JPS60206498A - Treatment of excretion sewage - Google Patents
Treatment of excretion sewageInfo
- Publication number
- JPS60206498A JPS60206498A JP59062456A JP6245684A JPS60206498A JP S60206498 A JPS60206498 A JP S60206498A JP 59062456 A JP59062456 A JP 59062456A JP 6245684 A JP6245684 A JP 6245684A JP S60206498 A JPS60206498 A JP S60206498A
- Authority
- JP
- Japan
- Prior art keywords
- denitrification
- tank
- flocculant
- nitrification
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011282 treatment Methods 0.000 title claims abstract description 42
- 239000010865 sewage Substances 0.000 title abstract description 4
- 230000029142 excretion Effects 0.000 title abstract 3
- 239000007788 liquid Substances 0.000 claims abstract description 59
- 238000000926 separation method Methods 0.000 claims abstract description 29
- 125000002091 cationic group Chemical group 0.000 claims abstract description 16
- 238000005189 flocculation Methods 0.000 claims abstract description 14
- 230000016615 flocculation Effects 0.000 claims abstract description 14
- 239000010800 human waste Substances 0.000 claims description 33
- 239000002351 wastewater Substances 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 17
- 238000005345 coagulation Methods 0.000 claims description 14
- 230000015271 coagulation Effects 0.000 claims description 14
- 239000002689 soil Substances 0.000 claims description 3
- 210000002700 urine Anatomy 0.000 claims description 3
- 238000007865 diluting Methods 0.000 claims 1
- 239000010802 sludge Substances 0.000 abstract description 25
- 238000006243 chemical reaction Methods 0.000 abstract description 15
- 238000010790 dilution Methods 0.000 abstract description 10
- 239000012895 dilution Substances 0.000 abstract description 10
- 239000003795 chemical substances by application Substances 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 5
- 125000000129 anionic group Chemical group 0.000 abstract description 4
- 238000003756 stirring Methods 0.000 abstract description 4
- 241000894006 Bacteria Species 0.000 abstract description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 3
- 239000001301 oxygen Substances 0.000 abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract description 3
- 239000000243 solution Substances 0.000 abstract 4
- 238000006396 nitration reaction Methods 0.000 abstract 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000003786 synthesis reaction Methods 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 46
- 229910052757 nitrogen Inorganic materials 0.000 description 23
- 238000005187 foaming Methods 0.000 description 9
- 239000008394 flocculating agent Substances 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 5
- 238000005273 aeration Methods 0.000 description 5
- -1 aminoalkyl acrylate Chemical compound 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000706 filtrate Substances 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 5
- 208000005156 Dehydration Diseases 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 239000008186 active pharmaceutical agent Substances 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 239000000701 coagulant Substances 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- 230000001112 coagulating effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000852 hydrogen donor Substances 0.000 description 2
- 229910000358 iron sulfate Inorganic materials 0.000 description 2
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000001546 nitrifying effect Effects 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000009264 composting Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 229940050176 methyl chloride Drugs 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明はし尿系汚水を凝集処理および硝化脱窒処理に
より処理する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] This invention relates to a method for treating human waste wastewater by coagulation treatment and nitrification-denitrification treatment.
し尿処理では生物処理が主流を占め、その−環として硝
化脱窒処理が行われているが、希釈水の不足、用地雛、
放流規制の強化などにより、低希釈、高負荷、高度処理
が要望されている。しかしながら、低希釈、高負荷で生
物学的に硝化脱窒処理を行うと、硝化槽内で発泡や発熱
が起こり、これを防止して硝化脱窒処理を正常に行わせ
るためには、消泡剤の添加や大がかりな消泡および冷却
装置を必要とし、装置の維持管理も複雑になるとともに
、処理水のCODが高くなり、安定した処理を行えない
という問題点があった。Biological treatment is the mainstream in human waste treatment, and nitrification and denitrification treatment is performed as a part of this, but there are problems such as lack of dilution water, land chicks,
Due to stricter discharge regulations, low dilution, high load, and advanced treatment are required. However, when nitrification and denitrification are carried out biologically at low dilution and high load, foaming and heat generation occur in the nitrification tank, and in order to prevent this and ensure normal nitrification and denitrification, defoaming is required. This method requires the addition of agents and a large-scale defoaming and cooling device, which complicates the maintenance and management of the device, and raises the COD of the treated water, making it impossible to perform stable treatment.
このような問題点を解消するために、し尿を酸性域で凝
集処理したのち、分離液を生物学的に硝化脱窒する方法
が提案されている(特願昭58−] 336562号。In order to solve these problems, a method has been proposed in which human waste is flocculated in an acidic region, and then the separated liquid is biologically nitrified and denitrified (Japanese Patent Application No. 336562).
しかしながら、この方法によれば、低希釈、高負荷で発
泡や発熱を伴うことなく、分離液を生物学的硝化脱窒す
ることができるが、高い窒素除去率を安定して維持する
には溶存酸素やpHを適度な値に維持しなければならな
いという問題点があった。However, according to this method, biological nitrification and denitrification of the separated liquid can be carried out at low dilution and high load without foaming or heat generation, but in order to stably maintain a high nitrogen removal rate, dissolved There was a problem in that oxygen and pH had to be maintained at appropriate values.
