[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS605521B2 - How to reuse condensed water - Google Patents

How to reuse condensed water

Info

Publication number
JPS605521B2
JPS605521B2 JP1252377A JP1252377A JPS605521B2 JP S605521 B2 JPS605521 B2 JP S605521B2 JP 1252377 A JP1252377 A JP 1252377A JP 1252377 A JP1252377 A JP 1252377A JP S605521 B2 JPS605521 B2 JP S605521B2
Authority
JP
Japan
Prior art keywords
steam
pressure steam
pressure
condensed water
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1252377A
Other languages
Japanese (ja)
Other versions
JPS5398303A (en
Inventor
伸吉 野沢
敏之 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP1252377A priority Critical patent/JPS605521B2/en
Publication of JPS5398303A publication Critical patent/JPS5398303A/en
Publication of JPS605521B2 publication Critical patent/JPS605521B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Industrial Gases (AREA)

Description

【発明の詳細な説明】 この発明は炭化水素と水蒸気政質して得られる混合ガス
の精製過程で、混合ガスの温度降下により生成する凝縮
水の経済的な再利用方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an economical method for reusing condensed water produced by lowering the temperature of a mixed gas during the purification process of a mixed gas obtained by subjecting hydrocarbons to steam.

炭化水素を水蒸気敦質して得られる濠合ガスを精製して
有用目的物として得たりあるいは精製ガスを原料として
有用物質を合成する化学プラントは数多く存在する。
There are many chemical plants that purify the pooled gas obtained by steam refining hydrocarbons to obtain useful products, or that synthesize useful substances using the purified gas as a raw material.

即ち、前段において天然ガス、ナフサ、重油などの炭化
水素類を中間圧力で水蒸気を使用する改費法または酸素
含有ガスを併用する部分酸化法により、メタン、水素、
一酸化炭素を含有する高温混合ガスを得、これを後段に
おいて精製して、燃料ガス、純水素またはアンモニア、
メタノールなどの合成原料ガスが製造されている。これ
らの化学プラントでは、前段で得られる高温混合ガスは
相当量の水蒸気を含有しており、後段の精製工程におい
て温度が降下する過程があるため、混合ガス中の水蒸気
が凝縮水となって分離する。
That is, in the first stage, hydrocarbons such as natural gas, naphtha, and heavy oil are converted into methane, hydrogen,
A high-temperature mixed gas containing carbon monoxide is obtained, which is purified in a subsequent stage to produce fuel gas, pure hydrogen or ammonia,
Synthetic raw material gases such as methanol are produced. In these chemical plants, the high-temperature mixed gas obtained in the first stage contains a considerable amount of water vapor, and as there is a process in which the temperature drops in the subsequent purification process, the water vapor in the mixed gas becomes condensed water and is separated. do.

この凝縮水の経済的な再利用は、エネルギーおよび水、
水蒸気などの収支の改善上重要な課題である。一方、こ
れらの化学プラントでは、プラント内に多くの遠D圧縮
機、ポンプを使用するが、これら回転機械の駆動はスチ
ームタービンによろうとする懐向にあり、ために高圧水
蒸気発生系を設けて発生した高圧水蒸気をスチームター
ビンに導通して膨脹せしめ、その復水を高圧水蒸気発生
系に循環せしめ、系外からの新規供給の高度処理水とと
もに高圧水蒸気とする蒸気系統を設けている。
The economical reuse of this condensate reduces energy and water
This is an important issue in improving the balance of water vapor and other resources. On the other hand, these chemical plants use many far-D compressors and pumps in the plant, but the drive of these rotating machines is becoming more and more like a steam turbine, so a high-pressure steam generation system is installed. A steam system is installed in which the generated high-pressure steam is passed through a steam turbine and expanded, and the condensed water is circulated through the high-pressure steam generation system, where it is converted into high-pressure steam along with highly treated water newly supplied from outside the system.

この際、高圧水蒸気の一部は中圧水蒸気として抽気され
、その一部を混合ガス製造用水蒸気として供給し残部を
更に他のスチームタービンに導入して膨脹、復水する方
法がとられている。しかして、従来、前記混合ガスから
の凝縮水は廃棄するかあるいは複雑な精製処理をしたの
ち、高圧水蒸気発生系に導入して再利用し、系外からの
新規供給の高度処理水を少なくする方法が実施されてき
た。
At this time, a portion of the high-pressure steam is extracted as medium-pressure steam, a portion of which is supplied as steam for producing mixed gas, and the remainder is further introduced into another steam turbine for expansion and condensation. . Conventionally, the condensed water from the mixed gas is either discarded or subjected to complicated purification treatment and then introduced into the high-pressure steam generation system for reuse, thereby reducing the amount of highly treated water newly supplied from outside the system. method has been implemented.

