[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60114540A - Fiber-reinforced composite member and its production - Google Patents

Fiber-reinforced composite member and its production

Info

Publication number
JPS60114540A
JPS60114540A JP58222947A JP22294783A JPS60114540A JP S60114540 A JPS60114540 A JP S60114540A JP 58222947 A JP58222947 A JP 58222947A JP 22294783 A JP22294783 A JP 22294783A JP S60114540 A JPS60114540 A JP S60114540A
Authority
JP
Japan
Prior art keywords
fiber
matrix
molded body
treatment
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58222947A
Other languages
Japanese (ja)
Inventor
Waichiro Nakajima
中島 和一郎
Hisashi Sakurai
久之 櫻井
Hiroshi Sasaki
浩 佐々木
Takushi Kondo
近藤 拓士
Katsuhiro Nishizaki
西崎 勝博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP58222947A priority Critical patent/JPS60114540A/en
Priority to GB08420256A priority patent/GB2151514B/en
Priority to CA000460907A priority patent/CA1240904A/en
Priority to DE19843431778 priority patent/DE3431778A1/en
Priority to FR8413437A priority patent/FR2555503B1/en
Publication of JPS60114540A publication Critical patent/JPS60114540A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/08Making alloys containing metallic or non-metallic fibres or filaments by contacting the fibres or filaments with molten metal, e.g. by infiltrating the fibres or filaments placed in a mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • C22C49/06Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PURPOSE:To produce a fiber-reinforced composite member having excellent strength by packing and combining an Al alloy matrix to a precipitation hardening stainless steel fiber molding by a high-pressure solidification casting method then subjecting the fibers and member themselves to a specific heat treatment. CONSTITUTION:Precipitation hardening stainless steel fibers such as SUS 631J1 or the like specified in JIS are heated together with a brazing filler metal to a high temp. to melt the brazing filler metal and to bond diffusibly and partially the fibers to each other thereby forming a molding. The molding is then cooled and subjected to a soln. heat treatment. An Al alloy as the matrix is packed and combined with the above-mentioned fiber molding by a high-pressure solidification casting method. The resulting member is heated to about 450-510 deg.C and is then cooled by which the above-mentioned fiber molding is subjected to a precipitation hardening treatment and at the same time the above-mentioned matrix is subjected to a soln. heat treatment. Such member is again heated to about 170 deg.C and is then air cooled to subject the matrix to an artificial aging treatment by which the strength is improved and the fiber-reinforced composite member is obtd.

Description

【発明の詳細な説明】 本発明は繊維強化複合部材およびその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fiber reinforced composite member and a method for manufacturing the same.

本出願人は、先にステンレス鋼繊維等の無機質繊維相互
間を銅系ろう材により、または焼成処理することにより
部分的に拡散接着して繊維成形体を成形し、そJlにマ
トリックスとしての軽合金を高圧凝固鋳造法により充填
複合させて部材の鋳造と同時にその所定箇所を繊維強化
した複合部材を提案した。上記高圧凝固鋳造法によれば
、マトリックスを繊維成形体に十分に充填複合させるこ
とができ、この種繊維強化複合部材を製造する上に有効
な手段であるといえる。
The applicant first forms a fiber molded body by partially diffusion bonding between inorganic fibers such as stainless steel fibers using a copper-based brazing filler metal or by firing, and then uses a light material as a matrix to form a fiber molded body. We have proposed a composite member in which the alloy is filled and composited using high-pressure solidification casting, and the predetermined locations are reinforced with fibers at the same time as the member is cast. According to the above-mentioned high-pressure solidification casting method, it is possible to sufficiently fill and composite the matrix into the fiber molded body, and it can be said that it is an effective means for manufacturing this type of fiber-reinforced composite member.

本発明者等は上記機台部材の物性について棟々検削を加
えた給茶、前記繊維はろう接および焼成の際に高温加熱
されるため繊維自体が焼なまされてその強度が低下する
傾向にあり、複合部材の強度に影響を与えることを究明
した。
The inventors of the present invention have thoroughly examined the physical properties of the above-mentioned machine base members.As the fibers are heated to high temperatures during brazing and firing, the fibers themselves are annealed and their strength decreases. It has been found that this tends to affect the strength of composite members.

