is mixed with water, super-powdered wood powder is added to the sol, and the pH is adjusted to 4-6. Between cracks and cracks 'rM = solved at the same time. By using this chance, 9 large quartz glass (
41 nchφ or larger) can be produced at low cost.
This method has the disadvantage that it takes 10 days or more to prepare the dry gel, and the production time is not long.

′また、室温でドライゲルを作成すると、室温が10℃
以上の温健範囲で変動丁ゐため、この温度変化が原因で
割れることがあめ。このため歩留りが若干恋い、また、
温妓が低いため、ドライゲルの構造中における班会1史
が低いためか、それが涼因でも若干歩留りが悪い。以上
のように、ドライゲル作g時において、製造時間が長い
ということと、歩wりが若干悪いということで問題にな
っている。
'Also, if you create a dry gel at room temperature, the room temperature will be 10℃.
Since the temperature varies within the above temperature range, cracking may occur due to this temperature change. For this reason, the yield is slightly lower, and
Due to the low temperature, the yield rate is slightly low, probably due to the low temperature of the dry gel in the structure of the dry gel, even if it is a cooling factor. As mentioned above, when producing dry gel, there are problems in that the production time is long and the production rate is somewhat slow.

そこで、本発明の目的に、ドライゲルの作成時間を短く
シ、歩wp’i更に良くする、ドライゲルの作成方法を
提供することである・ その方法として矢のような方法を考案した。
Therefore, an object of the present invention is to provide a method for producing a dry gel that shortens the production time and further improves the speed of production.

すなわち、昭和5′?年 121月 23日付出願の「
石英ガラスの製造方法」と同様に、ケイ酸エチルに塩e
”+加える(この時必要ならばエタノールを加える)。
In other words, Showa 5'? Filed on December 23, 2013
Similarly to the method for manufacturing quartz glass, salt e is added to ethyl silicate.
” + Add (add ethanol if necessary at this time).

よく攪拌し加水分解した俊、Asroeil(Pegu
ssa社) 、 Cab−o−sil(Oabot社)
等のホワイトカーボンである超微粉床シリカ?加え、更
にPH全4〜6に調整丁/b、、このようにして得たゾ
ルを疎水性の材質(ポリプロピレン、テフロン。
Shun, Asroeil (Pegula), which was stirred well and hydrolyzed,
ssa), Cab-o-sil (Oabot)
Ultrafine powder bed silica which is white carbon such as? In addition, the pH was adjusted to 4 to 6 in total, and the sol thus obtained was coated with a hydrophobic material (polypropylene, Teflon.

塩化ビニル、ポリエチレン等)でできた祭器に加え、適
当な貫通孔會有丁ゐフタk L (第1図)、適当な温
度に放置し、ドライゲルとする方法である。
This method involves adding a ritual vessel made of vinyl chloride, polyethylene, etc.), a lid with a suitable through hole (Fig. 1), and leaving it at an appropriate temperature to form a dry gel.

このように温[k室温以上に上昇させると溶媒の蒸発速
度が速くなり、乾燥時間が短舶化でき、結局ドライゲル
の作成時間が短ネ1iでき心。更に、高温で放置すると
、ゲル構造中における架橋が更に尚矢に起こり、室温で
ドライゲルとしたものより1.cジ強固な#g遺になる
と思われるため、ゲル収縮中におけ/)割れが生じにく
く、歩留りが向上丁ゐと予想される。
In this way, when the temperature is raised above room temperature, the evaporation rate of the solvent becomes faster and the drying time can be shortened, resulting in a shorter dry gel preparation time. Furthermore, when left at high temperatures, crosslinking in the gel structure occurs even more rapidly, resulting in 1. Since it is thought to be a strong residue, cracks are less likely to occur during gel contraction, and it is expected that the yield will be improved.

ただし、高温では溶媒の蒸発速度が速いため、ゲル化r
1過当なフタのない状態、つ1す第2図のような開放状
態で行なうと、乾燥速1組に速くなるが、逆に非′濱に
割れやすくなるため、歩留りが忌くなゐ。そこで、尚温
状態において溶媒の蒸発速度にコントロール丁ゐため、
第1図のように貫通孔rMするフタをする必女がある。
However, at high temperatures, the evaporation rate of the solvent is fast, so gelation r
If the drying process is carried out in an open state as shown in FIG. 2 without an excessive lid, the drying speed will be significantly faster, but on the other hand, it will be more likely to crack at random, resulting in a poor yield. Therefore, in order to control the evaporation rate of the solvent at still temperature,
As shown in Figure 1, there is always a woman who puts a lid on the through hole rM.