前者則ち凝縮水を廃棄することは、環境保全上問題が生
じるので、従来複雑な精製処理をしたのち高圧水蒸気発
生系に導入する方法が実施されてきたが、再利用先が高
圧水蒸気発生系であるため「以下にのべるように非常に
高度の精製処理を必要とする欠点を有する。凝縮水には
、アンモニア、炭酸ガス、メタノールその他の有害ガス
とともに金属化合物などを含有し、そのままでの供給は
高圧水蒸気発生系には不適である。そのために精製処理
として水蒸気による脱気いわゆるスチームストリッピン
グ方法が実施されてきた。しかし、この方法のみでは、
タービンブレードやタービンコンデンサーで異物の沈着
や腐食が起り易くまた高圧水蒸気発生ボイラーでは発泡
現象が激しいきらいがあるので不充分な精製である。近
年、スチーム ストリッピソグとイオン交≠奥樹脂処理
および活性炭処理などとの組合せ処理が実施されて、高
圧水蒸気発生系に適するようになってきたが、多くの設
備と操作工程を必要とし経費が嵩むばかりでなく、イオ
ン交換樹脂などに藻が発生するなどの欠点もある。この
発明は、従来の複雑な精製処理をすることなく簡単なス
チーム ストリツピングあるいはェアレーション処理に
付するのみの凝縮水再利用の方法を提供するものである
In the former case, disposing of condensed water poses problems in terms of environmental protection, so the conventional method has been to perform a complicated purification process and then introduce it into a high-pressure steam generation system. Therefore, as described below, it has the disadvantage of requiring extremely high-level purification processing.Condensed water contains ammonia, carbon dioxide, methanol, and other harmful gases as well as metal compounds, and cannot be supplied as is. is unsuitable for high-pressure steam generation systems.For this reason, deaeration using steam, the so-called steam stripping method, has been implemented as a purification process.However, this method alone cannot
Deposition of foreign matter and corrosion tend to occur in turbine blades and turbine condensers, and in high-pressure steam generating boilers, foaming tends to be severe, so purification is insufficient. In recent years, combination treatments such as steam stripping and ion exchange, Oku resin treatment, and activated carbon treatment have been implemented, making them suitable for high-pressure steam generation systems, but they require a lot of equipment and operation processes, which only increases costs. However, there are also drawbacks such as the growth of algae on ion exchange resins. The present invention provides a method for reusing condensed water by simply subjecting it to steam stripping or aeration treatment without performing the conventional complicated purification treatment.

即ち、この発明は凝縮水をスチーム ストリツピングあ
るいはェアレーションに付したのち、別個に設けた中圧
水蒸気発生装置に導入して中圧水蒸気を発生せしめ、こ
れを改質用水蒸気の一部として再利用するものである。
この発明は、中圧において炭化水素を水蒸気改質して混
合ガスを生成せしめるガス化工程とその混合ガスの精製
工程ならびに高圧水蒸気発生系からの高圧水蒸気を膨脹
せしめて得られる中圧水蒸気の一部を前記ガス化工程の
故費用水蒸気として使用する工程とからなる精製ガス製
造において、前記精製工程における混合ガスの降温によ
り発生する凝縮水をスチーム ストリッピングもしくは
ェァレーション処理に付したのち別個に設けた中圧水蒸
気発生装置で中圧水蒸気として前記ガス化工程の改質用
水蒸気の一部として再利用することである。
That is, in this invention, after subjecting the condensed water to steam stripping or aeration, it is introduced into a separately provided medium pressure steam generator to generate medium pressure steam, which is then recycled as part of the reforming steam. It is something to be used.
This invention relates to a gasification process in which hydrocarbons are steam-reformed at medium pressure to produce a mixed gas, a purification process of the mixed gas, and a process for medium-pressure steam obtained by expanding high-pressure steam from a high-pressure steam generation system. In the production of purified gas, which consists of the step of using a part of the gas as waste steam in the gasification step, the condensed water generated by cooling the mixed gas in the refining step is subjected to steam stripping or aeration treatment, and then separately provided. It is to reuse it as medium pressure steam in a medium pressure steam generator as part of the reforming steam in the gasification process.