この発明は通常の生物学的硝化脱窒において安定した窒
素除去率を得るためのもので、し尿系汚水を、分離液の
BOD/N比が所定範囲となるように凝集分離を行い、
分離液を生物学的硝化脱窒処理することにより、低希釈
、高負荷で効率よく生物学的硝化脱窒を行い、COD除
去率および窒素除去率を高くすることができるし尿系汚
水の処理方法を提案することを目的としている。This invention is intended to obtain a stable nitrogen removal rate in normal biological nitrification and denitrification, by coagulating and separating human waste wastewater so that the BOD/N ratio of the separated liquid falls within a predetermined range.
A method for treating night soil wastewater that can efficiently perform biological nitrification and denitrification with low dilution and high load by subjecting the separated liquid to biological nitrification and denitrification treatment, thereby increasing the COD removal rate and nitrogen removal rate. The purpose is to propose.
この発明は、し尿系汚水に凝集剤を添加して凝集分離を
行い、BOD/N比が2.5〜3.5の分離液を分離し
て、この分離液を生物学的硝化脱窒処理することを特徴
とするし尿系汚水の処理方法である。This invention involves adding a coagulant to human waste wastewater to perform coagulation separation, separating a separated liquid with a BOD/N ratio of 2.5 to 3.5, and subjecting this separated liquid to biological nitrification and denitrification treatment. This is a method for treating human waste wastewater.
この発明においてし尿系汚水とは、し尿を含も゛汚水で
あり1例えば汲取りし尿、その除ン査1勿、これらと余
剰汚泥等の他の汚水との混合4勿などカスある。In this invention, human waste-based wastewater refers to waste water that contains human waste, such as collected human waste, its removal, and mixtures thereof with other wastewater such as excess sludge.
汲取し尿の全窒素は3000−5000m(5IQであ
り、その大部分はアンモニア・1生窒;にである。The total nitrogen content of collected human waste is 3,000-5,000 m (5 IQ), most of which is ammonia and raw nitrogen.
このようなし尿を従来法のように酸性」」支でI凝集づ
)離し、分離液を生物学的硝化脱窒処理するブj′法し
こおいて、窒素除去率が低下する原因を調べたところ、
凝集分離による分離液のB OD/Ni:ヒカス低すま
ためであることがわかった。The reason for the decrease in the nitrogen removal rate was investigated by separating such human waste in an acidic manner (as in the conventional method) and applying biological nitrification and denitrification treatment to the separated liquid. However,
It was found that this was because the BOD/Ni of the separated liquid obtained by coagulation separation was low.
すなわち、酸性域で凝集分離を行うと、し尿「1−1の
SS性および高分子のBODが除去されてBODが低く
なり、BOD/N比が1.6程度1こなる。That is, when coagulation separation is carried out in an acidic region, the SS properties and polymeric BOD of human waste "1-1" are removed, the BOD becomes low, and the BOD/N ratio becomes about 1.6.
一般にし尿の硝化脱窒処理におけるBOD/N比は硝酸
型で3・亜不i′i酸型で1・8程度である・上シ己。Generally, the BOD/N ratio in the nitrification and denitrification treatment of night soil is about 3 for the nitric acid type and 1.8 for the nitrous acid type.
分離液は脱窒細菌に利用されやすし1低分子の、容解性
BODが主体となるため硝化脱窒を行うこと(よできる
が、亜硝酸型の脱窒条件に保持する直・要力°:あり、
硝化槽で曝気量が多くなったりして硝酸型になると、窒
素除去率は低くなる。Since the separated liquid is mainly composed of soluble BOD, which is a low-molecular substance that is easily used by denitrifying bacteria, nitrification and denitrification can be carried out (although it is possible to do so, it is necessary to maintain the denitrification conditions in the nitrite type). :can be,
If the amount of aeration in the nitrification tank increases and the nitrogen becomes nitric acid, the nitrogen removal rate will decrease.
そこで本発明では、し尿系汚水中のSS性および高分子
BODをすべて凝集分離で除去するのではなく、汚水中
のSSを分離液側に約1000〜10000mg/ Q
になる程度にリークさせ、分離液のBOD/N比が2.
5〜3.5になるように凝集分離を行う。このような条
件で凝集分離を行うためには、凝集分離に使用する凝集
剤の添加率を、完全脱水に必要な添加率より低くする。Therefore, in the present invention, instead of removing all SS properties and polymeric BOD in human waste wastewater by coagulation separation, SS in wastewater is added to the separated liquid side in an amount of approximately 1000 to 10000 mg/Q.
The BOD/N ratio of the separated liquid is 2.
Coagulation separation is performed so that the ratio is 5 to 3.5. In order to perform coagulation separation under such conditions, the addition rate of the flocculant used for coagulation separation is lower than the addition rate required for complete dehydration.
一般に汚泥の脱水処理の場合、脱水に必要な凝集剤の最
適添加率があり、これより低い添加率ではSS回収率が
低くなるとともに、脱水性も悪化し、機械的脱水が不能
となるが、し尿系汚水の場合はSS成分の30〜50%
は繊維質であるため、不十分な凝集でも固液分離が容易
に行えることがわかった。本発明ではこのような性質を
利用するものであり、不十分な凝集により分離液中にB
ODの一部をリークさせるように凝集分難し、分離液を
生物学的硝化脱窒処理にするとともに、汚泥はさらに凝
集剤を添加して完全な脱水処理を行う。Generally, in the case of sludge dewatering treatment, there is an optimum addition rate of flocculant required for dewatering, and if the addition rate is lower than this, the SS recovery rate will be low and the dewatering performance will also deteriorate, making mechanical dewatering impossible. In the case of human waste wastewater, the SS content is 30-50%
Since it is fibrous, it was found that solid-liquid separation can be easily performed even with insufficient coagulation. The present invention takes advantage of this property, and due to insufficient coagulation, B in the separated liquid is
The sludge is coagulated so as to leak part of the OD, and the separated liquid is subjected to biological nitrification and denitrification treatment, and a flocculant is further added to the sludge for complete dewatering treatment.
