JPS6045931A - Magnetic head - Google Patents
Magnetic headInfo
- Publication number
- JPS6045931A JPS6045931A JP15282584A JP15282584A JPS6045931A JP S6045931 A JPS6045931 A JP S6045931A JP 15282584 A JP15282584 A JP 15282584A JP 15282584 A JP15282584 A JP 15282584A JP S6045931 A JPS6045931 A JP S6045931A
- Authority
- JP
- Japan
- Prior art keywords
- head
- medium
- slider
- magnetic
- ferrite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims description 15
- 229910000859 α-Fe Inorganic materials 0.000 claims description 11
- 239000000696 magnetic material Substances 0.000 claims description 5
- 229910018605 Ni—Zn Inorganic materials 0.000 claims 1
- 239000010409 thin film Substances 0.000 description 13
- 239000010408 film Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 206010011224 Cough Diseases 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3103—Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3109—Details
- G11B5/3116—Shaping of layers, poles or gaps for improving the form of the electrical signal transduced, e.g. for shielding, contour effect, equalizing, side flux fringing, cross talk reduction between heads or between heads and information tracks
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
〔発明の利用分野〕 本発明は信頼性に優れた薄膜ヘッドの構造体に係る。 [Field of application of the invention] The present invention relates to a thin film head structure with excellent reliability.
磁気デ・Cスフ装置では、一般に第1図に示すごとく媒
体1の上にヘッド2が狭い間隙、例えば0.3〜1.0
μmで浮上しながら情報の書込み再生動作を行う。ヘッ
ド2の構造は支持アーム3と、負荷バネ4およびスライ
ダー5と薄膜ヘッド素子部6(以下素子部と15)とか
らなっている0スライダー5と素子部6のみの形体を、
媒体1Vc対向する側からみた正面図を第2図に示した
。スライダー5に媒体1が矢印7の方向VC走行したと
きに浮上刃が発生し、これと負荷バネ4の力とが釣合っ
たところでヘッド2が浮上するように設計されている。
一方、媒体1が停止して−るときは、ヘッド2は負荷バ
ネ4のバネ圧で媒体1rC直接接触している。そして媒
体が徐々に回転し始めると、媒体上の空気も一緒に回転
し始めるためヘッド2のスライダー5の望見流人端部に
設けられているテーパ一部8に空気が流れ込み、スライ
ダー5を持ち上げる力が発生する。しばらく所定の回転
数に媒体1が達するまでは、媒体1とヘッド2とは臣い
に機械的にこすりながら相対運動を行い、更に回転が早
くなるとヘッド2が第1図のごとく完全に媒体1より浮
き上がる。また媒体1が回転を停止するに到る過度状態
においても、前記起動時と同様にヘッド2と媒体1の摺
動現象が現出する。従ってこの媒体の起動、停止動作に
おける両者の摺動が通常の顧客使用状態におφても不可
避的に起るため、本装置の設計に当っては予めとの摺動
に充分耐えうるヘッド並びに媒体の材質と形状が大きな
技術課題となる。従来の薄膜ヘッドではこのスライダー
材料として、たとえばアルばチーチタン。カーバイト(
AI!20s−TiC)やりチーラム−珪酸塩結晶体(
商品名「ホトセラム」)が用いられている。これらはい
づれも非磁性材料である。前者は硬い材料でビッカース
硬度で表わすと略々2,000〜2゜300である。素
子部の摩耗を防ぐという意味においてはすぐれたもので
あるが、実際にヘッドを製作し、上記起動、釣上動作の
繰返し耐久試験を行ったところ、大略31口00〜s
、 o o、o 回の動作で所謂ヘッド、クランニ現象
が発生し、媒体上の磁性塗料が剥離して、当然そとに記
録されている情報も再生不可能となった。この事故現象
の原因を調査してみた結果ヘッド2のスライダー5の材
料が媒体IVc比して非常に硬いため、ヘッドの方は殆
んど損傷せず、媒体1が一方的に傷付けられたものと判
明した。尚、ただひとつのヘッド2のみを試験に供した
こうした耐久試験では、顧客使用状態での安全なる品質