しかして、中圧、高圧とは比較上の表現であり、それぞ
れ特定の圧力を示すものではなく、中圧は水蒸気改質が
実施される圧力で通常5乃至70kg′の、高圧は水蒸
気教質の中圧より高い圧力を云い、通常60乃至150
kg′のである。以下にこの発明をアンモニア製造プラ
ントに例をとり詳細に説明する。導管11より導入され
る40k9′洲の天然ガスまたはナフサなどの原料炭化
水素は、導管25よりの40k9′地の水蒸気と導管1
2よりの40k9/地の水蒸気と混合され、導管13か
ら第1次水蒸気改質炉の炉管1に導入される。
However, medium pressure and high pressure are comparative expressions, and do not indicate specific pressures. Medium pressure is the pressure at which steam reforming is carried out, usually 5 to 70 kg', and high pressure is the pressure at which steam reforming is carried out. It refers to a pressure higher than the medium pressure of , usually 60 to 150
kg'. The present invention will be explained in detail below using an example of an ammonia production plant. Raw material hydrocarbons such as natural gas or naphtha in the 40k9' area introduced from the conduit 11 are mixed with water vapor in the 40k9' area from the conduit 25 and the conduit 1.
It is mixed with 40k9/ground steam from No. 2 and introduced into the furnace tube 1 of the primary steam reforming furnace through the conduit 13.

炉管1において33【9/地で改質され発生した高温の
混合ガスは導管14を経て第2次政質炉2に導入され、
導管15からの空気と反応し、生成した水素、一酸化炭
素を含有する高温混合ガスは導管16、熱交換器3、導
管17、熱交換器4、導管18、熱交換器5を経て冷却
され、導管亀9から分離器6に至りここで凝縮水と分離
され導管21より取出され、次に図示していないがCO
転化、メタネーター工程を経て300k9′のに圧縮さ
れ、アンモニア合成装置中へ導かれ、ここでアンモニア
が合成される。一方、凝縮水は導管20を経て脱気装置
7に導入される。凝縮水はここで導管26からの水蒸気
で脱気すなわち溶解しているアンモニア、炭酸ガス、メ
タノールその他の有害ガスの大部分が除かれ導管22か
ら取出される一方、処理された凝縮水は導管23,24
を経て、中圧水蒸気発生装置8に導かれ、発生した中圧
水蒸気は導管25を経て原料炭化水素と混合される。一
方、高圧水蒸気発生装置30からの100kg′流の高
圧水蒸気は導管37を経てスチームタービン31に導入
され、一部は中圧40k9′地の中圧水蒸気として取り
出され、導管38を経て更にその一部は導管12を経て
原料炭化水素と混合され、残部はスチームタービン32
,33で膨脹せしめられ、導管39,40,41を経て
復水器35に導かれる。一方、スチームタービン31で
低圧まで膨脹せしめられた水蒸気は熱交換器34を経て
導管42により復水器35に導かれる。復水器35には
系内物質収支上系外から新規供給の高度処理水が導管4
3から供給される。復水は導管44、ポンプ36、導管
45を経て高圧水蒸気発生装置3川こ導かれ高圧水蒸気
が生成される。以上の工程において分離器6からの凝縮
水中に含まれる有害ガスであるアンモニア、炭酸ガス、
メタノール、メチルアミン、ぎ酸、ホルムアルデヒドな
どは簡単な脱気装置7で大部分除去され、たとえ有害ガ
スの一部が残ったとしても、それらを含む凝縮水は何ら
設備に悪影響を与えることなく、中圧水蒸気発生装置8
で中圧水蒸気になるとともに、有害ガスの残部も同伴さ
れて第1次水蒸気改質炉の炉管1に導入され、ここで有
害ガスが分解される利点を有する。なお、凝縮水中の金
属またはその化合物は、通常の中圧水蒸気発生装置にお
ける場合と同様に適宜にフローすることにより蓄積を防
ぐことができる。以上の説明からわかるように、この発
明の方法によれば、凝縮水を再利用しない方法に比較し
「第1に凝縮水の再利用が簡単な脱気装置と小容量の中
圧水蒸気発生装置を設けるのみで可能となり、第2に高
圧水蒸気発生系に系外から供給する新規供給の高度処理
水いわゆる純水が凝縮水再利用の量だけ節約される。節
約される純水の量は例えば上記アンモニア製造プラント
において凝縮水を再利用しない従来の方法では系外から
供給される純水の量はアンモニア1トン当り7.3トン
であったが、この発明では6.1トンの供給でよく、ア
ンモニア1トン当り差引1.2トンの純水が節約される
ことになる。1日1000トンのアンモニア工場ともな
ると莫大な節約となる。
The high-temperature mixed gas generated by reforming in the furnace tube 1 at 33 [9/ ground] is introduced into the second political furnace 2 via the conduit 14.
The high temperature mixed gas containing hydrogen and carbon monoxide produced by reacting with the air from the conduit 15 is cooled through the conduit 16, heat exchanger 3, conduit 17, heat exchanger 4, conduit 18, and heat exchanger 5. , from the conduit turtle 9 to the separator 6, where it is separated from the condensed water and taken out from the conduit 21, and then, although not shown, CO
It is compressed to 300k9' through a conversion and methanator step, and is led into an ammonia synthesizer, where ammonia is synthesized. On the other hand, the condensed water is introduced into the deaerator 7 via the conduit 20. The condensed water is here degassed with water vapor from conduit 26, i.e. most of the dissolved ammonia, carbon dioxide, methanol and other harmful gases are removed, and is taken out from conduit 22, while the treated condensed water is removed from conduit 23. ,24
The generated medium pressure steam is then passed through a conduit 25 and mixed with the raw material hydrocarbon. On the other hand, 100 kg' of high-pressure steam from the high-pressure steam generator 30 is introduced into the steam turbine 31 through a conduit 37, a part of which is taken out as medium-pressure steam of 40k9', and further through a conduit 38. A portion is mixed with the feedstock hydrocarbon via conduit 12, and the remainder is mixed with the steam turbine 32.
, 33 and led to the condenser 35 via conduits 39, 40, 41. On the other hand, the steam expanded to a low pressure by the steam turbine 31 is guided to the condenser 35 via a conduit 42 via a heat exchanger 34. Condenser 35 receives newly supplied highly treated water from outside the system based on the internal mass balance through conduit 4.
Supplied from 3. The condensate is led to three high-pressure steam generators via a conduit 44, a pump 36, and a conduit 45, and high-pressure steam is generated. In the above process, harmful gases such as ammonia and carbon dioxide contained in the condensed water from the separator 6,
Most of methanol, methylamine, formic acid, formaldehyde, etc. are removed by a simple degassing device 7, and even if some harmful gases remain, the condensed water containing them will not have any adverse effect on the equipment. Medium pressure steam generator 8
At the same time, the remaining part of the harmful gas is introduced into the furnace tube 1 of the primary steam reforming furnace, where the harmful gas is decomposed. Incidentally, metals or their compounds in the condensed water can be prevented from accumulating by flowing appropriately as in a normal medium-pressure steam generator. As can be seen from the above description, the method of the present invention has two advantages over methods that do not reuse condensed water: first, it has a deaeration device that allows easy reuse of condensed water and a small-capacity medium-pressure steam generator. Second, newly supplied highly treated water, so-called pure water, which is supplied to the high-pressure steam generation system from outside the system, is saved by the amount of reused condensed water.The amount of purified water saved is, for example, In the conventional method in which condensed water is not reused in the ammonia production plant, the amount of pure water supplied from outside the system was 7.3 tons per ton of ammonia, but in this invention, only 6.1 tons of pure water is supplied. , 1.2 tons of pure water will be saved per 1 ton of ammonia.For an ammonia factory with a capacity of 1000 tons per day, the savings will be enormous.