本発明は上記に鑑み、強化用繊維として析出硬化形ステ
ンレス鋼繊維を用い、この繊維および部材自体に特定の
熱処理を施すことにより強度を向上させた前記繊維強化
複合部材を提供することを目的とし、溶体化処理後析出
硬化処理を施された析出硬化形ステンレス鋼繊維成形体
と、そのFJ<離底形体に高圧凝固鋳造法により充填複
合され、溶体化処理後人工時効処理を施されたアルミニ
ウム合金マトリックスとより構成したことを特徴とする
In view of the above, an object of the present invention is to provide a fiber-reinforced composite member whose strength is improved by using precipitation-hardened stainless steel fibers as reinforcing fibers and subjecting the fibers and the member itself to a specific heat treatment. , a precipitation-hardened stainless steel fiber molded body that has been subjected to precipitation hardening treatment after solution treatment, and aluminum that has been filled and composited by high-pressure solidification casting into the FJ < bottom-off shape body and has been subjected to artificial aging treatment after solution treatment. It is characterized by being composed of an alloy matrix.

以下、本発明を内燃機関用コンロッドに適用した一実施
例について説明する。
An embodiment in which the present invention is applied to a connecting rod for an internal combustion engine will be described below.

〈実施例〉 第1.第2図はマトリックスとしてアルミニウム合金を
用いたコンロッドを示し、1は枠部で、その両端にそれ
ぞれ環状小端部2および半環状大端部半体3が一体に設
けられている。枠部1はその軸線方向に配設された析出
硬化形ステンレス鋼繊維成形体Fにより繊維強化されて
いる。
<Example> 1st. FIG. 2 shows a connecting rod using an aluminum alloy as a matrix. Reference numeral 1 denotes a frame portion, and an annular small end portion 2 and a semi-annular large end half body 3 are integrally provided at both ends of the frame portion. The frame part 1 is fiber-reinforced by precipitation-hardened stainless steel fiber moldings F arranged in the axial direction.

−上記コンロッドは以下に述べる方法により製造される
- The above connecting rod is manufactured by the method described below.

先ず、J I S SUS 631J t で表わされ
る直径80μの析出硬化形ステンレス鋼繊維(以下PH
鋼繊維と称する。)を耐熱性ガラス管内に銅系ろう材と
共に挿入し、これを温度1.1201:’で15分間保
持してろう材を溶融し、これにより繊維相互間を部分的
に拡散接着して繊維成形体Fを成形し、次いでHKdh
成形体Fを冷却速度10C/秒で冷却する。
First, precipitation hardening stainless steel fibers (hereinafter referred to as PH
It is called steel fiber. ) is inserted into a heat-resistant glass tube together with a copper-based brazing material, and held at a temperature of 1.1201:' for 15 minutes to melt the brazing material, which partially diffuses and bonds the fibers together to form fibers. Body F is molded, then HKdh
The molded body F is cooled at a cooling rate of 10 C/sec.

上記温度1,120Cは銅系ろ5材の融点であると共に
P E @ 繊維の溶体化温度であり、したがってこの
温度から前記速度で冷却することにより繊維成形体Fは
溶体化処理を施され硬化する。この繊維成形体Fのかさ
密度は2.65g/ccで良好な保形性を有する。
The above temperature of 1,120C is the melting point of the copper filter 5 material and the solution temperature of P E @ fibers, so by cooling from this temperature at the above rate, the fiber molded body F is subjected to solution treatment and hardened. do. This fiber molded product F has a bulk density of 2.65 g/cc and has good shape retention.

次いで、繊維成形体Fを金型の枠部形成用キャビティ内
にその軸線方向に配設し、マトリックスMとしてアルミ
ニウム合金(J)S ACBB材)を用いて高圧凝固鋳
造法により、コンロッドを鋳造すると同時にその枠部1
において繊維成形体FにマトリックスMを充填複合させ
て繊維強化する。
Next, the fiber molded body F is arranged in the axial direction in the cavity for forming the frame part of the mold, and a connecting rod is cast by a high-pressure solidification casting method using an aluminum alloy (J)S ACBB material) as the matrix M. At the same time, the frame 1
In the step, the fiber molded body F is filled and composited with the matrix M to be reinforced with fibers.