凝集処理に使用する凝集剤としては焦機凝1コ剤、有機
凝集剤のいずれでもよく、また両者を併用することもで
きる。好ましくはカチオン性の有機凝集剤を使用するの
がよく、少量の添加量で効果的にSS、BOD成分を除
去できる。無根凝集剤としては塩化アルミニウム、ポリ
塩化アルミニラ11、硫酸アルミニウム、塩化鉄(n)
、硫酸鉄(II)、塩化鉄(m)、硫酸鉄(■)、塩化
コツバラス、ポリ」45M化鉄1ポリ硫酸鉄などがあり
、1種または数種の使用が可能である。The flocculant used in the flocculation treatment may be either a pyrolyzate coagulant or an organic flocculant, or both may be used in combination. Preferably, a cationic organic flocculant is used, and SS and BOD components can be effectively removed by adding a small amount. Rootless flocculants include aluminum chloride, polychlorinated aluminum 11, aluminum sulfate, iron chloride (n)
, iron (II) sulfate, iron chloride (m), iron sulfate (■), Kotsubarasu chloride, poly'45M iron chloride, polyferric sulfate, etc., and it is possible to use one or more of them.
有機凝集剤としては、アミノアルキルアクリレートもし
くはアミノアルキルメタクリレ−I〜の!lt独重合体
またはアクリルアミドあるいは他のモノマーとの共重合
体、構成単位としてアクリルアミドもしくはメタクリル
アミドを含む重合体のマンニッヒ変性物またはホフマン
分解物、ポリアミドポリアミン、ポリビニルイミダシリ
ン、ポリエチレンイミン、ポリジアルキルジアリルアン
モニウム塩などのカチオン性有機凝北剤が使用でき、こ
れらは1種または数種の使用が可能である。As the organic flocculant, aminoalkyl acrylate or aminoalkyl methacrylate I~! lt homopolymers or copolymers with acrylamide or other monomers, Mannich modifications or Hofmann degradation products of polymers containing acrylamide or methacrylamide as a constituent unit, polyamide polyamines, polyvinylimidacillins, polyethyleneimines, polydialkyl diallyls Cationic organic condensing agents such as ammonium salts can be used, and one or more of these can be used.
これらの無機凝集剤および/またはカチオン性の有機凝
集剤を生し尿に添加し、中性または酸性域で攪拌を行う
と凝集が起こり、フロックが生成する。このときフロッ
クを成長させるために、さらにノニオン性またはアニオ
ン性の有機凝集剤を添加して攪拌を行ってもよい。ノニ
オン性またはアニオン性の有機凝集剤としては、ポリア
クリルアミド、ポリアクリルアミド部分加水分解物、ポ
リアクリル酸す1〜リウムなどがある。When these inorganic flocculants and/or cationic organic flocculants are added to human waste and stirred in a neutral or acidic region, flocculation occurs and flocs are generated. At this time, in order to grow flocs, a nonionic or anionic organic flocculant may be added and stirred. Examples of the nonionic or anionic organic flocculant include polyacrylamide, polyacrylamide partial hydrolyzate, and mono- to lium-polyacrylate.
凝集剤の添加率は、無機凝集剤の場合は5〜30重景%
重量S、カチオン性有機凝集剤の場合は1.3重量%/
SS以下、好ましくは0.3〜1重景重量SS程度であ
り、両者を併用する場合はその比率に応じて添加率を減
少する。The addition rate of flocculant is 5 to 30% in case of inorganic flocculant.
Weight S, 1.3% by weight for cationic organic flocculants/
SS or less, preferably about 0.3 to 1 SS, and when both are used together, the addition rate is reduced depending on the ratio.
凝集処理のpHは特に限定されないが、中性または酸性
域(pH4、5〜8)とするのが好ましい。すなわちし
尿系汚水はpH調整を行うことなく凝集処理を行っても
よいが、pH調整剤を添加して上記範囲に調整してもよ
い。攪拌条件その他の凝集条件は通常の凝集処理と同様
でよい。Although the pH of the aggregation treatment is not particularly limited, it is preferably in the neutral or acidic range (pH 4, 5 to 8). That is, human waste wastewater may be subjected to flocculation treatment without pH adjustment, but it may be adjusted to the above range by adding a pH adjuster. The stirring conditions and other aggregation conditions may be the same as those for normal aggregation treatment.
凝集により生成したフロックは固液分離により分離する
。固液分離手段としては、沈殿槽、加圧浮上槽、濃縮機
等があるが、ロータリースクリーン、ウェッジワイヤー
スクリーン、遠心分離機などの濃縮機が好ましい。遠心
分離機を用いるときは遠心力Gを小さくして分離液のS
S量をコントロールすることができる。The flocs generated by coagulation are separated by solid-liquid separation. Examples of solid-liquid separation means include sedimentation tanks, pressurized flotation tanks, concentrators, etc., and concentrators such as rotary screens, wedge wire screens, and centrifuges are preferred. When using a centrifuge, reduce the centrifugal force G to reduce the S of the separated liquid.
The amount of S can be controlled.