また、従来の方法である凝縮水を複雑な処理即ちイオン
交キ製樹脂処理、水蒸気鋭気、酸化、活性炭処理さらに
イオン交換樹脂処理の組合せ処理をする方法に比較する
と純水の節約は同じであるが、この発明の方法は簡単な
脱気装置と小容量の中圧水蒸気発生装置を設けるのみで
何らの問題を生じるおそれもなく、長期運転が可能であ
る。以上はアンモニア合成の場合について説明したが、
この発明はメタノール合成、水素製造の如く中程度の圧
力および高温で水蒸気を必要とする第一工程、次いで前
工程から出る混合ガスの精製する第二工程と第一工程よ
り高い圧力の高圧水蒸気発生装置ならびにその高圧水蒸
気を膨脹せしめるスチームタービンを有する水蒸気系統
を有するプラントにこの発明を逸脱することなく広く適
用することができる。
In addition, compared to the conventional method, which involves complex treatment of condensed water, i.e., ion exchange resin treatment, steam aeration, oxidation, activated carbon treatment, and ion exchange resin treatment, the savings in pure water is the same. However, the method of the present invention requires only a simple deaerator and a small-capacity medium-pressure steam generator, and can be operated for a long period of time without causing any problems. The above explained the case of ammonia synthesis, but
This invention consists of a first process that requires steam at medium pressure and high temperature, such as methanol synthesis and hydrogen production, and then a second process that purifies the mixed gas from the previous process and generates high-pressure steam at a higher pressure than the first process. The present invention can be widely applied to plants having a steam system having an apparatus and a steam turbine for expanding the high-pressure steam without departing from the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法の実施例のフローシートである
。 第1図
FIG. 1 is a flow sheet of an embodiment of the method of this invention. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1 中圧において炭化水素を水蒸気改質して混合ガスを
生成せしめるガス化工程と、その混合ガスの生成工程な
らびに高圧水蒸気発生系からの高圧水蒸気を膨脹せしめ
て得られる中圧水蒸気の一部を前記ガス化工程の改質用
水蒸気として使用する工程と、からなる精製ガス製造に
おいて、前記精製工程における混合ガスの降温により発
生する凝縮水をスチームストリツピングもしくはエアレ
ーシヨン処理に付した後、別個に設けた中圧水蒸気発生
装置で中圧水蒸気となして、前記ガス化工程の改質用水
蒸気として再利用することにより高圧水蒸気発生系から
の改質用水蒸気量を減少せしめることを特徴とする凝縮
水の再利用法。
1 A gasification process in which hydrocarbons are reformed with steam at medium pressure to produce a mixed gas, a process for generating the mixed gas, and a part of the medium-pressure steam obtained by expanding high-pressure steam from a high-pressure steam generation system. In the production of purified gas, which comprises a step of using it as reforming steam in the gasification step, the condensed water generated by cooling the mixed gas in the purification step is subjected to steam stripping or aeration treatment, and then separately Condensation characterized in that the amount of reforming steam from the high-pressure steam generation system is reduced by converting the intermediate-pressure steam into intermediate-pressure steam in the provided intermediate-pressure steam generator and reusing it as reforming steam in the gasification step. How to reuse water.
JP1252377A 1977-02-09 1977-02-09 How to reuse condensed water Expired JPS605521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1252377A JPS605521B2 (en) 1977-02-09 1977-02-09 How to reuse condensed water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1252377A JPS605521B2 (en) 1977-02-09 1977-02-09 How to reuse condensed water