ここで、貫通孔の面積2フタの面積で刷つ1こ値を開口
率と足載する。以後、開口率の値はこりいう11BLと
する。
Here, the value calculated by dividing the area of the through hole by the area of the lid is taken as the aperture ratio. Hereinafter, the value of the aperture ratio will be 11BL.

このようにフタの開ロ率ケ適当Vこコントロール丁ゐと
蒸発速lftコントロールでさ、ドライゲルの作成時間
の短縮化と同時に歩留9の向上もてきる。
In this way, by appropriately controlling the lid opening rate and controlling the evaporation rate, the dry gel production time can be shortened and the yield can be improved at the same time.

歩留9良くドライゲルを作成するためには、ドライゲル
作成温度と開口率の間に重要な相関が有る。室温の場合
、(12月中の土岐の特計りのように開口率を100%
にすると、作成期間′中の天候、気温、湿度等によって
歩留9に変化し、またその環境の変化が歩w9ヶ下げる
一つの原因vr−もなっているのだが、この場合の歩留
9はほとんどの場合50%を超えることばない。(場合
によっては偶然に歩留りが90%ぐらい1でに上がる時
が有るが、この再現性はほとんど燕い、)したし、開口
率20チぐらいのフタ盆丁あと歩留りは非常に良くなり
、はとんどの場合、歩Wりは60%を起すことになる。
In order to create a dry gel with a high yield of 9, there is an important correlation between the dry gel creation temperature and the aperture ratio. In the case of room temperature, (as in Toki's special plan in December, the opening rate is 100%)
In this case, the yield will change to 9 depending on the weather, temperature, humidity, etc. during the creation period, and the change in the environment is also one of the reasons why the yield decreases by 9. In most cases, the percentage of words exceeds 50%. (In some cases, the yield increases by about 90% by chance, but the reproducibility of this is almost unmatched.)The yield became very good after using a lid tray with an opening ratio of about 20 inches. In most cases, 60% of the walking errors occur.

そして、開口率〒20%L!ll下げ、10%より低く
すると歩留9はほぼ80%以上になり、100%近くに
なる。
And the aperture ratio is 20%L! When the yield is lowered by 11 to less than 10%, the yield 9 becomes approximately 80% or more, and becomes close to 100%.

この場合、ドライゲル作成に装丁ゐ日叙は、開口率〒1
0チにしたま1で行なうと2週間程度1で7> 7)>
 り 、開口率100%での10日iW]よItくなる
が、開口率10チのものでも、6日目ぐらい〃λら、フ
タン除く等で、開口率を瑠した9、また温度を30〜1
00℃ぐらい丑で温呟會上昇させる寺の操作で、8日1
団程朋でドライゲルと丁ゐことかできる。この工りな慄
拝で歩留9葡100チ近くにし、史にドライゲル作J戊
日叡τ賦らすことができる。
In this case, the binding diary for making the dry gel should have an aperture ratio of 〒1
If you leave it at 0 and do it at 1, it will take about 2 weeks at 1 7>7)>
10 days iW at 100% aperture ratio], but even with an aperture ratio of 10, after about 6 days, the aperture ratio is 9 by removing the lid, etc., and the temperature is 30%. ~1
With the operation of the temple to raise the temperature at around 00℃, 8 days and 1
You can talk to Dreigel in a group conversation. With this elaborate act of worship, we can increase the yield to nearly 9 to 100 cm, and add Dreigel's work to history.

*i葡30〜100℃に上昇させる時期葡もつと早い時
期にすると、もつと類4i11化できる。すなわち、ゲ
ル化を室温(ゲル化温度)で行い、2℃/分以下の昇−
スピードで30〜100℃程度の間のある温度(収縮温
伎)筐で昇温し、その温度で過当な期間放置し収縮させ
る。その披り℃/分以下の昇温スピードでその収縮温娑
炉しだいたい300℃程度の間のある温度(乾燥温度)
1で昇温し、その温度で過当なルJii41放置し転球
させドライゲルと丁ゐ。ごの方法才用いると前期の場合
より更に短維化可能であり、我々に、ドラ4フ11作成
葦ででろ日間でできたという央例もある、この場合の歩
留9は90チ以上であり、100チというのも不ロf1
止ではない。
*I When raising the grapes to 30-100℃ If you raise the temperature to 30 to 100 degrees Celsius, you can make the grapes into 4i11 types. That is, gelation is performed at room temperature (gelation temperature), and the temperature is increased at a rate of 2°C/min or less.
The temperature is raised at a certain temperature between about 30 and 100 degrees Celsius (shrinkage temperature) in a box, and the product is left at that temperature for an excessive period of time to shrink. The temperature of the shrinking oven is approximately 300℃ (drying temperature) at a heating rate of less than ℃/min.
Raise the temperature at 1, leave the excess ball Jii41 at that temperature and roll it with dry gel. If you use this method wisely, it is possible to make the fibers even shorter than in the previous period, and we have an example in which the fibers were made in 4 days using 11 reeds. In this case, the yield was 90 cm or more. Yes, 100chi is also unroman f1
It's not a stop.