その後コンロッドを500C15時間加熱し、次いで6
0C以上の湯を用いて冷却する。この熱処理によりマト
リックスMとしてのアルミニウム合金は溶体化処理を施
され、一方繊維成形体Fを構成するpH鋼繊維は析出硬
化処理を施される。
After that, the connecting rod was heated to 500C for 15 hours, then 6
Cool using hot water of 0C or higher. Through this heat treatment, the aluminum alloy serving as the matrix M is subjected to solution treatment, while the pH steel fibers constituting the fiber compact F are subjected to precipitation hardening treatment.

上記溶体化および析出硬化処理の温度は450〜510
Cが適当であり、450Cを下回るとpH鋼繊維の析出
硬化処理が不可能となり、一方510Cを上回るとアル
ミニウム合金とpH鋼繊維が反応するおそれがある。
The temperature of the above solution treatment and precipitation hardening treatment is 450 to 510℃.
C is appropriate; below 450C, precipitation hardening of the pH steel fibers is impossible, while above 510C there is a risk of reaction between the aluminum alloy and the pH steel fibers.

上記処理後コンロッドを170C110時間加熱後空冷
してマトリックスMとしてのアルミニウム合金に人工時
効処理を施し、アルミニウム合金の強度を向上させる。
After the above treatment, the connecting rod is heated to 170C for 110 hours and then air cooled to perform artificial aging treatment on the aluminum alloy as the matrix M, thereby improving the strength of the aluminum alloy.

第3図はPH’AA繊維(I)とJIS SUS 27
で表わされるステンレス紳、維(U)の弾性比例限界を
示すもので、Aは各繊維の熱処理前、Bは溶体化処理後
、Cは析出硬化処理後である。自13図から明らかなよ
うにPH鋼繊維(I)は前記熱処理によりその強度が他
方のステンレス繊維(II)に比べて大幅に向上するも
ので、このpH鋼繊維の強度向上およびアルミニウム合
金の溶体化および人工時効処理による強度向上によりコ
ンロッド桿部1の弾性比例限界はpH鋼繊維を用いたも
のが7.500にノ/−となり、ステンレス繊維(II
)を用いたものの5. s o o kg、/yu、:
に比べて飛躍的に増大することが認められた。
Figure 3 shows PH'AA fiber (I) and JIS SUS 27
It shows the elastic proportionality limit of stainless steel fiber (U) expressed by: A is before heat treatment of each fiber, B is after solution treatment, and C is after precipitation hardening treatment. As is clear from Fig. 13, the strength of the PH steel fiber (I) is greatly improved by the above heat treatment compared to the other stainless steel fiber (II), and the strength of the pH steel fiber (I) is improved and the strength of the aluminum alloy solution is improved. Due to the strength improvement through aging and artificial aging treatment, the elastic proportionality limit of the connecting rod rod part 1 is 7.500 when using pH steel fiber, and when using stainless steel fiber (II
) using 5. s o o kg, /yu,:
A dramatic increase was observed compared to .

以上のように本発明によれば、軽量で、且つ強度を向上
させた繊維強化複合部材を提供し得るもので、コンロン
ド等自動車用部品に適用する上に有効である。また析出
硬化形ステンレス儲繊維成形体とアルミニウム合金マト
リックスとの組合せにより、繊維成形体の析出硬化処理
とマトリックスの溶体化処理な一工程で行うことができ
るという製造上の利点がある。
As described above, according to the present invention, it is possible to provide a fiber-reinforced composite member that is lightweight and has improved strength, and is effective for application to automobile parts such as connecting rods. Furthermore, the combination of the precipitation hardened stainless steel fiber molded body and the aluminum alloy matrix has the manufacturing advantage that precipitation hardening of the fiber molded body and solution treatment of the matrix can be carried out in one step.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図はコンロ
ッドの縦断正面図、第2図は第1図I1.−■線断面図
、第3図は弾性比例限界の変化を示すグラフである。 F・・・繊維成形体、M・・・マトリックス第2図 図面の)荊!;(内′i)に変更なし)手続補正書(f
flQ) 昭和 58年J2月23 日 特許庁に宮殿 1、小件の表示 昭和、8年 特 願第222947号 2、発明の名称 繊&if1強化複合部拐およびその製造方法3、補正を
する者 小件との関係 961゛出願人 名 称 (53Z)本田技研工業株式会−上4、代 理
 人 〒105 (1所 東jet都港区′f11僑四口」4番5リ 第
にツノ、ノビ用5補正の対象 別 紙 の 通 リ
The drawings show one embodiment of the present invention, and FIG. 1 is a longitudinal sectional front view of a connecting rod, and FIG. 2 is a vertical sectional view of a connecting rod. -■ line cross-sectional view, FIG. 3 is a graph showing changes in elastic proportionality limit. F...Fiber molded body, M...Matrix (as shown in Figure 2)! ;(No change in i)) Procedural amendment (f
flQ) On February 23, 1980, the Patent Office filed the following document: 1, Indication of small matter, Showa 8, Japanese Patent Application No. 222947, 2, Title of the invention: Fiber & if 1 reinforced composite material and manufacturing method 3, Person making the amendment: Relationship to matter 961゛Applicant name (53Z) Honda Motor Co., Ltd.-14, Agent 〒105 (1st location Higashijet Miyako-ku 'F11 Yoshikou' 4th and 5th R. Tsuno, Nobi) 5. Paper circulation by subject of amendment