Publications (2)

Publication Number Publication Date
JPS5398303A JPS5398303A (en) 1978-08-28
JPS605521B2 true JPS605521B2 (en) 1985-02-12

Family

ID=11807689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1252377A Expired JPS605521B2 (en) 1977-02-09 1977-02-09 How to reuse condensed water

Country Status (1)

Country Link
JP (1) JPS605521B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4663104B2 (en) * 2000-12-06 2011-03-30 石油資源開発株式会社 Syngas production by autothermal reforming
JP4663103B2 (en) * 2000-12-06 2011-03-30 独立行政法人石油天然ガス・金属鉱物資源機構 Syngas production
FR2940264B1 (en) * 2008-12-22 2012-03-23 Air Liquide METHOD FOR THE VALORISATION OF THE EVENT OF A DE-AERATOR ASSOCIATED WITH A PRODUCTION OF SYNTHESIS GAS AND INSTALLATION FOR ITS IMPLEMENTATION

Also Published As

Publication number Publication date
JPS5398303A (en) 1978-08-28

Similar Documents

Publication Publication Date Title
RU2446152C2 (en) Method of producing urea and apparatus for realising said method
DE69613769T2 (en) Integrated urea / ammonia process
US4298694A (en) Process and a plant for preparing a gas rich in methane
JP2022508407A (en) Plants with thermal integration in urea production process and low pressure recovery section
US10954187B2 (en) Process for production of ammonia and derivatives, in particular urea
US6333014B1 (en) Process for ammonia and methanol co-production
CA2967087C (en) A method for revamping an ammonia plant
RU2283832C2 (en) Method for simultaneous production of ammonia and urea
EA039828B1 (en) Process for cooling synthesis gas
US4045960A (en) Process for producing energy
CN111807323B (en) Method for preparing hydrogen by steam conversion
US4327068A (en) Method and the reuse of sewage waters of the combined urea-ammonia installations
CN115315409A (en) Improvement of ammonia-urea plant
JPS605521B2 (en) How to reuse condensed water
JP7628399B2 (en) Method for co-producing methanol and methane and equipment for co-producing methanol and methane
US4218389A (en) Process for making methanol
EP1289942B1 (en) Process and plant for the production of urea
WO2020095221A1 (en) Urea production method and device
RU2829070C1 (en) Method and apparatus for producing ammonia
CN101155757A (en) Integration of gasification and ammonia production
RU2808330C1 (en) Method for producing low-carbon ammonia from natural gas decarbonized ammonia-2500
RU2832627C1 (en) Modernization of plants for combined synthesis of ammonia and urea
Ramadhan et al. Improving Energy Efficiency in Ammonia Production from Hydrogen and Nitrogen Through Optimizing Operating Condition
JPH10120643A (en) Improved urea synthesis method
CN220642594U (en) Novel methanol hydrogen production device