固液分離により分離した分離液は生物分解性が良いとと
もに、BOD/N比が2.5〜3.5となっていて、無
希釈で効率よく生物学的硝化脱窒を行うことができる。The separated liquid separated by solid-liquid separation has good biodegradability and a BOD/N ratio of 2.5 to 3.5, so that biological nitrification and denitrification can be performed efficiently without dilution.
この場合、無希釈でも曝気に際して発泡や発熱が起らず
、BODおよび窒素が除去される。ここで希釈とは、意
図的に工業用水。In this case, even without dilution, no foaming or heat generation occurs during aeration, and BOD and nitrogen are removed. Dilution here is intentionally industrial water.
河川水、海水、処理水等を分に液に混合することをいい
、曝気時における消泡水、ポンプのシール水、冷却水、
雑用水等の系内混入や、汚泥脱水の濾液、脱水機の洗浄
廃水等の系内返送は許容される。It refers to the mixing of river water, seawater, treated water, etc. into a liquid, and is used as defoaming water during aeration, pump seal water, cooling water, etc.
Contamination of the system with miscellaneous water, etc., and return of sludge dewatering filtrate, dehydrator cleaning wastewater, etc. into the system are permitted.
前記固液分離により分離した汚泥は、凝41コ剤を添加
することなく、あるいは好ましくはさらに凝集剤を添加
して凝集処理を行い、脱水処理する。The sludge separated by the solid-liquid separation is subjected to flocculation treatment without adding a coagulant or, preferably, with the addition of a flocculant, and then dehydrated.
添加する凝集剤は前記と同じものが使用できるが、特に
カチオン性有機凝集剤が好ましい。凝集剤の添加率はカ
チオン性有機凝集剤として0.1〜0.8重量%/SS
(原し尿系汚水のSS、以下間)、好ましくは0.2〜
0.4重量%/SS程度である。The same flocculants as mentioned above can be used, but cationic organic flocculants are particularly preferred. The addition rate of the flocculant is 0.1 to 0.8% by weight/SS as a cationic organic flocculant.
(SS of raw human waste wastewater, below), preferably 0.2 to
It is about 0.4% by weight/SS.
凝集条件は通常の汚泥脱水と同様である。凝1集フロッ
クは必要により濃縮した後、ベル1へプレス、フィルタ
プレス、遠心脱水機、スクリュウプレス、真空脱水機等
の脱水機により脱水する。The flocculation conditions are the same as for normal sludge dewatering. The aggregated flocs are concentrated if necessary, and then dehydrated using a dehydrator such as a bell 1 press, filter press, centrifugal dehydrator, screw press, vacuum dehydrator, or the like.
以下、本発明の実施態様を図面により説明する。Embodiments of the present invention will be described below with reference to the drawings.
第1図および第2図はそれぞれ本発明の別の実施態様を
示す系統図であり、1は第1反応槽、2は第2反応槽、
3は固液分離手段、4は脱窒槽、5は硝化槽、6は固液
分離槽である。FIG. 1 and FIG. 2 are system diagrams showing another embodiment of the present invention, respectively, in which 1 is a first reaction tank, 2 is a second reaction tank,
3 is a solid-liquid separation means, 4 is a denitrification tank, 5 is a nitrification tank, and 6 is a solid-liquid separation tank.
第1図において、し尿系汚水7を第1反応槽1に導入し
、ここで無機凝集剤および/またはカチオン性有機凝集
剤8を注入するとともに、必要によりpH調整剤9を注
入し攪拌して凝集反応を行い、次に第2反応槽2におい
て必要によりノニオン性またはアニオン性有機凝集剤1
0を注入し攪拌してフロックを成長させ、濃縮機等の固
液分離手段3において固液分離を行う。In FIG. 1, human waste wastewater 7 is introduced into a first reaction tank 1, where an inorganic flocculant and/or a cationic organic flocculant 8 is injected, and if necessary, a pH adjuster 9 is injected and stirred. A flocculation reaction is carried out, and then a nonionic or anionic organic flocculant 1 is added as necessary in the second reaction tank 2.
0 is injected and stirred to grow flocs, and solid-liquid separation is performed in solid-liquid separation means 3 such as a concentrator.
固液分離手段3から分離汚泥11を排出し、分離液12
を返送汚泥13および返送硝化液14とともに脱窒槽4
に導入し、槽内の脱窒紹苗を含む活性汚泥と混合して、
酸素を遮断した状態で緩やかに攪拌し、脱窒処理を行う
。ここでは分離液中のBODを水素倶与体として、返送
硝化液中の硝酸または亜硝酸イオンを窒素に還元する脱
窒棚面が優勢となり、分離液中の窒素成分が除去される
。The separated sludge 11 is discharged from the solid-liquid separation means 3, and the separated liquid 12 is
together with the returned sludge 13 and the returned nitrification liquid 14 into the denitrification tank 4.
and mixed with activated sludge containing denitrification seedlings in the tank.
Denitrification treatment is performed by gently stirring while blocking oxygen. Here, the denitrification shelf surface that uses BOD in the separated liquid as a hydrogen donor to reduce nitric acid or nitrite ions in the returned nitrified liquid to nitrogen becomes dominant, and the nitrogen component in the separated liquid is removed.
脱窒処理を行った混合液は硝化槽5に導入し、硝化細菌
を含む活性汚泥と混合して曝気することにより、残留す
るBODを除去するとともに、窒素成分を硝酸または亜
硝酸イオンにまで硝化する。The denitrified mixed liquid is introduced into the nitrification tank 5, mixed with activated sludge containing nitrifying bacteria, and aerated to remove residual BOD and nitrify the nitrogen components to nitrate or nitrite ions. do.