この方法ぼ、ゲル化温度と収縮温度を変えているためこ
の間に昇温という手間が刀>i>る。もつと簡単な方法
として、ゲル化を収縮温度と同じ温度で行い、収縮させ
、それ7D!−ら乾燥温度に昇温するという方法も考え
られる、この方法でも我々の実例では3日間という短期
間で作成したといつのも有り、また歩留りも100%に
近い。
In this method, since the gelling temperature and the shrinking temperature are changed, it takes time and effort to raise the temperature during this time. A very simple method is to perform gelation at the same temperature as the shrinkage temperature, then shrink, and that's 7D! Another possible method is to raise the temperature from - to the drying temperature; even with this method, we were able to produce it in a short period of 3 days, and the yield was close to 100%.

また、ゲル化温度、収縮温度、乾燥濡髪を全て同一温度
にし、ゾルの状態から室温以上の高温に放置し、最後1
で同−濡髪にすることも可能である。この方法でも、短
期間で歩留り良くドライゲルが得られる。
In addition, the gelling temperature, shrinkage temperature, and dry wet hair are all kept at the same temperature, and the sol state is left at a high temperature above room temperature.
It is also possible to do the same with wet hair. This method also allows dry gel to be obtained in a short period of time and with good yield.

ただし、ゲル化温度が60℃よ!llも高温であるとド
ライゲル中に気泡が発生するので、ゲル化温度を60℃
以上にはできない。従って、もつと短期間で作成丁ゐた
めには、ゲル化t60℃以下にし、収縮及び乾燥温[k
60℃以上にすることが望せしい。
However, the gelling temperature is 60℃! If the temperature is too high, air bubbles will occur in the dry gel, so the gelling temperature was set at 60°C.
I can't do more than that. Therefore, in order to make it in a short period of time, it is necessary to keep the gelling temperature below 60℃ and the shrinkage and drying temperature [k
It is desirable that the temperature be 60°C or higher.

以上種々の場合t4!:いたが、収縮温度と乾燥温度ヶ
同一にしても艮い。
In the above various cases t4! :However, even if the shrinkage temperature and drying temperature were the same, it would not work.

以上のような本発明による方法ケ用いゐとドライゲル作
1戎の時1−を短i、+tiでき、更に歩留りも同」二
で15 以下、実施例に使い本発明の、広泳舊:祝明すゐ。
By using the method according to the present invention as described above, it is possible to shorten the dry gel production time by 1, +ti, and the yield is also the same. Tomorrow.

実施例1 梢製した市販のケイ哨エチル208057(40モル)
に0.1規定の塩敞水浴液盆1800−刀I」え、60
分15敢しく攪拌し、加水分解反応r終了させ、この溶
液に水缶1000rnl力口え、史に超微粉末シリカ(
Cab−〇−5il(Oa、t+ot社)k 750 
V攪拌下〃■え、超音波振動によゐ均一化’730分間
行い、史に均一に丁心足め、太さなcab−o−six
の固1りやゴミ?除くためp過した。C(Dよつにして
均質にしたゾルVこo、 1 m’<のアンモニア水t
1西下し、PH’z4・4に調量しlζ、このゾル?ポ
リプロピレンの容器(内径23cmφ)1011Mlに
厚みが1tyrrになるようにそれぞれ加え、開口率6
飴のフタ210個全部かぶせ7こ。これらτ至諷で一夜
放直し1こ。これらにゲル化し、少し収細し始めていた
Example 1 Commercially available ethyl chloride 208057 (40 mol)
0.1 regulation salt water bath basin 1800-sword I", 60
Stir vigorously for 15 minutes to complete the hydrolysis reaction, add 1000ml of water to this solution, and add ultrafine powder silica (
Cab-〇-5il (Oa, t+ot company) k 750
Under V stirring, homogenization was carried out for 730 minutes using ultrasonic vibration, and the cab-o-six was uniformly ground and thick.
Solid or garbage? I passed it through p to remove it. C
1 step down, measure to PH'z4.4, lζ, this sol? Each was added to a 1011ml polypropylene container (inner diameter 23cmφ) so that the thickness was 1 tyrr, and the opening ratio was 6.
Cover all 210 candy lids with 7 lids. I'll leave it alone all night with all these tau jokes. These gelatinized and began to converge a little.