を保証するためVCは通常繰返し回数100,000回
以下では情報品質に著しい損傷が発生しないことが必要
とされている。次にもうひとつの従来形のホットで使わ
れている「ボトセラム」のスライダー5の場合では、本
材料がガラス質であり空孔等が少くこの上に薄膜を形成
するのに適している上に、加工性もよいという利点があ
る。
ビッカース硬度は約500前後である。しかしこのスラ
イダー上に薄膜へノド素子を形成し、前記耐久試験を行
ったところ同様に出力電圧が約6.000〜109口0
0の繰返し回数時に減少をきたし、安定なる情報処理動
作が不可能vcなった。この場合はA/20s−TiC
のスライダーと異な′り媒体1の損傷というよりもヘッ
ド2のスライダー5と素子部6の摩耗によシ磁気回路が
変化し初期の性能を維持できないことが原因であること
が判った。
ところでスライダー材料として前記耐久試験の結果も良
好で、且つ笑顔に製−品に広く用いられているものにN
i −Z nあるいはM n −Z nのフェン−(
)材(ビッカース硬直500〜700)がある。
この従来の別の実施例では、スライダーと電磁変換素子
部(これもフェライト材で構成)が兼用さtじ(いる構
造である。この考え方の延長上で薄膜ヘッドを製作した
もが第3図に断面図で示されるものである。すなわち、
スライダー9は前記フェライト材で構成され、第2図の
中でボされるスライダー5のごとき形状を持っている。
′またこれtI′i磁性材料であるのでこれを電磁変換
素子の閉磁路を構成する一方のコア脚も同・ 時に兼用
し゛〔いる。素子部の構造を更に詳しく説明すtLlよ
、第3図に示されるように、一方のコynとなるフェラ
イトスライダー9の上にギヤラグ材10として絶縁膜を
形成する。次に導体層11を蒸着後、所定の形状にバタ
ーニングする。
その上に再び絶縁層を形成した後、もう一方のコア脚と
なシ前記スライダー9とギヤング1oを介在した閉磁路
を形成するところの磁性体層12を形成する。尚、該磁
性体層12を形成する前にギャップ用絶縁膜は、閉磁路
を作るためエリア130部分は予め除去される。また外
部回路への接続細線14と咳ヘッドの導体層11との接
続を容易にするためのボンディング、バラ)154.同
$1に形成され、素子部の保護のために例えばアルばす
のスパッタ膜とが別の保護用部材が付着される。この第
3図では前者の保護膜16が例示されている0この種の
薄膜ヘッドは、スライダーとしてすぐれた特性と磁性体
としての特性を積極的に利用したものであると言える。
しかしながらこの従来例においても欠点がある。それは
媒体対向面17において露出しているコアの寸法1:+
、l:xがアンバランスであり、且つ特に問題なのはス
ライダー側の寸法l!Iが大きいことである。すなわち
、たとえば、蒸着、スパッタあるいはメツ中の手法で製
作される薄膜磁性体層12の厚さZ*#′i1〜5μm
であるのにだいし、/+はスライダー9の媒体走行方向
への長さに略々等しく /I=5〜4■程度であるため
12に比べれば/IFi殆んど無限大と考えてよい。こ
めためギャップ10から媒体1の存在する場所に漏洩す
る磁界の強さHxの分布は第4図のごとく、ギャップの
中心(x=0)Kたいし、左右非対称となり、且つ、ス
ライダー9側のHXの分布は磁性体層12の側のそれに
比べて広がってしまう。このため高密度記碌においては
隣接パルス同志の干渉が生じ、分解能の低下を招来する
。換1すれば、薄膜ヘッドのもつ、形状が微小なるが故
の急峻な磁界分布と高分解能が生かしきれていないこと
になる。
〔発明の目的〕
本発明の目的は従来ヘッドの以上の欠点を改善し薄膜ヘ
ッドとしての電磁変換特性の優秀さを生かし且つ、媒体
との摺動における耐久性も兼ね備えた新規なヘッドを提
供することにある。
【発明の概要〕
本発明の特数とするところは、媒体の走行起動ならび停
止動作時に、媒体とヘッドが1いに接触する磁気記憶装
@において、ヘッドの浮上刃を発生させるスライダー材
料としてNi−ZnあるいはMn znフェライトを用
い、この上Vこ磁気的相互干渉を防ぐに足る厚さを11
する非磁性材料を介在させた状態にて電磁変換素子部を
設置することvCSする。
〔発明の実施例〕
第5図は本発明の一実施例を示す断面図である。スライ
ダー18はNi−ZnあるいはMn−Znフェライトで
作り、媒体との摺動耐久性を持たせるようになっている
。そして第6図に示す従来のヘッドとの違いは、これを
一方のコア脚として使用せず、もっばらスライダーとし
てのみ利用することである。このため、フェライト18
の上にAI!tOs(アルミナ)膜19などの非磁性材
料を所定の厚さだけスパッタ法により′形成し、しかる
後、この膜の上に薄膜ヘッド素子部を製作する。フェラ
イトを一方のコア脚として用いていないため、この場合
の薄膜ヘッド素子は下部磁性体層20を形成し閉磁路を
構成する。アルξす膜19は素子部の保護やスライダー
材としてのフェライトの空孔を埋め清めらがな面を素子
部形成のために与えると共、磁性体であるフェライトと
素子部との磁気的カップリングを実使用状態で問題にな
らない程度に厚くすることが必要である。
このような構造をとれば前記の目的とする機能が同時に
生ずることになシ、電磁変換特性上も、機械特性も良好
なヘッドを得ることができる。
尚、別の実施例として、スパッタ法にょるアルεす1j
ij9の代シニ、別の非磁性基板19の上に素子部を形
成した後、スライダー18と基板19とをガラス溶着す
ることも可能である。Generally, in a magnetic disk drive device, as shown in FIG. 1, a head 2 is placed above a medium 1 with a narrow gap, e.g.