硝化を終った混合液の一部は返送硝化液14として脱窒
槽4に返送し、残部は固液分RIf杷’6において固液
分離する。固液分離槽6の分離液は処理水15としてそ
のまま放流するか、あるいは凝Mコ処理等の三次処理を
したのち再利用される。分離した活性汚泥16は一部を
返送汚泥13として脱窒槽4へ返送し、残部は余剰汚泥
17として排出する。A part of the nitrified mixed liquid is returned to the denitrification tank 4 as a return nitrification liquid 14, and the remaining part is subjected to solid-liquid separation in the solid-liquid fraction RIF'6. The separated liquid in the solid-liquid separation tank 6 is either discharged as it is as treated water 15 or is reused after being subjected to tertiary treatment such as coagulation Mco treatment. A portion of the separated activated sludge 16 is returned to the denitrification tank 4 as return sludge 13, and the remainder is discharged as surplus sludge 17.
固液分離手段3の分離汚泥11は第3反応槽18に導入
して、カチオン性有機凝集剤等の凝狼剤19を注入して
凝集処理を行う。凝集フロックは脱水機20に供給して
脱水処理を行い、分離液21は脱窒槽4に導入し、脱水
ケーキ22は乾燥、焼却、堆肥等の後処理を行う。余剰
汚泥17および三次処理汚泥は第3反応槽18に導入し
てもよいが、第1反応槽1に導入してし尿系汚水7と混
合処理するのが好ましい。The separated sludge 11 of the solid-liquid separation means 3 is introduced into the third reaction tank 18, and flocculation treatment is performed by injecting a flocculant 19 such as a cationic organic flocculant. The flocculated flocs are supplied to a dehydrator 20 for dehydration treatment, the separated liquid 21 is introduced into the denitrification tank 4, and the dehydrated cake 22 is subjected to post-treatments such as drying, incineration, and composting. Although the surplus sludge 17 and the tertiary treated sludge may be introduced into the third reaction tank 18, it is preferable to introduce them into the first reaction tank 1 and mix them with the human waste sewage 7.
第2図では脱窒および硝化処理が多段階に繰返えし行わ
れるように、脱窒槽4および硝化槽5の後に第2脱窒槽
4a、第2硝化槽5a、第3脱窒槽4bおよび再曝気槽
23が設けられ、分離液12が脱窒槽4および第2脱窒
槽4aに分注され、返送硝化液14は第2硝化槽5aか
ら脱窒槽4に返送されるようになっているほかは第1図
と同様に構成されている。ここでは硝化脱窒が多段に行
われるため、脱窒効率が高く、最終的に第3脱窒槽4b
においてメタノール等の窒素を含まない有機物24を注
入して脱窒し、残留する有機物を再曝気槽23で除去す
る。In FIG. 2, after denitrification tank 4 and nitrification tank 5, second denitrification tank 4a, second nitrification tank 5a, third denitrification tank 4b, Except that an aeration tank 23 is provided, the separated liquid 12 is dispensed into the denitrification tank 4 and the second denitrification tank 4a, and the return nitrification liquid 14 is returned from the second nitrification tank 5a to the denitrification tank 4. The configuration is similar to that shown in FIG. Since nitrification and denitrification are performed in multiple stages here, the denitrification efficiency is high, and finally the third denitrification tank 4b
In the step, an organic substance 24 not containing nitrogen such as methanol is injected for denitrification, and the remaining organic substance is removed in a re-aeration tank 23.
上記の硝化脱窒処理は硝化液を返送し脱窒処理により脱
窒するようになっており、脱窒処理において分離液12
中のBODを水素供与体として利用するため、装置的に
は脱窒槽4を前段に配置し、後段の硝化槽5から硝化液
を返送するようになっている。従って装置的にも前段に
硝化槽、後段に脱窒槽を配置するように構成してもよい
。第2図の処理方法は窒素を高除去率で除去するのに適
した方法であり、さらに高度の処理を行う場合には硝化
脱窒の段数を多くするなど、処理目標に応じて変形が可
能である。また単槽で硝化脱窒を行ってもよい。In the above nitrification and denitrification process, the nitrification liquid is returned and denitrified by the denitrification process.
In order to use the BOD inside as a hydrogen donor, the denitrification tank 4 is placed in the front stage, and the nitrified liquid is returned from the nitrification tank 5 in the rear stage. Therefore, the apparatus may be configured to have a nitrification tank in the front stage and a denitrification tank in the rear stage. The treatment method shown in Figure 2 is suitable for removing nitrogen at a high removal rate, and can be modified depending on the treatment goal, such as increasing the number of nitrification and denitrification stages for more advanced treatment. It is. Further, nitrification and denitrification may be performed in a single tank.
上記の処理において、使用する凝集剤の星は、2段階で
使用する凝集剤の合計量でも、カチオン性有機凝集剤の
場合1.2重量%/SS以下であり、1段で完全凝集を
行う場合の必要な添加率2.0重量%/SSよりも少な
く、また脱水ケーキ含水率も1段処理の場合より4%程
度低下する。また生物学的硝化脱窒処理においては、硝
化槽5での発泡がなく、消泡剤が不要である一方、窒素
除去率は90%以上となり、1段で完全凝集する場合よ
りも高くなる。処理水のCOD Mnは300〜400
mg/ Qで若干高くなるが、し尿系汚水を直接硝化脱
窒する場合に比べると大幅に低い。In the above process, the star of the flocculant used is that the total amount of flocculant used in two stages is 1.2% by weight/SS or less in the case of a cationic organic flocculant, and complete flocculation is achieved in one stage. The addition rate is lower than the required addition rate of 2.0% by weight/SS for the case, and the moisture content of the dehydrated cake is also lower by about 4% than in the case of one-stage treatment. Furthermore, in the biological nitrification and denitrification treatment, there is no foaming in the nitrification tank 5 and no antifoaming agent is required, while the nitrogen removal rate is 90% or more, which is higher than when complete flocculation occurs in one stage. COD Mn of treated water is 300-400
mg/Q is slightly higher, but it is significantly lower than when directly nitrifying and denitrifying human waste water.