これら7恒温IlvMVC入れ、室温から6001で5
℃/時間の昇温スピードで昇温し、60℃で5日間放置
し、次[80℃1で10℃/時間の昇温スピードで80
℃壕で昇温した。80℃で2日間放置して15.0cr
nψの白いドライゲルが101固1+しれた。これらの
ドライゲルは常法によ、j21200℃まで加熱すると
透明になり、全て10.4 anφの石英ガラスとなっ
た。この石英カラスの@+yy22で、ビッカース硬i
i、800 K?/ +nA Tあり、赤外吸収スペク
トル、近赤外吸収スペクトルどもに市販の常法による石
英ガラスと一致した、このようにして、ドライゲル1乍
成日数會8日間に短縮でき、更に歩留、pi1oo%に
することができた。
Put these 7 isothermal IlvMVCs at room temperature to 6001 5
The temperature was raised at a heating rate of 10°C/hour, left at 60°C for 5 days, and then heated to 80°C at a heating rate of 10°C/hour.
The temperature was raised in the °C trench. 15.0cr after being left at 80℃ for 2 days
The white dry gel of nψ was 101 hard and 1+. These dry gels became transparent when heated to 21200° C. by a conventional method, and all became quartz glass with a diameter of 10.4 an. This quartz crow @+yy22, Vickers hard i
i, 800K? / +nA T, the infrared absorption spectrum and near-infrared absorption spectrum match those of commercially available quartz glass made by conventional methods.In this way, the number of days required for producing one dry gel can be shortened to 8 days, and the yield and pi1oo I was able to make it into %.

実施例2 実施例1と同様に、ケイ敏エチル20BOrに01規定
の塩酸葡1800Tnl加え、30分間激しく攪拌し加
水分解した。このゾルにOa’b−o−8il′(+:
1001攪拌下〃0え、あとの操作ば全く実施例1と同
様にした。すなわち、超fv振動、p過恢、アンモニア
水金〃■えP H?!: 4.4に調量し、101固の
ポリブロビソン’d器(25C1nφ)に仕込み、ゲル
化させ一夜放直した。あと実施例1と全く回じ操作rし
た。たたし、焼結は1150℃壕でとし/こ。このよつ
Vこして、ドライゲル1乍成日数を8日間で歩留910
0%で石莢ガラス會得ゐことかできた。
Example 2 In the same manner as in Example 1, 1800 Tnl of 01N hydrochloric acid was added to 20 BOr of Keishin ethyl, and the mixture was stirred vigorously for 30 minutes for hydrolysis. Oa'b-o-8il' (+:
After stirring for 100 minutes, the remaining operations were carried out in the same manner as in Example 1. In other words, super fv vibration, p overexcitation, ammonia water metal〃■ePH? ! : The solution was weighed to 4.4 ml, placed in a 101-firm polybrovisone'd vessel (25C1nφ), allowed to gel, and left to stand overnight. After that, the same operation as in Example 1 was repeated. However, sintering was done in a trench at 1150°C. By doing this, the yield was 910 in 8 days for one dry gel.
I was able to get a stone capsule glass meeting with 0%.

実地ν135 Cab−o−silのnt−r4oorにしIC以外は
実施例2と全く同じ操作ヶした・ このようにして10個のドライゲル(15mφ)が得ら
れ、常法によす1150℃葦で昇温すると10個の石英
カラス(10,2zψ)が得られた。
Practical ν135 Cab-o-sil nt-r4oor was used and the operation was exactly the same as in Example 2 except for the IC. 10 dry gels (15 mφ) were obtained in this way, and heated at 1150°C in a reed according to the usual method. When heated, 10 quartz crows (10,2zψ) were obtained.

丁なオ9ら、同様にドライゲル作成日数78日間で歩留
v100%で石莢ガラス會イ4すゐOとができた。
In the same way, four dry gels were made with a yield of 100% in 78 days.