It performs information writing and reproducing operations while floating at micrometers. The structure of the head 2 consists of a support arm 3, a load spring 4, a slider 5, and a thin film head element part 6 (hereinafter referred to as the element part 15).
FIG. 2 shows a front view of the medium 1Vc viewed from the opposite side. The head 2 is designed so that a flying edge is generated when the medium 1 travels in the direction VC of the arrow 7 on the slider 5, and when this and the force of the load spring 4 are balanced, the head 2 floats. On the other hand, when the medium 1 is stopped, the head 2 is in direct contact with the medium 1rC due to the spring pressure of the load spring 4. When the medium gradually starts to rotate, the air on the medium also starts to rotate, and the air flows into the tapered part 8 provided at the end of the slider 5 of the head 2, causing the slider 5 to rotate. A lifting force is generated. For a while, until the medium 1 reaches a predetermined rotation speed, the medium 1 and the head 2 move relative to each other while mechanically rubbing against each other. When the rotation becomes faster, the head 2 completely rotates against the medium 1 as shown in FIG. It stands out more. Further, even in a transient state where the medium 1 stops rotating, the sliding phenomenon between the head 2 and the medium 1 appears as in the case of startup. Therefore, since sliding between the two during the start and stop operations of the medium inevitably occurs even under normal customer use conditions, when designing this device, it is necessary to design a head and a head that can withstand sliding between the two in advance. The material and shape of the media are major technical issues. In conventional thin film heads, this slider material is made of aluminum titanium, for example. Carbide (
AI! 20s-TiC) Yari Chilam-Silicate Crystal (
The product name ``Photoserum'') is used. All of these are nonmagnetic materials. The former is a hard material with a Vickers hardness of about 2,000 to 2.300. Although it is excellent in terms of preventing wear on the element, when we actually manufactured the head and conducted a repeated durability test of the above starting and fishing operations, we found that it lasted approximately 31 mouths 00 to s.
After , o o, o operations, the so-called head cranni phenomenon occurred, and the magnetic paint on the medium peeled off, making it impossible to reproduce the information recorded on the other side. We investigated the cause of this accident and found that the material of the slider 5 of the head 2 is much harder than the medium IVc, so the head was hardly damaged and the medium 1 was damaged unilaterally. It turned out to be. In addition, in such durability tests where only one head 2 is tested, in order to guarantee safe quality under customer usage conditions, VC is normally repeated 100,000 times or less without significant damage to information quality. is needed. Next, in the case of the slider 5 of "Botoseram", which is another conventional hot type, this material is glassy and has few pores, so it is suitable for forming a thin film on it. It has the advantage of good workability. Vickers hardness is around 500. However, when a gutter element was formed as a thin film on this slider and the durability test was conducted, the output voltage was approximately 6.000 to 109 mm.
It decreased when the number of repetitions was 0, and stable information processing operation became impossible. In this case, A/20s-TiC
Unlike the slider shown in FIG. 1, it was found that the cause was not so much damage to the medium 1 as the magnetic circuit changed due to wear of the slider 5 and element section 6 of the head 2, making it impossible to maintain the initial performance. By the way, N is a slider material that has good results in the durability test and is widely used in products with a smile.
i −Z n or M n −Z n phen−(
) material (Vickers hardness 500-700). In another conventional embodiment, the slider and the electromagnetic transducer part (also made of ferrite material) are used in the same way.A thin-film head was fabricated as an extension of this idea, as shown in Figure 3. This is shown in a cross-sectional view, i.e.