本発明によれば、凝集により分離液のBOD/N比を所
定範囲として生物学的硝化脱窒するようにしたので、低
希釈、高負荷で効率よく生物学的硝化脱窒を行い、CO
D除去率および窒素除去率を安定して高くすることがで
きる。According to the present invention, biological nitrification and denitrification is performed by setting the BOD/N ratio of the separated liquid within a predetermined range by coagulation, so biological nitrification and denitrification can be performed efficiently with low dilution and high load, and CO
The D removal rate and the nitrogen removal rate can be stably increased.
次に本発明の実施例および比較例について説明する。各
例中、%は重量%を示す。Next, examples and comparative examples of the present invention will be described. In each example, % indicates weight %.
実施例1
除渣し尿(BOD = 12000mg/Q、 T−N
=3130rng/Q、 BOD/N比=3.8)に硫
酸鉄(If)をFe2+として1.3%/SS添加攪拌
し、カチオン性有機凝集剤(アミノアルキルメタクリレ
ートのメチルクロライド4級化物とアクリルア凝集した
後、ロータリースクリーン(60メツシユ網目)で固液
分離した。分離汚泥に同じカチオン性有機凝集剤を0.
13%/SS(原除渣し尿のSS)を添加して凝集を行
い、ベル1〜プレス脱水機で脱水したところ、ケーキ水
分は60%、濾過速度は200 kg−DS/m−hで
あった。この濾液と上記分離液を混合した液の性状はB
OD=7810mgIQ、 T−N=29 L Orn
g/Q、 BOD/N比=2.7であらた。この混合液
を第1図のフローにより硝化脱窒処理を行ったところ、
硝化槽での発泡はなく、処理水のCC) D Nnは3
50 +++g/ D、窒素除去率は90%であった。Example 1 Sludge removed human urine (BOD = 12000mg/Q, T-N
= 3130 rng/Q, BOD/N ratio = 3.8), iron sulfate (If) was added as Fe2+ at 1.3%/SS and stirred, and a cationic organic flocculant (methyl chloride quaternized product of aminoalkyl methacrylate and acryl chloride) was added and stirred. After flocculation, solid-liquid separation was performed using a rotary screen (60 mesh mesh).The same cationic organic flocculant was added to the separated sludge at 0.
When 13%/SS (SS of raw human waste removed) was added to perform flocculation and dehydration was performed using a Bell 1 to press dehydrator, the cake moisture was 60% and the filtration rate was 200 kg-DS/m-h. Ta. The properties of the mixture of this filtrate and the above separated liquid are B
OD=7810mgIQ, T-N=29L Orn
g/Q, BOD/N ratio = 2.7. When this mixed solution was subjected to nitrification and denitrification treatment according to the flow shown in Figure 1,
There was no foaming in the nitrification tank, and CC) D Nn of the treated water was 3.
50 +++ g/D, nitrogen removal rate was 90%.
比較例1
実施例1と同じ除渣し尿に硫酸鉄(II)をFe2+と
して3.3%/SS添加攪拌し、同じカチオン性有伊
機凝集剤を1.9%/SS添加して、PH6、8凝集し
た後、ベルトプレス脱水機で脱水したところ、脱水ケー
キ水分は62%、濾過速度は150kg−05/m−h
であった。脱水濾液性状はB’C)D=5670mg/
Q、 T−N=2820wrg/Q、 BODlN比=
2.0であり、これを実施例1と同様に硝化脱窒処理を
行ったところ、処理水のCOD rlnは250mg/
Q、窒素除去率は85%であった。Comparative Example 1 Iron (II) sulfate was added as Fe2+ at 3.3%/SS to the same filtered human urine as in Example 1, and stirred, and the same cationic organic flocculant was added at 1.9%/SS to achieve a pH of 6. , 8 After agglomeration, it was dehydrated using a belt press dehydrator, and the moisture content of the dehydrated cake was 62%, and the filtration rate was 150 kg-05/m-h.
Met. The properties of the dehydrated filtrate are B'C)D=5670mg/
Q, TN=2820wrg/Q, BODlN ratio=
When this was subjected to nitrification and denitrification treatment in the same manner as in Example 1, the COD rln of the treated water was 250mg/
Q: The nitrogen removal rate was 85%.
比較例2
実施例1と同じ除渣し尿をそのまま実施例1と同様の硝
化脱窒処理を行っ°たところ、硝化槽の発泡が激しくて
消泡剤が必要であり、処理水のc。Comparative Example 2 When the same desalted human waste as in Example 1 was directly subjected to the same nitrification and denitrification treatment as in Example 1, foaming in the nitrification tank was so intense that an antifoaming agent was required, and the treated water was treated with c.
D Mnは780mg/Q、窒素除去率は90%であっ
た。DMn was 780 mg/Q, and the nitrogen removal rate was 90%.