Claims (2)

【特許請求の範囲】[Claims] (1)溶体化処理後析出硬化処理を施された析出硬化形
ステンレス鋼緘維成形体と、N6 tx& 61成形体
に高圧凝固鋳造法により充填複合され、溶体化処理後人
工時効処理を施されたアルミニウム合、金マトリックス
とよりなる紳維強化複合部材。
(1) Precipitation-hardened stainless steel fiber molded body subjected to precipitation hardening treatment after solution treatment, and N6 tx & 61 molded body filled and composited by high-pressure solidification casting method, and subjected to artificial aging treatment after solution treatment. A fiber-reinforced composite material consisting of aluminum alloy and gold matrix.
(2)析出硬化形ステンレス鍋繊維を用いて高温下で繊
維成形体を成形する工程と、該繊維成形体を冷却するこ
とによりそれに対する溶体化処理を完結する工程と、前
記繊維成形体にマトリックスどしてのアルミニウム合金
を高圧凝固鋳造法により充填複合させると同時に部材を
鋳造する工程と。 該部材を加熱後冷却して前記繊維成形体に析出硬化処理
を施すと同時に前記マトリックスに溶体化処理を施す工
程と、前記部材を再び加熱後冷却し−て前記マ) IJ
ラックス人工時効処理を施ス工程と、よりなる繊維強化
複合部材の製造方法。
(2) A process of forming a fiber molded body at high temperature using precipitation hardened stainless pot fibers, a process of completing a solution treatment for the fiber molded body by cooling the fiber molded body, and a step of forming a matrix on the fiber molded body. A process of filling and compounding the aluminum alloy using a high-pressure solidification casting method and simultaneously casting the parts. a step of heating and cooling the member to subject the fiber molded body to a precipitation hardening treatment and at the same time subjecting the matrix to a solution treatment; heating and cooling the member again;
A method for producing a fiber-reinforced composite member comprising a Lux artificial aging treatment process.
JP58222947A 1983-11-26 1983-11-26 Fiber-reinforced composite member and its production Pending JPS60114540A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58222947A JPS60114540A (en) 1983-11-26 1983-11-26 Fiber-reinforced composite member and its production
GB08420256A GB2151514B (en) 1983-11-26 1984-08-09 Fibre-reinforced composite material and method of producing the material
CA000460907A CA1240904A (en) 1983-11-26 1984-08-13 Fiber-reinforced composite material and method of producing the same
DE19843431778 DE3431778A1 (en) 1983-11-26 1984-08-29 FIBER REINFORCED COMPOSITE AND METHOD FOR THE PRODUCTION THEREOF
FR8413437A FR2555503B1 (en) 1983-11-26 1984-08-30 FIBER REINFORCED METAL-METAL COMPOSITE BODY AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58222947A JPS60114540A (en) 1983-11-26 1983-11-26 Fiber-reinforced composite member and its production

Publications (1)

Publication Number Publication Date
JPS60114540A true JPS60114540A (en) 1985-06-21

Family

ID=16790364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58222947A Pending JPS60114540A (en) 1983-11-26 1983-11-26 Fiber-reinforced composite member and its production

Country Status (5)

Country Link
JP (1) JPS60114540A (en)
CA (1) CA1240904A (en)
DE (1) DE3431778A1 (en)
FR (1) FR2555503B1 (en)
GB (1) GB2151514B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290229A (en) * 1987-05-21 1988-11-28 Itaru Niimi Manufacture of fiber-reinforced composite metallic material
JP2012514164A (en) * 2008-12-24 2012-06-21 メシエ−ブガッティ−ドウティ Manufacturing method for manufacturing a connecting rod made of metal reinforced with long fibers
CN111763815A (en) * 2020-08-17 2020-10-13 燕山大学 A kind of low temperature heat treatment strengthening method of 304 or 304L stainless steel fiber
CN111893275A (en) * 2020-08-17 2020-11-06 燕山大学 A kind of low temperature heat treatment strengthening method of 316 or 316L stainless steel fiber

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3912664A1 (en) * 1988-09-02 1990-03-08 Bayerische Motoren Werke Ag Light metal casting esp. engine housing
DE10157478A1 (en) * 2001-11-23 2003-06-05 Fne Gmbh Compound metal material is a shaped first metal, e.g. a wire coil, embedded in a ground matrix of the second metal.
JP2005042136A (en) * 2003-07-23 2005-02-17 Toyota Industries Corp Aluminum-matrix composite material and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292827A (en) * 1976-01-16 1977-08-04 Honda Motor Co Ltd Method of manufacturing structures with fiber reinforced composite parts
JPS5475405A (en) * 1977-11-29 1979-06-16 Honda Motor Co Ltd Production of one directional fiber reinforced composite material
JPS5630070A (en) * 1979-08-17 1981-03-26 Honda Motor Co Ltd Manufacture of fiber-reinforced composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290229A (en) * 1987-05-21 1988-11-28 Itaru Niimi Manufacture of fiber-reinforced composite metallic material
JP2012514164A (en) * 2008-12-24 2012-06-21 メシエ−ブガッティ−ドウティ Manufacturing method for manufacturing a connecting rod made of metal reinforced with long fibers
CN111763815A (en) * 2020-08-17 2020-10-13 燕山大学 A kind of low temperature heat treatment strengthening method of 304 or 304L stainless steel fiber
CN111893275A (en) * 2020-08-17 2020-11-06 燕山大学 A kind of low temperature heat treatment strengthening method of 316 or 316L stainless steel fiber
CN111893275B (en) * 2020-08-17 2021-06-29 燕山大学 A kind of low temperature heat treatment strengthening method of 316 or 316L stainless steel fiber
CN111763815B (en) * 2020-08-17 2021-07-23 燕山大学 A kind of low temperature heat treatment strengthening method of 304 or 304L stainless steel fiber

Also Published As

Publication number Publication date
GB2151514B (en) 1987-07-08
DE3431778A1 (en) 1985-06-05
FR2555503B1 (en) 1987-10-23
CA1240904A (en) 1988-08-23
GB8420256D0 (en) 1984-09-12
GB2151514A (en) 1985-07-24
FR2555503A1 (en) 1985-05-31

Similar Documents

Publication Publication Date Title
JPH02422B2 (en)
JPS60114540A (en) Fiber-reinforced composite member and its production
JPS59100236A (en) Production of fiber reinforced composite member
JPS5967335A (en) Fiber reinforced composite member and its production
US4892069A (en) Thermally stressed component
JPS63126661A (en) Production of piston
JPS59212159A (en) Production of aluminum alloy casting
US5195571A (en) Method of die cast molding metal to fiber reinforced fiber plastic
JPS5894622A (en) Manufacture of connecting rod for use in internal combustion engine
JP2731804B2 (en) Method of manufacturing piston for internal combustion engine
JPS5887238A (en) Manufacture of fiber reinforced composite member
KR100513584B1 (en) High Strength Magnesium Composite Materials with Excellent Ductility and Manufacturing Process for Them
JPS58215263A (en) Production of composite material
JPS60110831A (en) Production of fiber-reinforced composite member
JPH05169189A (en) Cooling pipe device for casting metallic mold
JPS60111756A (en) Production of connecting rod for internal-combustion engine
JPS60111757A (en) Production of fiber reinforced composite member
JPS60110830A (en) Production of fiber-reinforced composite member
JPS62238039A (en) Manufacture of fiber reinforced composite member
JPH06102265B2 (en) Method for manufacturing fiber-reinforced composite member
JPS59215433A (en) Manufacturing method of fiber reinforced aluminum alloy
JPS60106645A (en) Casting mold for high pressure solidification casting
JPS6178552A (en) Production of aluminum parts having bolting part
JPH0925848A (en) Cylinder block of engine and its manufacture
JPH0195865A (en) Production of composite member