The slider 9 is made of the ferrite material and has a shape similar to the slider 5 shown in FIG. Also, since this is a magnetic material, it is also used as one of the core legs constituting the closed magnetic circuit of the electromagnetic conversion element. The structure of the element section will be explained in more detail.As shown in FIG. 3, an insulating film is formed as a gear lug material 10 on the ferrite slider 9, which serves as one coyn. Next, a conductor layer 11 is deposited and then patterned into a predetermined shape. After forming an insulating layer thereon again, a magnetic layer 12 is formed which serves as the other core leg and forms a closed magnetic path with the slider 9 and the gearing 1o interposed therebetween. Note that before forming the magnetic layer 12, the area 130 of the gap insulating film is removed in advance to create a closed magnetic path. Also, bonding to facilitate the connection between the thin connection wire 14 to the external circuit and the conductor layer 11 of the cough head (rose) 154. A protective member other than, for example, an Albas sputtered film is attached to protect the element portion. In FIG. 3, the former protective film 16 is illustrated. It can be said that this type of thin film head actively utilizes the excellent characteristics of a slider and the characteristics of a magnetic material. However, this conventional example also has drawbacks. It is the dimension 1 of the core exposed on the medium facing surface 17: +
, l:x is unbalanced, and what is particularly problematic is the dimension l! on the slider side! I is large. That is, for example, the thickness Z*#'i of the thin film magnetic layer 12 manufactured by vapor deposition, sputtering, or deposition method is 1 to 5 μm.
However, since /+ is approximately equal to the length of the slider 9 in the medium running direction, /I=5 to 4■, compared to 12, /IFi can be considered to be almost infinite. As shown in FIG. 4, the distribution of the strength Hx of the magnetic field leaking from the gap 10 to the location where the medium 1 exists is asymmetrical with respect to the center of the gap (x=0) K, and on the slider 9 side. The distribution of HX becomes wider than that on the magnetic layer 12 side. Therefore, in high-density recording, interference occurs between adjacent pulses, resulting in a decrease in resolution. In other words, the steep magnetic field distribution and high resolution of the thin-film head due to its minute shape cannot be fully utilized. [Object of the Invention] The object of the present invention is to improve the above-mentioned drawbacks of conventional heads, and to provide a new head that takes advantage of the excellent electromagnetic conversion characteristics of a thin film head and also has durability in sliding with a medium. There is a particular thing. Summary of the Invention The special feature of the present invention is that Ni is used as a slider material to generate flying edges of the head in a magnetic storage device where the medium and the head come into contact with each other when the medium starts and stops running. - Zn or Mn Zn ferrite is used, and the thickness is 11 to prevent mutual magnetic interference.
The electromagnetic transducer section is installed with a non-magnetic material interposed therebetween. [Embodiment of the Invention] FIG. 5 is a sectional view showing an embodiment of the present invention. The slider 18 is made of Ni--Zn or Mn--Zn ferrite to provide durability in sliding with the medium. The difference from the conventional head shown in FIG. 6 is that this head is not used as one of the core legs, but is used exclusively as a slider. For this reason, ferrite 18
AI on top! A nonmagnetic material such as a tOs (alumina) film 19 is formed to a predetermined thickness by sputtering, and then a thin film head element portion is fabricated on this film. Since ferrite is not used as one of the core legs, the thin film head element in this case forms the lower magnetic layer 20 and forms a closed magnetic path. The aluminum film 19 protects the element part, fills the vacancies in the ferrite as a slider material, provides a rough surface for forming the element part, and forms a magnetic cup between the ferrite, which is a magnetic material, and the element part. It is necessary to make the ring thick enough so that it does not pose a problem in actual use. If such a structure is adopted, the above-mentioned intended functions will occur at the same time, and a head with good electromagnetic conversion characteristics and mechanical characteristics can be obtained. In addition, as another example, Al εs1j by sputtering method
It is also possible to form the element portion on another non-magnetic substrate 19 after ij9, and then glass-weld the slider 18 and the substrate 19.