実施例2
実施例1の除渣し尿1o容に、生物学的硝化脱窒工程の
余剰汚泥1.5容および硝化脱窒工程の処理水を三次処
理として凝集処理した凝集汚泥0.8容を混合した混合
し尿に、実施例1のカチオン性有機凝集剤を0.8%/
SS添加して、pl(6、9で凝集処理し、ロータリー
スクリーンで分離した。Example 2 To 10 volume of the removed human waste of Example 1, 1.5 volume of surplus sludge from the biological nitrification-denitrification process and 0.8 volume of flocculated sludge obtained by coagulating treated water from the nitrification-denitrification process as tertiary treatment were added. The cationic organic flocculant of Example 1 was added at 0.8%/to the mixed human waste.
SS was added, flocculation was performed using pl(6, 9), and the mixture was separated using a rotary screen.
分離汚泥に同じ凝集剤を0.13%/SS(′a合し尿
のSS)添加して1集を行い、ベルトプレス脱水機で脱
水したところ、ケーキ水分は63%、瀘過速゛度は18
0kg−DS/m−hであった。この脱水濾液と上記分
離液の混合液の性状はSS=5290mgIQ、 BO
D=707.Orng/Q、 T−N=2250mg/
Q、 B OD/N比=3.1であった。The same flocculant was added to the separated sludge at 0.13%/SS ('a SS of combined human waste), and the first batch was dehydrated using a belt press dehydrator. The moisture content of the cake was 63%, and the degree of filtration was 18
It was 0 kg-DS/m-h. The properties of the mixed liquid of this dehydrated filtrate and the above separated liquid are SS=5290mgIQ, BO
D=707. Orng/Q, T-N=2250mg/
Q, B OD/N ratio = 3.1.
この混合液を第1図のフローにより生物学的61丁化脱
窒処理した結果、硝化槽での発泡はなく、処理水のCO
D Mnは3 ’OOmg/ 11、窒素除去率は90
%であった。As a result of biological 61-denitrification treatment of this mixed liquid according to the flow shown in Figure 1, there was no foaming in the nitrification tank, and the CO of the treated water was
DMn is 3'OOmg/11, nitrogen removal rate is 90
%Met.
比較例3
実施例2の混合し尿に同じカチオン性有機凝集剤を1.
6%/SS添加して、pH6、9で凝集処理してベルト
プレス脱水機で脱水したところ、ケーキ水分は66%、
濾過速度は130kH−DS/m−hであった。この脱
水濾液を実施例2と同様に硝化脱窒処理したところ、処
理水のCOD Mnは220mg/Q、窒素除去率は8
4%であった。Comparative Example 3 The same cationic organic flocculant was added to the mixed human waste of Example 2 in 1.
When 6%/SS was added, the cake was flocculated at pH 6 and 9, and dehydrated using a belt press dehydrator, the cake moisture was 66%.
The filtration rate was 130 kHz-DS/m-h. When this dehydrated filtrate was subjected to nitrification and denitrification treatment in the same manner as in Example 2, the COD Mn of the treated water was 220 mg/Q, and the nitrogen removal rate was 8.
It was 4%.
比較例4
実施例2の混合し尿をそのまま実施例1と同様に硝化脱
窒したところ、循化槽の発泡は激しく、処理−水のCO
D Knは560mg/n、窒素除去率は。Comparative Example 4 When the mixed human waste from Example 2 was subjected to nitrification and denitrification in the same manner as in Example 1, foaming in the circulation tank was intense, and the CO in the treated water was
D Kn is 560 mg/n, nitrogen removal rate is.
90%であった。It was 90%.
以上の結果より、実施例のものはいずれも凝集剤の使用
量が少なくて、濾過脱水性が優れてい゛るとともに、ケ
ーキ含水率が低くなり、かつ硝化槽における発泡がなく
て窒素除去率が高く、処理水のCODも低くなることが
わかる。From the above results, all of the examples used a small amount of flocculant, had excellent filtration and dehydration properties, had a low cake moisture content, and had no foaming in the nitrification tank, resulting in a high nitrogen removal rate. It can be seen that the COD of the treated water is also lower.
第1図および第2図はそれぞれ本発明の別の実施態様を
示す系統図であり、1は第1反応槽、2は第2反応槽、
3は固液分離手段、4は脱窒槽、5は硝化槽、6は固液
分離槽、18は第3反応槽、20は脱水機である。
なお、各図中、同一符号は同一または相当部分を示すも
のとする。
代理人 弁理士 柳 原 成
第1図1 and 2 are system diagrams showing another embodiment of the present invention, respectively, in which 1 is a first reaction tank, 2 is a second reaction tank,
3 is a solid-liquid separation means, 4 is a denitrification tank, 5 is a nitrification tank, 6 is a solid-liquid separation tank, 18 is a third reaction tank, and 20 is a dehydrator. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Patent Attorney Sei Yanagihara Figure 1
Claims (5)
BOD/N比が2.5〜3.5の分離液を分離して、こ
の分離液を生物学的硝化脱窒処理\することを特徴とす
るし尿系汚水の処理方法。(1) Add a flocculant to urine-based wastewater to perform flocculation separation,
A method for treating human waste wastewater, which comprises separating a separated liquid having a BOD/N ratio of 2.5 to 3.5, and subjecting this separated liquid to biological nitrification and denitrification treatment.
離液側に1000〜10000mgInとなるようにリ
ークさせるものである特許請求の範囲第1項記載のし尿
系汚水の処理方法。(2) The method for treating human waste water according to claim 1, wherein the coagulation and separation of the human waste waste water causes SS in the human waste water to leak to the separation liquid side in an amount of 1,000 to 10,000 mgIn.