以上実施例で述べてさたように、ゲル化′T:室温で行
い、収#a ′tlAIJj ’;i 60℃トL5L
linj、乾fi温[780℃にし2日間放置1−なと
いう、ドライゲル作成の温鍵プログラムで1′ト成丁め
と、歩留9τ100チにでき、もちろん焼結の歩留りも
100係なので、石英ガラスの製造における歩留vを1
00%にすることができる。また、ドライゲル作成日数
を8日間に短縮できた、この工つな効果は実施例1〜3
で示したように、0ab=o−611の童にはよらない
ことが分かると思う、我々の実験でTi”l、Cab−
o−sil前に最終の5ift itで割つ7C0ab
−o−silの蓋の割合で、10%から60%の間では
いずれの場合も歩留9?!″100%にすることができ
7t、 Cab−o7silの割合が10多以下では、
ドライゲルの作成の夛Mりは100%であるが焼結時の
歩留りが悪く、実質的に意味?なさない。筐た60%以
上では、ドライゲル作成の少光りは急激に悪くなる。
As described in the examples above, gelation 'T: carried out at room temperature, yield #a 'tlAIJj';
linj, dry gel preparation temperature [780℃ and leave it for 2 days 1-], it is possible to achieve 1' to 1' to 100' yield, and of course the sintering yield is 100's, so quartz Yield v in glass manufacturing is 1
It can be set to 00%. In addition, the number of days required to prepare the dry gel was shortened to 8 days, and this simple effect was demonstrated in Examples 1 to 3.
As shown in Figure 2, it can be seen that this does not depend on children with 0ab=o-611.In our experiment, Ti"l, Cab-
7C0ab divided by final 5ift it before o-sil
-The yield of o-sil lids is 9 in any case between 10% and 60%. ! ``It can be made 100% 7t, and if the ratio of Cab-o7sil is less than 10,
The rate of production of dry gel is 100%, but the yield during sintering is poor, so is it really meaningful? Don't do it. At 60% or more, the low brightness of dry gel preparation deteriorates rapidly.

このようなこと刀諷ら、Cab−o−sil量が10%
刀工ら60%の間であれば、ドライゲル作成の献1政プ
ログラムr同様にすれば同様の結果になると考えられる
ので、欠刃1らの実施例でμCab−o−sil量が5
6%の場せ(実施例1の組成)k代表で書く。
In this case, the amount of Cab-o-sil is 10%.
If the amount of μCab-o-sil is between 60% and 60%, it is thought that the same result will be obtained by using the same program as Kenichisei program r for dry gel creation.
6% field (composition of Example 1) K is written as a representative.

従って他のCab−o−sil童の時も同様の結果にな
ると考えてもらいたい。
Therefore, please consider that other Cab-o-sil children will have similar results.

また、ゾルのPH’i1区Vこついてであるが、(12
月中の土岐の特許)中に記載しであるように、PHが4
〜60間であれば、どの場合でも同様の結果になんので
、PHについてもP H4,4klt’&で吾く、 また、実施例1〜6において、開ロ率t5チ以上にする
と歩留りが悲〈なゐ、5%以下でにいずれも歩留910
0%であつ1こ。
Also, although Sol's PH'i 1st ward V is tricky, (12
As stated in Toki's patent published in the month), the pH is 4.
~60, the same result is obtained in any case, so we will use PH4,4klt'& for PH.Also, in Examples 1 to 6, if the opening rate is t5 or more, the yield will be poor. <No, the yield is 910 in all cases below 5%.
0% and 1 piece.

実施?l14 実施例1と同様に、ケイ眩エチル2080Fに0.1規
定の塩酸’71800m加え、50分間激しく攪拌し、
力U水分屏反応會終了さぜ、このゾルに水’71000
m加え、更にCab−o−sil’z 750 f攪拌
下扉え、超廿波動濾過をして0.1規定のアンモニア水
でP H4,4に調整した。このゾル?内径25cmφ
のポリプロピレン製のum 10 j161に仕込み、
開口率3%のフタヶし、すぐに60℃の恒温槽に入れた
。6日10」60℃に放置してドライゲルが10個得ら
れ1こ。これらのドライゲル11m1200℃まで熱処
理′T/)ことによって石英ガラスとなつた。
implementation? l14 In the same manner as in Example 1, add 71,800ml of 0.1N hydrochloric acid to Keishi Ethyl 2080F, stir vigorously for 50 minutes,
The power U water screen reaction meeting is over, there is 71000 water in this sol.
The mixture was further stirred using Cab-o-sil'z 750 f, and subjected to ultra-high wave filtration, and the pH was adjusted to 4.4 with 0.1N aqueous ammonia. This sol? Inner diameter 25cmφ
Prepared in polypropylene um 10 j161,
It was covered with a lid with an open area ratio of 3% and immediately placed in a constant temperature bath at 60°C. After leaving it at 60℃ for 6 days, 10 dry gels were obtained. 11 m of these dry gels were heat treated to 1200° C. to become quartz glass.

すなわちこの方法で、ドライゲル作成日数ケ6日間にす
ることができ、歩″舘りを100%にすることができf
c、。
In other words, with this method, the number of days required to prepare the dry gel can be reduced to 6 days, and the walking distance can be increased to 100%.
c.

実施例5 実施例4と同様に行ったが、恒温槽のIA度(ドライゲ
ル作成温度〕とフタの開口率を表1の工う1cNfi々
変えて行なった。その時のドライゲル作成に要した日数
とドライゲル作成の歩留9ケ&1に示した。
Example 5 The procedure was carried out in the same manner as in Example 4, but the IA degree (dry gel creation temperature) of the constant temperature oven and the opening ratio of the lid were changed to 1 cNfi as shown in Table 1.The number of days required to create the dry gel at that time was The yield of dry gel preparation is shown in 9 & 1.

表 1 1i 17)h C)分か7)、cつに、ドライゲル作
成温度によって、歩留9’1100%にで@ゐ開口率の
上限があゐことが分かる。すなわち、60℃では6チ以
下でないといけないし、50℃では4%、40℃では7
チ、50℃では10チ以下でないといけない。
Table 1 1i 17) h C) Min 7) It can be seen that, depending on the dry gel preparation temperature, there is an upper limit to the aperture ratio at a yield of 9'1100%. In other words, it must be less than 6 inches at 60℃, 4% at 50℃, and 7% at 40℃.
H. At 50°C, it must be less than 10°.

このようなドライゲル1′削戊のパターンにおいてD、
歩留り 100チでドライヴ11作成日森又76日、U
度にjゐことができめ。
In such a pattern of dry gel 1' cutting, D,
Drive 11 creation date Morimata 76 days with yield 100chi, U
I can do it at once.

1こだし、ドライゲル作成温fil : 70℃に丁ゐ
とゲル中に気泡が人/)、この気泡もほとんど表面だけ
であるので、表向を研暦する場合に(グ、この温度で作
成することも十分実用的であ/)670′C以上の高温
にすゐと作ノ氏日数τ6日以内[することも可能である
1. Dry gel creation temperature: 70°C. Air bubbles are present in the gel. Since these air bubbles are mostly only on the surface, when creating the dry gel at this temperature, It is also sufficiently practical that it is possible to maintain a high temperature of 670'C or higher for up to 6 days.

これらのドライゲルに、いずれも焼結丁nば石英ガラス
と丁勾ことができな。
None of these dry gels can be mixed with sintered quartz glass.

実施?1j6 実施列4と同様に行い、PH4,4のゾルr内径25c
mφのポリプロピレン製容器10個に仕込んだ。これら
全表2のような条件に放置してドライゲルとした。すな
わち1.偵々の開口率10フタτし、室温で数日間放置
して収縮させ、開口率2の表 2 フタに変え、温度に上昇させ種々の乾燥tFa度に加熱
した。所定の日数放置し、ドライゲルを得7C。
implementation? 1j6 Perform in the same manner as in row 4, sol r inner diameter of PH4,4 25c
The mixture was placed in 10 mφ polypropylene containers. It was left to stand under the conditions shown in Table 2 to form a dry gel. That is, 1. A lid with an opening ratio of 10 was used, left at room temperature for several days to shrink, replaced with a lid with an opening ratio of 2, and heated to various drying tFa degrees. Leave it for a specified number of days to obtain a dry gel at 7C.

その時の歩留り全表2に示した。The total yield at that time is shown in Table 2.

このように、室温でゲル化させ、室温である程度収縮さ
せ、高温に加熱し乾燥路せゐといつ温度プログラムr用
い心と、歩留9ケ100%週くにでき、ドライゲルイ乍
数日畝t5〜8日に短材6できる。
In this way, if you gel at room temperature, shrink to some extent at room temperature, heat it to a high temperature and put it on a drying path, you can achieve a yield of 9 to 100%, and the dry gel will last for several days. 6 pieces of short wood can be made on the 8th.

このようにして得られたドライゲル1200℃1で加熱
し焼結することで石英ガラスとすることができる。
By heating and sintering the thus obtained dry gel at 1200° C., it can be made into quartz glass.

実施例7 実施例4と同様に行い、PH4,4のゾル葡内径23c
mφのポリプロピレン製容器101固に仕込んだ。これ
ら〒表6のような条件に放置してドライゲルとしン寛。
Example 7 Performed in the same manner as Example 4, with a pH of 4.4 and a sol grape inner diameter of 23c.
The mixture was placed in a polypropylene container 101 having a diameter of mφ. These were left under the conditions shown in Table 6 to form a dry gel.

すなわち、開口率が2〜5%のフタk L、(開口率が
2矛以下であるとドライゲル作成日数が長くなりすぎる
欠点を有しているし、開口率が5%以上ではドライゲル
作成の歩留りが悪くなる。〕あゐ温妓でケル化および収
、陥ズδせ、史に高温にし−C乾燥させドライゲルと丁
ゐものであめ。
In other words, the lid kL has an opening ratio of 2 to 5%, (if the opening ratio is less than 2, it will take too long to create a dry gel, and if the opening ratio is 5% or more, the yield of dry gel creation will decrease). [It gets worse.] It turns into a kelp, settles, and collapses when heated, then it is heated to a high temperature and then dried and treated with dry gel.

このようにゲル化収紬紮同−の確[皮で行い、史に高温
にし乾燥路せゐと衣6のよりに100条近い歩留りに7
2.9、ドライゲル11三或日叡才4日11nJ ’E
で短縮でさな、 表 6 以上のように棟々のパターンの温間プログラムについて
の実施例を示してきたが、開口率と温1現の榮1+につ
壕く選定すれば、実施例以外のパターンの温度プログラ
ム?用いても、ドライゲル作成日数を短縮し、歩留り盆
100%近く1でに丁ゐことがでさめ。
In this way, the gelation and retention of the pongee was confirmed.
2.9, Dry gel 113 days 4 days 11nJ 'E
As shown in Table 6 above, we have shown examples of warm programs with ridge patterns. Temperature program of pattern? Even when used, it is possible to shorten the number of days required for dry gel production and achieve a yield rate of nearly 100%.

このように、本発明の石英カラスの作成万l五會用いる
と、ドライゲルr「数日式が短#I6でき、従って短期
間で石英カラスτ作成できゐよつになめ。
In this way, by using 10,000 liters of quartz glass according to the present invention, the dry gel can be produced in a few days, and therefore the quartz glass can be produced in a short period of time.

f1乙、同時に歩留りも高くずゐことができるので石英
ガラスの製造コスト2更に低くずゐことができ、このこ
とりよ、促米右英ガラス7使用していた分野(工C製造
工程のめつぼや、炉lb管、理化学用機器等)に2いて
、1だ、従来石英ガラスが商価で使用できなかった分!
l!1−に、大きく貢献丁ゐことにf!、/)。
At the same time, the production cost of quartz glass can be further reduced because the yield can be kept low. , furnace LB control, laboratory equipment, etc.) and 1, because conventional quartz glass could not be used at commercial prices!
l! 1-, it greatly contributed to f! ,/).

【図面の簡単な説明】[Brief explanation of the drawing]

lj!1図は本発明の製造方法におけな、ドライゲル1
乍成用の容器であり、1に穴、2はフタ、ろはホリフロ
ピレン製の容器、4はゾル浴数であゐ。 第2図はフタ7しない揚台のドライゲル作成用の容器で
あめ。1はフタのない状悪を示し、2はポリプロピレン
、!!′6器、6VJ、ゾルであな。
lj! Figure 1 shows dry gel 1 in the production method of the present invention.
It is a container for the preparation, 1 is a hole, 2 is a lid, the filter is a container made of holiflopyrene, and 4 is the number of sol baths. Figure 2 shows a container for making dry gel without a lid. 1 indicates poor condition with no lid, 2 indicates polypropylene,! ! '6 vessel, 6 VJ, Sol de Ana.

Claims (1)

【特許請求の範囲】 (11金mアルコキシドお工び超微粉床シリカ會原料と
し、ゾルのPH全4〜6にvA姫すゐゾル−ゲル法によ
る石英ガラスの低温合成法において、ドライゲルの作成
時に、少なくとも一つ以上の貫通孔を肩するフタ會し、
更に、室温以上の高温で放置することを特徴とする石英
ガラスの製造方法。 (2)貫通孔を有するフタにおいて、その貫通孔とフタ
全体の面積の比(開口率)を50%以下にしたことに%
徴とする特許請求の範囲第1項記載の石英ガラスの製造
方法。 (3) 放置の温度を、室温から100℃としたことを
特徴とする特許請求の範囲第1項記載の石英ガラスの製
造方法。 (4)ケル化を室温から60℃までのある温度で行い、
ゲル化佐60℃から100℃1でのある温度に放置し、
収縮させ、最俵に、その収縮温度から300℃葦でのめ
ゐ温度に放直し乾燥させ、ドライゲルと丁々ことt特徴
とすゐを肝請釆の範囲第1項ないし弗3項のいずれ刀)
に記載の石英ガラスの製造方法、 (5) ゲル化温度刀・ら収量温度への昇温スピードを
2℃/分以下にし、収稲温度刀為ら乾燥温度への昇温ス
ピード73℃/分以下にしたこと2特徴と丁′/b特許
請求の範囲第4項記載の石英ガラスの製造方法。
[Claims] (Creation of dry gel in the low-temperature synthesis method of silica glass by sol-gel method using 11 gold m alkoxide as ultrafine powder bed silica raw material and VA Himesu with a sol pH of 4 to 6) Sometimes, the lid has at least one or more through holes,
Furthermore, a method for producing quartz glass characterized by leaving it at a high temperature higher than room temperature. (2) In a lid with a through hole, the ratio of the area of the through hole to the entire lid (opening ratio) is 50% or less.
A method for producing quartz glass according to claim 1. (3) The method for manufacturing quartz glass according to claim 1, characterized in that the temperature at which the glass is left to stand is between room temperature and 100°C. (4) Kelization is carried out at a certain temperature from room temperature to 60°C,
Leave the gelatinizer at a certain temperature between 60℃ and 100℃1.
After shrinking the bale, let it dry again from its shrinkage temperature to a temperature of 300℃ with reeds. )
The method for producing quartz glass described in (5) The heating speed from the gelling temperature to the yield temperature is 2°C/min or less, and the heating rate from the rice harvesting temperature to the drying temperature is 73°C/min. The method for manufacturing quartz glass as set forth in claim 4.
JP17064383A 1982-12-23 1983-09-16 Production of quartz glass Granted JPS6065732A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP17064383A JPS6065732A (en) 1983-09-16 1983-09-16 Production of quartz glass
EP84900294A EP0131057B1 (en) 1982-12-23 1983-12-22 Process for producing quartz glass
GB08418301A GB2140408B (en) 1982-12-23 1983-12-22 Process for producing quartz glass
US06/642,606 US4681615A (en) 1982-12-23 1983-12-22 Silica glass formation process
NLAANVRAGE8320410,A NL188795C (en) 1982-12-23 1983-12-22 METHOD FOR MANUFACTURING A QUARTZ GLASS
DE19833390375 DE3390375T1 (en) 1982-12-23 1983-12-22 Process for the manufacture of silica glass
PCT/JP1983/000450 WO1984002519A1 (en) 1982-12-23 1983-12-22 Process for producing quartz glass
US07/008,226 US4801318A (en) 1982-12-23 1987-01-29 Silica glass formation process
SG395/88A SG39588G (en) 1982-12-23 1988-06-20 A process of forming silica glass
HK695/89A HK69589A (en) 1982-12-23 1989-08-31 A process of forming silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17064383A JPS6065732A (en) 1983-09-16 1983-09-16 Production of quartz glass

Publications (2)

Publication Number Publication Date
JPS6065732A true JPS6065732A (en) 1985-04-15
JPH0124735B2 JPH0124735B2 (en) 1989-05-12

Family

ID=15908675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17064383A Granted JPS6065732A (en) 1982-12-23 1983-09-16 Production of quartz glass

Country Status (1)

Country Link
JP (1) JPS6065732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3623843A1 (en) * 1985-07-16 1987-01-22 Seiko Epson Corp METHOD FOR PRODUCING QUARTZ GLASS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997550A (en) * 1982-10-29 1984-06-05 ダウ・コ−ニング・コ−ポレ−シヨン Manufacture of carbon-containing glass by sol gel process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997550A (en) * 1982-10-29 1984-06-05 ダウ・コ−ニング・コ−ポレ−シヨン Manufacture of carbon-containing glass by sol gel process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3623843A1 (en) * 1985-07-16 1987-01-22 Seiko Epson Corp METHOD FOR PRODUCING QUARTZ GLASS

Also Published As

Publication number Publication date
JPH0124735B2 (en) 1989-05-12

Similar Documents

Publication Publication Date Title
Celzard et al. Applications of the sol-gel process using well-tested recipes
JPS6065732A (en) Production of quartz glass
JPS62265130A (en) Production of silica glass
JPS6065735A (en) Production of quartz glass
JPH03137028A (en) Production of large-sized massive glass
JPS63107821A (en) Production of glass
JPS59102833A (en) Preparation of quartz glass
JPH04260608A (en) Production of optical element with refractive index distribution type
JPH0283237A (en) Production of chalcogenide glass
JPH03295826A (en) Manufacture of semiconductor fine particles-doped silica glass
JPS60131834A (en) Manufacture of quartz glass
JPS6270231A (en) Production of glass
JPH01119526A (en) Production of silica glass
JPS6090835A (en) Manufacture of silica-titania glass
JPS63144127A (en) Production of quartz glass
JPH0114178B2 (en)
JP3713304B2 (en) Glass manufacturing method
JPS60108324A (en) Production of quartz glass
JPS6046937A (en) Manufacture of quartz glass
JPS6325228A (en) Production of material having refractive index distribution
JPS6291428A (en) Production of glass
JPS61168540A (en) Production of quartz glass
JPS63112430A (en) Production of glass
JPS62226822A (en) Production of glass
JPH0264030A (en) Production of lumpy glass