第1図および第2図は磁気ディスク用ヘッドの使用状態
と構造を示す側面図と平面図、第3図は従来の薄膜ヘッ
ドの構造を示す素子部付近の拡大断面図、第4図は第6
図のヘッドから発生する漏洩磁界分布を示す波形図、第
5図は本発明の一実施例を示すヘッドの断面図である。
1・・・媒体 2・・・ヘッド
18・・・フェライト(スライダー)
19・・・アルξす膜
20・・・下部磁性体層
オ 1 n
3
オ 2の1 and 2 are a side view and a plan view showing the usage state and structure of a magnetic disk head, FIG. 3 is an enlarged cross-sectional view of the vicinity of the element section showing the structure of a conventional thin film head, and FIG. 6
FIG. 5 is a waveform diagram showing the leakage magnetic field distribution generated from the head, and FIG. 5 is a sectional view of the head showing an embodiment of the present invention. 1... Medium 2... Head 18... Ferrite (slider) 19... Al ξ film 20... Lower magnetic layer O 1 n 3 O 2
Claims (1)
いに接触する磁気記憶装置において、ヘッドの浮上刃を
発生させるスライダー材料としてNi −Zn I)る
いはMn −znフェライトを用い、この上に磁気的相
互干渉を防ぐに足る厚さを有する非磁性材料を介在させ
た状態にて電磁変換素子部を設置してなることを特徴と
する磁気ヘッド。In a magnetic storage device in which the medium and the head come into contact with each other when the medium starts and stops running, Ni-Zn I) or Mn-zn ferrite is used as the slider material that generates the flying edge of the head, and magnetic A magnetic head characterized in that an electromagnetic transducer section is installed with a non-magnetic material having a thickness sufficient to prevent mutual interference interposed therebetween.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15282584A JPS6045931A (en) | 1984-07-25 | 1984-07-25 | Magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15282584A JPS6045931A (en) | 1984-07-25 | 1984-07-25 | Magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6045931A true JPS6045931A (en) | 1985-03-12 |
JPS6341131B2 JPS6341131B2 (en) | 1988-08-16 |
Family
ID=15548963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15282584A Granted JPS6045931A (en) | 1984-07-25 | 1984-07-25 | Magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6045931A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0727771A3 (en) * | 1995-02-17 | 1996-09-04 | Aiwa Co |
-
1984
- 1984-07-25 JP JP15282584A patent/JPS6045931A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0727771A3 (en) * | 1995-02-17 | 1996-09-04 | Aiwa Co | |
US5621594A (en) * | 1995-02-17 | 1997-04-15 | Aiwa Research And Development, Inc. | Electroplated thin film conductor coil assembly |
US5853558A (en) * | 1995-02-17 | 1998-12-29 | Aiwa Research And Development Inc. | Method of fabricating a thin film conductor coil assembly |
Also Published As
Publication number | Publication date |
---|---|
JPS6341131B2 (en) | 1988-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6160683A (en) | Slider for disc storage system | |
US5208715A (en) | Shield geometry for stabilizing magnetic domain structure in a magnetoresistive head | |
US20020118483A1 (en) | Glide test head with active fly height control | |
EP0099124B1 (en) | Magnetic recording and reproducing system | |
US6532134B1 (en) | Silicon coating on air bearing surface for magnetic thin film heads | |
JPH023101A (en) | magnetic disk device | |
US5323283A (en) | Floating magnetic head slider | |
US5948532A (en) | Cermet adhesion layer with carbonaceous wear layer for head/disk interfaces | |
JPS6045931A (en) | Magnetic head | |
US6221559B1 (en) | Method of making crack resistant magnetic write head | |
US4748073A (en) | Perpendicular magnetic recording medium with multilayered protective layer | |
JPH0320812B2 (en) | ||
US5057955A (en) | Composite magnetic head | |
JPS62270015A (en) | Floating type magnetic head | |
JPH0223517A (en) | perpendicular magnetic recording medium | |
JPH05314451A (en) | Magnetic head | |
JPS61199236A (en) | Magnetic recording medium | |
US6246544B1 (en) | Magnetic disk drive | |
JPH03228274A (en) | Magnetic head and its manufacturing method | |
Dudson et al. | Magnetic recording for computers | |
JPS61199233A (en) | Magnetic recording medium | |
JP2665949B2 (en) | Thin film magnetic head | |
Berghof | Head and Media Requirements for High-Density Recording | |
JPH09212840A (en) | Magnetic head slider and its production and magnetic disk device | |
JPH01236414A (en) | magnetic head |