範囲第1項または第2項記載のし尿系汚水の処理方法。(3) The method for treating human waste wastewater according to claim 1 or 2, wherein the flocculant is a cationic organic flocculant.
のである特許請求の範囲第1項ないし第3項のいずれか
に記載のし尿系汚水の処理方法。(4) The method for treating night soil wastewater according to any one of claims 1 to 3, wherein the biological nitrification and denitrification treatment is performed without diluting the separated liquid.
ものである特許請求の範囲第1項ないし第4項のいずれ
かに記載のし尿系汚水の処理方法。(5) The method for treating human waste wastewater according to any one of claims 1 to 4, wherein the biological nitrification and denitrification treatment is carried out repeatedly in multiple stages.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59062456A JPS60206498A (en) | 1984-03-30 | 1984-03-30 | Treatment of excretion sewage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59062456A JPS60206498A (en) | 1984-03-30 | 1984-03-30 | Treatment of excretion sewage |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60206498A true JPS60206498A (en) | 1985-10-18 |
JPH0230320B2 JPH0230320B2 (en) | 1990-07-05 |
Family
ID=13200716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59062456A Granted JPS60206498A (en) | 1984-03-30 | 1984-03-30 | Treatment of excretion sewage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60206498A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4732679A (en) * | 1985-09-16 | 1988-03-22 | Boliden Aktiebolag | Sewage-water purifying process |
JP2005131452A (en) * | 2003-10-28 | 2005-05-26 | Kobelco Eco-Solutions Co Ltd | Nitrification method for wastewater containing ammonia nitrogen |
JP2015093258A (en) * | 2013-11-13 | 2015-05-18 | 水ing株式会社 | Denitrification treatment method and denitrification treatment apparatus |
CN105110437A (en) * | 2015-06-29 | 2015-12-02 | 上海市政工程设计研究总院(集团)有限公司 | Agent adding apparatus for solid drug adding |
CN109071267A (en) * | 2016-04-11 | 2018-12-21 | 凯米拉公司 | Improve the sludge dewatering ability and energy balance of wastewater treatment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5044651A (en) * | 1973-08-27 | 1975-04-22 | ||
JPS5428449A (en) * | 1977-08-03 | 1979-03-03 | Kubota Ltd | Method of removing ammoniacal nitrogen of digested, separated liquid of raw sewage |
JPS55116493A (en) * | 1979-03-02 | 1980-09-08 | Kawasaki Heavy Ind Ltd | Biological nitration and denitrification method |
-
1984
- 1984-03-30 JP JP59062456A patent/JPS60206498A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5044651A (en) * | 1973-08-27 | 1975-04-22 | ||
JPS5428449A (en) * | 1977-08-03 | 1979-03-03 | Kubota Ltd | Method of removing ammoniacal nitrogen of digested, separated liquid of raw sewage |
JPS55116493A (en) * | 1979-03-02 | 1980-09-08 | Kawasaki Heavy Ind Ltd | Biological nitration and denitrification method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4732679A (en) * | 1985-09-16 | 1988-03-22 | Boliden Aktiebolag | Sewage-water purifying process |
JP2005131452A (en) * | 2003-10-28 | 2005-05-26 | Kobelco Eco-Solutions Co Ltd | Nitrification method for wastewater containing ammonia nitrogen |
JP2015093258A (en) * | 2013-11-13 | 2015-05-18 | 水ing株式会社 | Denitrification treatment method and denitrification treatment apparatus |
CN105110437A (en) * | 2015-06-29 | 2015-12-02 | 上海市政工程设计研究总院(集团)有限公司 | Agent adding apparatus for solid drug adding |
CN109071267A (en) * | 2016-04-11 | 2018-12-21 | 凯米拉公司 | Improve the sludge dewatering ability and energy balance of wastewater treatment |
Also Published As
Publication number | Publication date |
---|---|
JPH0230320B2 (en) | 1990-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6685834B1 (en) | Method for conditioning and dewatering thermophilic aerobically digested biosolids | |
US5954964A (en) | Process for enhancing dewatering of treated biosolids in a wastewater treatment system | |
JPS5845920B2 (en) | Biochemical treatment method for organic waste liquid | |
JPS6210720B2 (en) | ||
JP3368938B2 (en) | Wastewater treatment method and apparatus | |
JP2796909B2 (en) | Wastewater treatment method | |
JPS60206498A (en) | Treatment of excretion sewage | |
JPH0124558B2 (en) | ||
JPS6328500A (en) | Treatment device for night soil sanitary sewage | |
JPS6261700A (en) | Apparatus for treating sewage of excretion system | |
JPS6320600B2 (en) | ||
JP2939156B2 (en) | Sewage treatment equipment | |
JPH0649197B2 (en) | Organic wastewater treatment method | |
JPS6028894A (en) | How to dispose of human waste | |
JP3327979B2 (en) | Septic tank sludge treatment method and equipment | |
JPS6133639B2 (en) | ||
JP3229806B2 (en) | Human wastewater treatment equipment | |
JPH0790237B2 (en) | Human waste treatment method | |
JPH0568993A (en) | Treatment of sludge of purifying tank | |
JPS5851995A (en) | Treatment of night soil | |
JPS596986A (en) | Treatment of night soil-type filthy water | |
JPH02139099A (en) | Treatment of organic sewage | |
JPS60206499A (en) | Treatment of excretion sewage | |
JPS64119B2 (en) | ||
JPH07256295A (en) | Treatment of sewage return water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |