JPS5985951A - Apparatus for measuring oxygen concentration - Google Patents
Apparatus for measuring oxygen concentrationInfo
- Publication number
- JPS5985951A JPS5985951A JP58184610A JP18461083A JPS5985951A JP S5985951 A JPS5985951 A JP S5985951A JP 58184610 A JP58184610 A JP 58184610A JP 18461083 A JP18461083 A JP 18461083A JP S5985951 A JPS5985951 A JP S5985951A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- layer
- measuring device
- partial pressure
- oxygen concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/4065—Circuit arrangements specially adapted therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は流体中の酸素濃度を検出するための酸素濃度測
定装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen concentration measuring device for detecting oxygen concentration in a fluid.
かかる酸素濃度測定装置は自動車等の内燃転′そ関の排
ガス中の酸素含有量を検出して内燃tiQ四の空燃比を
制御するために近年用いられており、一般に酸素イオン
の良導体であるジルコニアのような固体電解質の管また
は板の内外側に白金等の1)、子伝導性電極を焼成し、
これら電極の外側に酸素分圧未知の被測定ガス全導入し
、内側に酸素分圧既知の基準ガス、例えば空気を導入し
、両電極ヲ1「1位差計に接続し、被測定ガス中の酸素
分圧PO2と基準ガス中の酸素分圧PO8′との差によ
p両電極間に発生する起電力Evf−測足し、ネルンス
トの式ただし、R:気体常数
T:絶対温度
F:ファラテ一定数
によって酸素濃度を測定すべきガスの酸素分圧を知り、
被測定ガスの全圧を一定に保持することによって酸素分
圧が酸素濃度を示すように47−−成されている。Such oxygen concentration measuring devices have been used in recent years to control the air-fuel ratio of internal combustion engines by detecting the oxygen content in exhaust gas from internal combustion engines such as automobiles, and are generally made of zirconia, which is a good conductor of oxygen ions. 1) Baking conductive electrodes such as platinum on the inside and outside of a solid electrolyte tube or plate, such as
All of the gas to be measured with an unknown oxygen partial pressure is introduced to the outside of these electrodes, a reference gas with a known oxygen partial pressure, such as air, is introduced to the inside, and both electrodes are connected to a 1st position difference meter. The electromotive force Evf generated between the two electrodes due to the difference between the oxygen partial pressure PO2 in the reference gas and the oxygen partial pressure PO8' in the reference gas is measured, and Nernst's formula is given by R: Gas constant T: Absolute temperature F: Farate Knowing the oxygen partial pressure of the gas whose oxygen concentration should be measured by a certain number,
By keeping the total pressure of the gas to be measured constant, the oxygen partial pressure is made to indicate the oxygen concentration.
この種の酸素濃度測定装置としては従来種々の形式のも
のが提案されており、その代表的なものとして、例えば
、特開昭4・9−180292号公報に記載されている
ように管状のセラミック焼結成形体を固体電解質基体と
し、基準ガスとして空気音用いる形式のものが既知であ
る。しかし、この形式のものでは管状の固体電解質基体
の質b1が太きいため熱容量が大きく、まfc電気抵抗
も太きく、シたがって温度特性や管状固体電解質基体の
熱による破損、ひび割れ等に間v4がオリ、価格も高く
乃る欠点がある。かかる欠点をなくすため、基体を小型
化することが提案されているが、この場合には、被測定
ガス中の酸素濃度を測定している間に管状の固体電解質
基体の内側に常に新しい基準ガスを送り込む必要があり
、電極反応に関与する酸素濃度が必ずしも基準ガスの酸
素濃度とならず、電極反応によって生ずる表面の拡散層
の形成により電極近くの基準ガスの酸素分圧が変化して
しまい、被測定ガス中の酸素濃度を正確に測定すること
が不可能となる欠点がある。したがって、特開昭49−
113+1292号公報に記載の形式の酸素濃度測定装
置においては、被測定ガス中のnシ累濃度を正確に測定
するために、ガス検知電極部における基準ガスの拡散に
よる濃度勾配を十分小さく保つための基準ガスの代謝機
構が必要であり、この結果、必然的に基準ガスを収容す
る空間容積を小さくすることに対する限界があり、した
がって検知部の大きさを小型化することは不可能である
。Various types of oxygen concentration measuring devices have been proposed in the past, and a typical example is a tubular ceramic device as described in JP-A-4-9-180292. A type is known in which a sintered compact is used as a solid electrolyte base and air sound is used as a reference gas. However, in this type, the quality b1 of the tubular solid electrolyte substrate is large, so the heat capacity is large, and the electric resistance is also large, so it is difficult to maintain temperature characteristics and damage or cracking due to heat of the tubular solid electrolyte substrate. V4 is the best, but it has the drawback of being expensive. In order to eliminate this drawback, it has been proposed to miniaturize the substrate, but in this case, new reference gas is always placed inside the tubular solid electrolyte substrate while measuring the oxygen concentration in the gas to be measured. The oxygen concentration involved in the electrode reaction is not necessarily the same as that of the reference gas, and the formation of a diffusion layer on the surface caused by the electrode reaction changes the oxygen partial pressure of the reference gas near the electrode. There is a drawback that it is impossible to accurately measure the oxygen concentration in the gas to be measured. Therefore, JP-A-49-
In the oxygen concentration measuring device of the type described in Publication No. 113+1292, in order to accurately measure the cumulative concentration in the gas to be measured, a method is used to keep the concentration gradient due to diffusion of the reference gas in the gas detection electrode section sufficiently small. A metabolic mechanism for the reference gas is required, and as a result there is necessarily a limit to reducing the spatial volume accommodating the reference gas, and therefore it is not possible to reduce the size of the sensing part.
上述した形式の酸素濃度測定装置の変形として、基準ガ
スを内側へ送り込む代りに、基準ガスを密封空間内に封
入保持し、この基準ガス密封9間の内側に設けた触媒電
極と外側の被測定ガス中に設けた触媒市、極とにより被
測定ガス中の酸素濃度の測定を行うよう構成した酸素濃
度測定装置が特開昭5a−71298号公報に記載され
ている。この酸素濃度測定装置は測定時に密封空間内の
基準酸素ガスが電解により消費され、基準ガスの酸素分
圧が変化するため、このnす素分圧が変化すれば測定?
中断し、別の既知の酸素濃度のガス、例えば空気など番
基準ガスとして測定装置の起電力が再び一定値になるま
で通電(7、酸素ガス全密閉空間内部に補給することが
必要であり、これがため長時間連続して酸素一度を検出
することはできない欠点がある。かかる欠点を除去して
長時間の連続測定を可能にするfcめには、測定中に密
閉空間内の基準ガスの酸素分圧がほとんど変化しないだ
けの基準ガスを封入保持している必要があり、この結実
装置が大型化する欠点がある。さらにまた・この形式の
測定装置では、測定中に基準ガス全速り込む前述の形式
のものに比べて基準ガスの対流がさらに少ないため、流
れがよどんでいる層が非常に19. <なり、正確に被
測定ガス中の酸素分圧を測定することは不可能であゐ。As a modification of the oxygen concentration measuring device of the above-mentioned type, instead of sending the reference gas inside, the reference gas is sealed and held in a sealed space, and a catalyst electrode provided inside the space between the reference gas seal 9 and the object to be measured on the outside are used. JP-A-5A-71298 discloses an oxygen concentration measuring device configured to measure the oxygen concentration in a gas to be measured using a catalyst plate and a pole provided in the gas. With this oxygen concentration measuring device, the reference oxygen gas in the sealed space is consumed by electrolysis during measurement, and the oxygen partial pressure of the reference gas changes.
Then, use another reference gas such as air with a known oxygen concentration and energize until the electromotive force of the measuring device reaches a constant value again (7. It is necessary to replenish the oxygen gas inside the completely enclosed space, For this reason, there is a drawback that oxygen cannot be detected continuously for a long period of time.In order to eliminate this drawback and enable continuous measurement for a long period of time, the oxygen of the reference gas in the closed space during measurement is It is necessary to seal and hold a reference gas whose partial pressure hardly changes, which has the disadvantage of increasing the size of this fruiting device.Furthermore, with this type of measuring device, the reference gas flows in at full speed during measurement. Since the convection of the reference gas is even smaller than in the case of the type 19, the layer where the flow is stagnant becomes extremely large, making it impossible to accurately measure the oxygen partial pressure in the gas to be measured. .
オタ、この形式の本のは前述の形式のものと同様に構造
的に7シ雑で、固体電解質が肉厚の管状または板状体と
なるため割れ易く、製造上および耐久性上に四F1があ
る。Otaku, this type of book is structurally rough like the previous type, and the solid electrolyte is in the form of a thick tube or plate, making it easy to break. There is.
上述したように基準ガスとして空気等のrie素分圧の
一定のガスを用いると上述した間穎を避けることができ
ないため、熱力学的平衡ヲ利用した一種の緩衝作用を有
する金属と金属酸化物との混合多孔物質の平衡画素ガス
を基準ガスとして利用し、基準ガス空間を外部から隔離
した形式のものが米国特許第8578578号明細書、
および特開昭52−186689号公報等に記載されて
いるように既知である。この形式のものは固体電解質を
厚膜化したもので、一般に、基板上に電極、酸素界面領
域、固体it電解質薄膜層および多孔質りし極を順次形
成【7て構成され、固体電解質成形体を基準とする欠点
を補なうとともに極めて小型化に成功したものである。As mentioned above, if a gas with a constant rie partial pressure such as air is used as a reference gas, the above-mentioned lag cannot be avoided, so metals and metal oxides that have a kind of buffering effect using thermodynamic equilibrium are used. U.S. Pat. No. 8,578,578 discloses a type in which an equilibrium pixel gas of a mixed porous material with a mixed porous material is used as a reference gas, and the reference gas space is isolated from the outside.
It is known as described in JP-A-52-186689 and the like. This type of solid electrolyte is made of a thick film, and generally consists of an electrode, an oxygen interface region, a solid IT electrolyte thin film layer, and a porous electrode formed sequentially on a substrate. It compensates for the shortcomings of the standard, and has succeeded in being extremely compact.
しかし、上述の基準酸素発生物質として、金属−金属酸
化物を用いfc酸素濃度測定装置は高温において酸素分
圧が高い雰囲気中で酸素分圧の測定を行なうと、固体電
解質と接触している金属が酸化されたり、外側雰囲気と
の混合に:よって基準の平衡酸素分圧を発生しなくなり
、測定される起電力が時間の経過にしたがって低下し、
定常的に酸素分圧を測定することが不可能で、寿命が著
しく短い欠点がおるとともに、金、1”4と金属へ゛化
物とを蒸着、vL着、熱処理’+たけスパッタリング等
の処理により真空中で付着させて形成するため基準酸素
分圧として最も安定した碕゛性な・示すところの金属と
金属酸化物とを約1:lのモル比の組成テ形成すること
が困難であるため製品コストが高くなる間11がある。However, when the FC oxygen concentration measuring device uses a metal-metal oxide as the reference oxygen generating substance mentioned above and measures the oxygen partial pressure in an atmosphere with high oxygen partial pressure at high temperature, the metal in contact with the solid electrolyte oxidized or mixed with the outside atmosphere: Therefore, it no longer generates the standard equilibrium oxygen partial pressure, and the measured electromotive force decreases over time.
It is impossible to measure the oxygen partial pressure on a regular basis, and the service life is extremely short. In addition, gold, 1"4 and metal oxides are deposited in a vacuum by vapor deposition, VL deposition, heat treatment, and sputtering. Because it is formed by adhering the metal and metal oxide in a molar ratio of about 1:1, it is difficult to form a product with the most stable and robust standard oxygen partial pressure. There are 11 while the cost is high.
本発明の目的は上述した従来既知の種々の形式の酸素濃
度測定装置における欠点を除去し、起■。The object of the present invention is to eliminate and improve the drawbacks of the various types of oxygen concentration measuring devices previously known as described above.
力が時間の経過に伴って低−トすることなく定常的に酸
素分圧を測定することができ、i fc p;、゛素分
圧の変化に際しての起電力のオンーオフ管性が明確で、
測定精度が高く、寿命が長いとともに構造が極めて小型
かつ簡単で製造容易な新規な酸素濃度測定装置を提供し
ようとするにある。It is possible to constantly measure the oxygen partial pressure without the force decreasing over time, and the on-off control of the electromotive force is clear when the elemental partial pressure changes.
The object of the present invention is to provide a novel oxygen concentration measuring device that has high measurement accuracy, long life, and is extremely compact and simple in structure and easy to manufacture.
本発明は、基準酸素分圧の発生源を上述した従来のもの
とは異なる原理に基づく新規な構成とすることによって
上述の目的を達成したもので、これがため本発明によれ
ば、測定極電子伝導層と、酸素イオンW1導性固体1し
:解質物質層と、基準極電子伝導層と、隔膜層とを順次
積層し、前記基準極電子伝導層が前記酸素イオン電導性
固体電解質物質層“I!たけ前記隔膜層と前記酸素イオ
ン電導性固体電解質物質層との両層における多孔開口を
通して被測定雰囲気と接触するようにし、前記測定極電
子伝導層および前記基準極電子伝導層間に測定用起電力
を取出す測定手段と、前記基準極電子伝導層にお・ける
基準酸素分圧を制御する制御用電流′ff′−加える制
御手段とを接続し、これにより:に電しなから測定全行
なうよう構成することによって酸素濃度測定中に基準酸
素分圧管はば一足に維持するようにしたことを特徴とし
、かように81++定中に酸素イオン電導性固体電解質
物質層に絶えず通電しながら両′N1子伝導層間に生ず
る起電力全測定する構成とすることによって酩木濃度測
定装置の出力を著しく安定させることに成功したもので
ある。The present invention has achieved the above-mentioned object by providing a source of reference oxygen partial pressure with a new configuration based on a principle different from the conventional one described above. A conductive layer and an oxygen ion conductive solid 1: a solute material layer, a reference electrode electron conductive layer, and a diaphragm layer are sequentially laminated, and the reference electrode electron conductive layer is the oxygen ion conductive solid electrolyte material layer. "I!TAKE" The membrane layer and the oxygen ion conductive solid electrolyte material layer are brought into contact with the atmosphere to be measured through the porous openings in both layers, and the measurement electrode is placed between the measurement electrode electron conduction layer and the reference electrode electron conduction layer. A measuring means for taking out an electromotive force is connected to a controlling means for applying a control current 'ff' to control the reference oxygen partial pressure in the reference electrode electron conductive layer. By configuring this to be carried out, the reference oxygen partial pressure tube is kept constant during the oxygen concentration measurement, and in this way, during the 81++ measurement, the oxygen ion conductive solid electrolyte material layer is constantly energized, and both the oxygen ion conductive solid electrolyte material layer is By adopting a configuration in which the entire electromotive force generated between the N1 conductive layers is measured, it has been possible to significantly stabilize the output of the electromotive force concentration measuring device.
以下、本発明を図面につき説明する。The invention will now be explained with reference to the drawings.
tK1図は本発明による階床濃度測定装置の基本的構成
を示し、図面に示すように測定電子伝導層lと、r!9
素イオン電導性固体電解質物質層8と、基準極電子伝導
層2と、隔膜層4とを順次積層した積層体として構成す
る。第1図には具体的に示していないが、隔膜/e 4
を構造基体として構成し、この構造基体によって積層体
1,2,13.4全体を被測定ガスま7’(は雰囲気中
に支持する。また基準極電子伝導層20両側に位置する
酸素イオン電導性固体電解質物質層Bまたは隔膜層Φと
酸素イオン電導性固体電解質物lA層との両層ケ多孔性
物質で構成するとともに基準極電子伝導層2が被測定雰
囲気に対して直接に1露出しないよう#素イオン導電性
固体@解質物負層B又は隔膜Jti 4全被覆材として
利用するか又は他の適尚な被覆材ケ用いて基準極電子伝
導層2の外周縁部全被覆して基準極電子伝導層2が酸素
イオン箪導性同体雷1解質物質層8又は隔膜層4或はこ
れら両肩における多孔開口を通して曲りの被測定雰囲気
と接触するようにし、測定極電子伝導層lおよび基準極
′i11子伝導膚2間に導線5によって測定用起電力全
取出すための測定手段として電位差針のような電圧測定
装置6に接続して被測定ガス雰囲気中の階aζガス分圧
PO,(I)と基準極電子伝導層2お工び固体電解質物
質層8間の界面における最素分圧PO2(It)との差
によって生ずる起市力全測定し得るようにし、さらに、
電圧測定装置6と並列に直流電源回路7を接続して両電
子伝導層1.2間に電圧″i!、たは電流を供給し得る
よう構成する。The tK1 diagram shows the basic structure of the floor concentration measuring device according to the present invention, and as shown in the drawing, the measurement electron conduction layer l, r! 9
It is constructed as a laminate in which an elementary ion conductive solid electrolyte material layer 8, a reference electrode electron conductive layer 2, and a diaphragm layer 4 are sequentially laminated. Although not specifically shown in Figure 1, the diaphragm/e 4
is constructed as a structural base, and this structural base supports the entire laminate 1, 2, 13.4 in the atmosphere of the gas to be measured 7'. Both layers, the conductive solid electrolyte material layer B or diaphragm layer Φ and the oxygen ion conductive solid electrolyte layer IA, are composed of porous materials, and the reference electrode electron conductive layer 2 is not directly exposed to the atmosphere to be measured. Ion conductive solid @solate negative layer B or diaphragm Jti 4 can be used as the entire coating material, or other suitable coating material can be used to cover the entire outer periphery of the reference electrode electron conductive layer 2. The electrode electron conductive layer 2 is brought into contact with the atmosphere to be measured through the bending through the porous openings in the oxygen ion conductive isoconductive layer 8 or the diaphragm layer 4 or both of these shoulders, and the measurement electrode electron conductive layer 1 and The reference electrode 11 is connected to a voltage measuring device 6 such as a potentiometric needle as a measuring means for extracting the entire electromotive force for measurement by a conductive wire 5 between the conductive skin 2 and the partial pressure of the gas aζ in the gas atmosphere to be measured PO, (I) and the ultimate partial pressure PO2 (It) at the interface between the reference electrode electron conductive layer 2 and the solid electrolyte material layer 8.
A DC power supply circuit 7 is connected in parallel with the voltage measuring device 6 so that a voltage "i!" or a current can be supplied between both electron conductive layers 1.2.
上述の構成になる酸素濃度測定装置の動作を次に説明す
る@
本発明により基準酸素分圧をほぼ一定に維持する機構を
説明する前に、まず、両電子伝導層間に電圧全印加しな
いで、電位差計による起電力を測定する場合を検討する
に、被測定ガス中の酸素分圧PO(I)と固体電解質層
8および基準極電子伝導層2間の界面における酸素分圧
PO9(n)との間に差がおる場合には、両者が一致す
る方向にre素イオンが固体電解質層8内を辿って移動
し、po (1)>PO,(II)の場合に、電子伝導
層lと固体電解質層8との界面でO,+ 419−)
20−の反応が生じ、0−が固体電解質層8内を通って
電子伝導層2の方向へ移動し、これにより固体電解質層
Bと電子伝導N112との界面で20−−−→0.+4
eの反応が生じ、po、(If) 751 次第に増゛
加シテ最終的K U PO,(Il j PO,(11
)となって平衡状態となり、起電力Eが零になる。The operation of the oxygen concentration measuring device having the above-mentioned configuration will be explained next.@Before explaining the mechanism for maintaining the reference oxygen partial pressure almost constant according to the present invention, first, without applying a full voltage between both electron-conducting layers, When considering the case of measuring electromotive force using a potentiometer, the oxygen partial pressure PO(I) in the gas to be measured, the oxygen partial pressure PO9(n) at the interface between the solid electrolyte layer 8 and the reference electrode electron conductive layer 2, and If there is a difference between them, the re elementary ions move within the solid electrolyte layer 8 in the same direction, and when po (1)>PO, (II), the electron conduction layer l and O, +419-) at the interface with solid electrolyte layer 8
A reaction of 20- occurs, and 0- moves toward the electron conductive layer 2 through the solid electrolyte layer 8, and as a result, 20----→0. +4
The reaction of e occurs, po, (If) 751 gradually increasing final K U PO, (Il j PO, (11
), an equilibrium state is reached, and the electromotive force E becomes zero.
これとは逆に、PO(I)<PO,(I)の場合には電
子伝導N9と固体%I電解質物質層との界面に存在する
0゜が被測定ガス中に流出して同様にPO(I) =
PO□(II)となる。かように両酸素分圧po、(I
)およびPO,(II)間に差がなくなることにより起
電力は発生しなくなる。On the contrary, in the case of PO(I)<PO,(I), 0° present at the interface between the electron-conducting N9 and the solid %I electrolyte material layer flows into the gas to be measured and similarly PO (I) =
It becomes PO□(II). Thus both oxygen partial pressures po, (I
) and PO, (II), no electromotive force is generated.
本発明によれば、両電子伝導@lおよび2間に常時通電
しながら測定することによって基準極を子伝導層2と電
解質物質層8との界面および物質、、。According to the present invention, the reference electrode is measured by constantly supplying current between both electron conduction layers 2 and 2, and the interface between the electron conduction layer 2 and the electrolyte material layer 8 and the material.
内の多孔内に基準酸素ガスを電解によシ発生させ、これ
により基準酸素分圧をほぼ一定に維持させるものであり
、以下その動作原理を説明する。A reference oxygen gas is electrolytically generated within the pores of the sensor, thereby maintaining the reference oxygen partial pressure almost constant.The principle of operation will be explained below.
先づ、測定極電子伝導層1f直流電源回路7の負側に接
続し、基準極電子伝導層″2を正側に接続する場合、固
体電解質#B内において負に帯電した酸素イオンは基準
極電子伝導層2に向けて移動し、この結果、固体電解質
層8と基準極電子伝導層2との界面における酸素分圧が
商くなる。First, when connecting the measuring electrode electron conductive layer 1f to the negative side of the DC power supply circuit 7 and connecting the reference electrode electron conductive layer 2 to the positive side, the negatively charged oxygen ions in the solid electrolyte #B are connected to the reference electrode. It moves toward the electron conduction layer 2, and as a result, the oxygen partial pressure at the interface between the solid electrolyte layer 8 and the reference electrode electron conduction layer 2 becomes quotient.
この場合生ずる反応を列記すると次の通りである。The reactions that occur in this case are listed below.
(1) 測定極電子伝導層1と固体m″、解質層8と
の界面において、02(被測定ガス中)+4e−→2O
−−(固体電解質層)
(2) 固体電解質層8内において、20− が測定
極電子伝導層1から基準極電子伝導層2に向けて移動す
る。(1) At the interface between the measurement electrode electron conductive layer 1, the solid m″, and the solute layer 8, 02 (in the gas to be measured) +4e−→2O
--(Solid Electrolyte Layer) (2) Within the solid electrolyte layer 8, 20- moves from the measurement electrode electron conduction layer 1 to the reference electrode electron conduction layer 2.
(B) 基準&電子伝導層2と固体電解質R4Bとの
界面において、
20 (固体電解質中)→Q、+ 48ここで発生す
るOfAは固体電解質層8と基準極電子伝導層2との界
面に%積される。このため、PO(II)は高くなる。(B) At the interface between the reference & electron conductive layer 2 and the solid electrolyte R4B, 20 (in the solid electrolyte) → Q, + 48 OfA generated here is at the interface between the solid electrolyte layer 8 and the reference electrode electron conductive layer 2. % multiplied. Therefore, PO(II) becomes high.
上述しlx)、(9)および(8)の反応とは別に、基
準極電子伝導#8が酸素カス透過可能の多孔性物質1脅
8または8お↓び4(固体電解質層8のみまたは固体型
、解質層Bと隔膜層4との両層を意味する)と接触接合
しているため蓄積し7”c酸あ(の一部が外部雰囲気、
すなわち、被測定ガス中に流出する反応も生じる。・し
たがって、側冗開始後、ある時間経過すると固体電解質
層8と基準極電子伝導層2との界面における酸素分圧は
ほぼ一定となる。かようにして酸素濃度測定装置の基準
酸素分圧をほぼ一足に維持することができる。Apart from the reactions of lx), (9) and (8) mentioned above, the reference electrode electron conduction (meaning both the solute layer B and the diaphragm layer 4), it accumulates and some of the 7"C acid (means both the solute layer B and the diaphragm layer 4)
That is, a reaction that flows out into the gas to be measured also occurs. - Therefore, after a certain period of time has passed after the start of side redundancy, the oxygen partial pressure at the interface between the solid electrolyte layer 8 and the reference electrode electron conductive layer 2 becomes approximately constant. In this way, the reference oxygen partial pressure of the oxygen concentration measuring device can be maintained at approximately the same level.
上述しπとは逆に、測定極電子伝導層lを直流電源回路
7の正側に接続し、基準&電子伝導層2を負側に接続す
る場合には、上述した(1)、 (2)および(8)の
反応とは逆の反応が生ずる。すなわち、(1)′ 固
体電解質ノー8と基準極電子伝導層2との界面において
、
0、++e→2o−−(固体電解質)
(2y 固体電解質層8内において、20−が基準極
電子伝導層2から測定極電子伝導層lに向けて移動する
。Contrary to the above-mentioned π, when the measurement electrode electron-conducting layer l is connected to the positive side of the DC power supply circuit 7 and the reference & electron-conducting layer 2 is connected to the negative side, the above-mentioned (1), (2) ) and (8), the opposite reaction occurs. That is, (1)' At the interface between the solid electrolyte No. 8 and the reference electrode electron conductive layer 2, 0, ++e → 2o−- (solid electrolyte) (2y In the solid electrolyte layer 8, 20− is the reference electrode electron conductive layer 2, the measurement electrode moves toward the electron-conducting layer l.
(8)′ 測定極電子伝導層1と固体電解質層8の界
面において、
20−(固体πiJ質片→O,(被測定ガス中)+4・
eこのような反応によって基準極電子伝導性層と固体電
解質層との界面における酸素分圧が低くなるが、多孔性
物質#8または8および4”f4−経て外部の被測定ガ
ス中の酸素ガスが透過進入し2、」〕る時時経過すると
前述したと同様に酸素分圧PO2(II)はほぼ一定と
なる。したがって、このJ1合も、はぼ−Wの値の基準
酸素分圧を維持することができる。(8)' At the interface between the measurement electrode electron conductive layer 1 and the solid electrolyte layer 8, 20-(solid πiJ mass → O, (in the gas to be measured) +4・
e Although such a reaction lowers the oxygen partial pressure at the interface between the reference electrode electronic conductive layer and the solid electrolyte layer, the oxygen gas in the external measured gas As time passes, the oxygen partial pressure PO2 (II) becomes approximately constant as described above. Therefore, in this J1 case as well, the reference oxygen partial pressure of the value of Habo-W can be maintained.
」二連したところから明らかなように、直流電源回路7
の正側および負側を電子伝導層lお工び2のいづiLに
接続する場合にも基準極内の酸素分圧を一定に維持する
ことができるが、上述した前者゛ の場合には′a1累
を測定極電子伝導層lより基準極電子伝導)i12に電
解によって送り込んで多孔性物質層8または8および4
を経て散逸する酸素ガス量を補充するものであるから、
基準酸素ガス分圧ケ高くすることが望ましい場合に好適
であり、後者の場合には多孔質物質層8またはBおよび
4を経て外部から流入する酸素ガス鼠ヲ排除して一定に
なるよう酸素ガス全基準極電子伝導層2より測定極電子
伝導層に向は電解により送り出すものであるから基準酸
素分圧を低い値で一定に維持することが望ましい場合に
好適である。"As is clear from the double series, the DC power supply circuit 7
The oxygen partial pressure in the reference electrode can also be maintained constant when the positive and negative sides of the electrode are connected to the electron conductive layer 2, but in the former case described above, a1 is electrolytically sent from the measurement electrode electron conduction layer l to the reference electrode electron conduction layer i12 to form the porous material layer 8 or 8 and 4.
This is because it replenishes the amount of oxygen gas that dissipates through
It is suitable when it is desired to increase the reference oxygen gas partial pressure, and in the latter case, the oxygen gas flowing in from the outside through the porous material layer 8 or B and 4 is eliminated and the oxygen gas is kept constant. Since the entire reference electrode electron conductive layer 2 is sent to the measurement electrode electron conductive layer by electrolysis, it is suitable when it is desired to maintain the reference oxygen partial pressure at a constant low value.
本発明による酸素濃度測定装置において、電圧測定装@
6で計測される電圧Vは被測定ガスの酸素分圧PO(I
)と基準酸素分圧PO,(Illとの差によつて生ずる
起電力Eと一定の関係を有し、これ?次式で表わすこと
ができる。In the oxygen concentration measuring device according to the present invention, the voltage measuring device @
The voltage V measured at step 6 is the oxygen partial pressure PO(I
) and the reference oxygen partial pressure PO, (Ill), which has a certain relationship with the electromotive force E generated by the difference, and can be expressed by the following equation.
上式において、e :室温回路におけるバラブリーのt
l(、圧I(□=回路の抵抗
R8二箱、圧側尾装匝のインピーダンスT :酸素セン
サの内部抵抗
また基準酸素分圧PO、(II)はセンサを流れる電流
と、多孔質層8または8および4中のガス拡散能により
決まるため、一定の値となり、L7jがって前述したネ
ルンストの式(1)により被測定ガスの酸素濃度を知る
ことができる。In the above equation, e: t of dispersion in a room temperature circuit
l(, pressure I (□ = resistance of the circuit R8, impedance of the pressure side tail mount T: internal resistance of the oxygen sensor or reference oxygen partial pressure PO, (II) is the current flowing through the sensor and the porous layer 8 or Since it is determined by the gas diffusion ability in 8 and 4, it is a constant value, and therefore, the oxygen concentration of the gas to be measured can be determined from the Nernst equation (1) described above.
また、上述したところから明らかなように、被測定ガス
の酸素分圧の変化により起電力Eが変化し、これに比例
して測定電圧Vも変化するから、この電圧Vの計測によ
り被測定ガスの酸素濃度に基づく種々の制御が可能であ
る。Furthermore, as is clear from the above, the electromotive force E changes due to a change in the oxygen partial pressure of the gas to be measured, and the measurement voltage V also changes in proportion to this. Various controls are possible based on the oxygen concentration.
第2図は隔膜層を構造基体として構成し、これに電気的
絶縁物質または電子的導体物質の成形体10を用いる例
を示し、成形体10の表面に基準極電子伝導層2を形成
し、この基準電子伝導層2の表面を酸素ガスが透過し得
る多孔性の固体電解質層8によって完全に被覆し、この
固体電解質層8の表面に測定電子伝導層1vi−設ける
。FIG. 2 shows an example in which a diaphragm layer is configured as a structural base, and a molded body 10 of an electrically insulating material or an electronically conductive material is used for this, and a reference electrode electron conductive layer 2 is formed on the surface of the molded body 10, The surface of the reference electron conduction layer 2 is completely covered with a porous solid electrolyte layer 8 through which oxygen gas can pass, and the measurement electron conduction layer 1vi is provided on the surface of the solid electrolyte layer 8.
両電子伝導層lおよび9を導線5により電位差針のよう
な電圧測定装置6に接続して被測定ガス雰囲気中の酸素
ガス分圧PO、(I)と基準極電子伝導層2および固体
電解質物Vi、層8間の界面における酸素分圧PO2(
It)との差によって生ずる起電ノで測定し得るように
し、さらに、電圧測定装置6と並列に直流電源回路7を
接続して両電子伝導I@1゜2間に一定電圧またVよ一
定1[f1流を供給し得る構成とする。Both electron conductive layers 1 and 9 are connected to a voltage measuring device 6 such as a potentiometric needle through conductive wires 5 to measure the oxygen gas partial pressure PO, (I) in the gas atmosphere to be measured, the reference electrode electron conductive layer 2, and the solid electrolyte. Vi, oxygen partial pressure PO2 at the interface between layers 8 (
Furthermore, by connecting a DC power supply circuit 7 in parallel with the voltage measuring device 6, a constant voltage between both electron conductors I@1°2 or a constant voltage V 1 [f1 flow can be supplied.
第8図は第2図に示す例の変形例で、測定極電子伝導層
lの表面を保護層9で被覆したもので、必要に応じ、積
層体の表面全体を保護層で被覆することができる。FIG. 8 shows a modification of the example shown in FIG. 2, in which the surface of the measurement electrode electron conductive layer l is covered with a protective layer 9. If necessary, the entire surface of the laminate can be covered with the protective layer. can.
本発明における固体電解質層8の材料としては、QaO
,Y、O,SrO,MgO,WO,Ta90−とで安定
化したzro或はNb OSrO* WOs 、 ’I
’aO,’J:どで安2 86゜
定化し7t Bi、08またはTrOQ−Y、O,0a
O−Y、08などの既知のものを用いることができる。The material of the solid electrolyte layer 8 in the present invention is QaO
, Y, O, SrO, MgO, WO, Ta90- stabilized with zro or Nb OSrO* WOs, 'I
'aO,'J: Dodean 2 86° stabilized 7t Bi, 08 or TrOQ-Y, O, 0a
Known materials such as O-Y and 08 can be used.
第2図および第8図に示す例では、上記材料のスパッタ
リング、蒸着その他の電気化学的方法によっであるいは
ペーストの塗布焼成等によって固体電解質層を設けるこ
とができる。In the examples shown in FIGS. 2 and 8, the solid electrolyte layer can be provided by sputtering, vapor deposition, or other electrochemical methods using the above materials, or by applying and baking a paste.
測定極電子伝導層1および基準極電子伝導層2の材料と
しては触媒作用のないAu、 Ag、 SiOおよび触
媒作用を有するRu、 Pa、 Rh、 Os、 Ir
、 Pt等の白金族元素の単体あるいはこれらの合金さ
らには白金族元素と卑金属元素との合金などを用いるこ
ともでき、かかる材料をスパッタリング、蒸着、電気化
学的方法または焼成などによって電子伝導層を設けるこ
とができる。The materials of the measurement electrode electron conductive layer 1 and the reference electrode electron conductive layer 2 include Au, Ag, and SiO, which do not have catalytic activity, and Ru, Pa, Rh, Os, and Ir, which have catalytic activity.
It is also possible to use a single platinum group element such as Pt, an alloy thereof, or an alloy of a platinum group element and a base metal element. can be provided.
また、第2図および第8図に示す例のように隔膜層′f
r構造基体として構成する場合には、その成形体lOの
材料として、アルミナ、ノ・ライト、スピネル、シリカ
、フォルステライトなどの緻密または若干多孔質の1に
気絶縁月料、あるいはステンレス鋼、ニッケル基面J熱
合金あるいはザーメットのようなセラミックスと金属の
混合体等の電子的導体物質を用いることができる。In addition, as in the examples shown in FIGS. 2 and 8, the diaphragm layer 'f
In the case of constructing it as a structured substrate, the material of the molded body 10 may be a dense or slightly porous material such as alumina, norite, spinel, silica, forsterite, or a gas-insulating material such as stainless steel or nickel. Electronically conductive materials such as base J thermal alloys or mixtures of ceramics and metals such as cermets can be used.
保腹W19としてFiCaO−2rO2(カルシウムジ
ルコネート)、アルミナ、スピネルなどを浸漬、焼成、
プラズマ溶射したものが用いられる。FiCaO-2rO2 (calcium zirconate), alumina, spinel, etc. are soaked, fired, and
Plasma sprayed material is used.
不発ツ」による酸素濃度測定装置において、基準酸素分
圧を砥ぼ一定に維持するため、両電子伝導層間に接続さ
れる直流電源としては、既知の適当な定電圧直流電源回
路オたは定電流直流電源回路を用いることができる。T
rr流電源として電池と抵抗とよりなる直流電源回路を
用いろのが最も簡単でアシ、安価に構成すると−とがで
するが、かかる定電圧直流電源回路は被測定ガスの温度
その他の雰囲気が大きく変化する自動車の排ガス中の酸
素濃度測定のような測定分野に用いる場合、これらの雰
囲気の変化による固体電解質の電気的抵抗の変化の影I
IIを受けるため排ガスの温度変化に関係なく基準酸素
分圧を正確に一定に維持することができなくなる。した
がって、かかる温度変化の影響を受ける測定分野での応
用に際しては、定電流直流電源回路を直流電源として用
いることが必要であり、これによって雰囲気の変化によ
る影響全なくシ、高精度での測定、したがって制御を維
持することができ、さらにまた、深度変化によって固体
電解質の気孔の大きさが変化して酸素ガスの流入および
流出流量が変化することによる影響等をも考慮した温度
補償付定電流直流電源回路を用°いることによって温度
変化による影響を完全になくすことにより測定精度全史
に高めることが可能である。In the oxygen concentration measuring device using "Unexploded Tsu", in order to maintain the reference oxygen partial pressure at a constant level, a known suitable constant voltage DC power supply circuit or constant current is used as the DC power supply connected between both electron conductive layers. A DC power supply circuit can be used. T
It is simplest to use a DC power supply circuit consisting of a battery and a resistor as the RR current power supply, and it is possible to construct it at low cost. However, such a constant voltage DC power supply circuit depends on the temperature of the gas being measured and other atmosphere When used in measurement fields such as measuring the oxygen concentration in automobile exhaust gas, which changes significantly, the influence of changes in the electrical resistance of solid electrolytes due to these changes in the atmosphere I.
II, it becomes impossible to maintain the reference oxygen partial pressure accurately and constant regardless of temperature changes in the exhaust gas. Therefore, for applications in the measurement field that are affected by such temperature changes, it is necessary to use a constant current DC power supply circuit as a DC power supply. Therefore, it is possible to maintain constant current control, and it also takes into account the effects of changes in the pore size of the solid electrolyte due to changes in depth and changes in the flow rate of oxygen gas inflow and outflow. By using a power supply circuit, it is possible to completely eliminate the effects of temperature changes and thereby improve the overall measurement accuracy.
実施例 1
1インチ角の厚さQ 、Q ?a?ylの鳴海製陶製の
市販のアルミナ基板910X12mmの大尊さに切り、
白金ペースト(聴力化学製/% 8109 ) i印刷
し、乾燥後、大気中で1800℃に1時間加熱して焼成
して第2図の酸素濃度測定装置全作製した。得ら71.
た白金膜厚はl−2μでめった。第6a図にア/l/
ミナ基板を11で、基準極電子伝導層となる白金ペース
トを12で、測定極電子伝導層のリード部分となる白金
ペーストを18で示す。次に、固体1t1□解質ペース
ト(ジルカー社製 8重量% y2o8− zro2粉
末とラッカーとを重量比率1:1で混合したもの)を第
6b図に斜線部14で示すように印刷し、乾燥焼成した
。焼成条件は大気中で1880℃×8時間であった。得
られた固体電解質の膜厚は80〜85μであった。次に
、固体電解質膜14上に上記と同じ白金ペースト15を
第6C図に斜線部で゛示すように印刷し、1000℃で
1時間加熱して焼成した。この酸素濃度測定装置につい
て耐久試験を行なった。自動車の実機において8萬km
まで本発明による酸素濃度測定装置の性能にはほとんど
変化が認められなかった。Example 1 Thickness of 1 inch square Q , Q ? a? Cut a commercially available alumina substrate made by Narumi Seitai of yl into large pieces of 910 x 12 mm.
Platinum paste (manufactured by Auditory Kagaku Co., Ltd./% 8109) was printed, dried, and then heated and fired in the atmosphere at 1800° C. for 1 hour to fabricate the entire oxygen concentration measuring device shown in FIG. 2. Obtained 71.
The thickness of the platinum film was determined to be 1-2μ. Figure 6a shows a/l/
Reference numeral 11 indicates the Mina substrate, reference numeral 12 indicates the platinum paste serving as the reference electrode electron conduction layer, and reference numeral 18 indicates the platinum paste serving as the lead portion of the measurement electrode electron conduction layer. Next, a solid 1t1□ dissolving paste (a mixture of 8% by weight Y2O8-ZRO2 powder manufactured by Zilker and lacquer at a weight ratio of 1:1) was printed as shown by the hatched area 14 in FIG. 6b, and dried. Fired. The firing conditions were 1880° C. for 8 hours in the air. The film thickness of the obtained solid electrolyte was 80 to 85 μm. Next, the same platinum paste 15 as above was printed on the solid electrolyte membrane 14 as shown by the hatched area in FIG. 6C, and fired by heating at 1000° C. for 1 hour. A durability test was conducted on this oxygen concentration measuring device. 80,000 km in actual car
Until now, almost no change was observed in the performance of the oxygen concentration measuring device according to the present invention.
比較のためNi −N:io N k基準酸素分圧発生
源として具える従来形式の酸素センサーに対しても同様
の試験全行iったが、10個中8個が8萬kmの耐久試
験後に不良品となっていた。For comparison, all the same tests were carried out on conventional type oxygen sensors provided as Ni-N:ioNk reference oxygen partial pressure generation sources, but 8 out of 10 were tested for 80,000 km of durability. It later became a defective product.
本例の手順で製f’u した酸素濃度測定装置dをバッ
テリーの電圧rrO,8Vとし、回路の抵抗および電圧
測定装置のインピーダンスをともに1 )tQ トL、
バッテリーの正極に基準極’)TL子伝導it接続し、
空撚比が約18(排ガス中の酸素分圧が低い状態〕と約
1?(排ガス中の酸素分圧が晶い状態)の排気ガスの温
度を連続的に変化させて起電力を測定した・この測定結
果ケ第7図の果i?Jn l 7に示す。The oxygen concentration measuring device d manufactured according to the procedure of this example is set to a battery voltage rrO of 8V, and the resistance of the circuit and the impedance of the voltage measuring device are both 1) tQ tL,
Connect the reference electrode') TL conductor to the positive electrode of the battery,
The electromotive force was measured by continuously changing the temperature of exhaust gas with an air twist ratio of approximately 18 (a state in which the oxygen partial pressure in the exhaust gas is low) and approximately 1? (a state in which the oxygen partial pressure in the exhaust gas is crystalline).・The results of this measurement are shown in Figure 7.
これは本実施例で排カス源度が低くてもがなりの起電力
を出力していることケ示している。This shows that, in this example, a considerable electromotive force is output even if the discharged sludge source intensity is low.
上記笑験例において0.8vのバッテリーの代り°に0
.δμAの定電流電源を使用したところ基準画素分圧が
さらに安定し、第7図の結果についても再現性がさらに
改善された。In the experimental example above, instead of a 0.8v battery
.. When a constant current power source of δμA was used, the reference pixel partial pressure became more stable, and the reproducibility of the results shown in FIG. 7 was further improved.
実施例 2
第81図に示すようにアルミナ基板11内に金属発熱体
16として白金線を埋設した酸素濃度測定装置(他の構
成は実施例1と同じ)を用いて実施例1と同様のテスト
を行った。ヒーターの抵抗はlΩとし、8Wの電力を用
いた。この比較テストの結果、第7図に破線18で示す
ように加熱によって酸素濃度測定装置の作動温度域が拡
がり、排ガス温度がかなシ低い温度でも充分な起電力を
出力することが確められた。金属発熱体としては白金の
他にモリブデン、タングステン等ケ用いることができる
。Example 2 As shown in FIG. 81, a test similar to Example 1 was conducted using an oxygen concentration measuring device in which a platinum wire was embedded as a metal heating element 16 in an alumina substrate 11 (other configurations were the same as in Example 1). I did it. The resistance of the heater was 1Ω, and a power of 8W was used. As a result of this comparative test, it was confirmed that the operating temperature range of the oxygen concentration measuring device was expanded by heating, as shown by the broken line 18 in Figure 7, and that sufficient electromotive force was output even at extremely low exhaust gas temperatures. . As the metal heating element, molybdenum, tungsten, etc. can be used in addition to platinum.
第1図は本発明による酸素濃度測定装置の基本的構成を
示す路線図、
第2図および第8図は本発明による酸素濃度測定装置の
種々の実施態様を示す路線図、第4図は異なる空燃比の
2種のモデルガス全交互に流して起電力を測定した結果
を示すグラフ、グラフ、
第6図は本発明による酸素濃度Htn定装置の製作手順
を示す説明図、
第7図は排ガス中の酵素カスにより測定さi″した起電
力と排ガス潤度との関係治−示すグラフ、第8図は本発
明による酸素濃度測定装置の他の実施例を示す線図的斜
視図である。
1・・・測定離型1子伝導層 2・・・基準極電子伝導
層8・・・固体電解質層 4・・・多孔性物質層5
・・・導線 6・・・霜vL測定装置?・
・・バッテリー 810.抵抗9・・・保護層
10・・・構造基体成形体11・・・アルミ
ナ基板 12.18・・・白金ベース)膜14・・・固
体電解質ベース) 15・・・白金ペースト16・・・
ヒーター。
第1図
コ
第2図
第3図
「
一32′
第4図
第5図FIG. 1 is a route map showing the basic configuration of the oxygen concentration measuring device according to the present invention, FIG. 2 and FIG. 8 are route maps showing various embodiments of the oxygen concentration measuring device according to the present invention, and FIG. 4 is a route map showing different embodiments of the oxygen concentration measuring device according to the present invention. Figure 6 is an explanatory diagram showing the manufacturing procedure of the oxygen concentration Htn determining device according to the present invention, Figure 7 is a graph showing the results of measuring the electromotive force by alternately flowing two types of model gases with different air-fuel ratios, FIG. 8 is a diagrammatic perspective view showing another embodiment of the oxygen concentration measuring device according to the present invention. DESCRIPTION OF SYMBOLS 1...Measurement release single-layer conductive layer 2...Reference electrode electron conductive layer 8...Solid electrolyte layer 4...Porous material layer 5
...Conducting wire 6...Frost vL measuring device?・
...Battery 810. Resistance 9...protective layer
10... Structural base molded body 11... Alumina substrate 12.18... Platinum base) membrane 14... Solid electrolyte base) 15... Platinum paste 16...
heater. Figure 1 Figure 2 Figure 3 132' Figure 4 Figure 5
Claims (1)
物質層と、基準極電子伝導層と、隔膜層とを順次積層し
、前記基準極電子伝導層が前記酸素イオン電導性固体電
解質物質層または前記隔膜層と前記酸素イオン電導性固
体電解質物質層との両肩における多孔開口を通して被測
定雰囲気と接触する工うにし、前記測定極電子伝導層お
よび前記基準極電子伝導層間に測定用起電力を取出す測
定手段と、前記基準極電子伝導層における基準酸素分圧
を制御する制御用電流を〃lえる制御手段と全接続して
なることを特徴とする酸素濃度測定装置。 2 前記基準極電子伝導層に前記制御手段の直流電源の
正側を接続してなることを特徴とする特許請求の範囲第
1項に記載の酸素濃度測定装置。 & 前記基準電子伝導層に前記制御手段の直流電源の負
側を接続してなることを特徴とする特許請求の範囲第1
項に記載の酸素濃度測定装置。 表 前記イオン導電性固体電解質物質層または前記隔膜
層と前記イオン導1u性固体電解質物質層との両層が酸
素を透過する多孔性物質であること′f、特徴とする特
許請求の範囲第1〜8項のいずれか1項に記載の酸素濃
度測定装置。 氏 前記酸素イオン電導性固体電解質の成形焼結体全構
造基体としてなることを特徴とする特許請求の範囲第1
−4項のいずilか1項に記載の酸素濃度測定装置。 a 前記隔膜層が電気絶縁物デ↓の成形体でありこれが
構造基体としてなることを特徴とする特許請求の範囲第
1−8項のいずれか1項に記載の酸素濃度測定装置。 t アルミナのような電気絶縁物質の成形体で構成し′
fi−構造体の内部に金に4発熱体を埋設してなること
を特徴とする特許請求の範囲第6項に記載の酸素濃度測
定装置。 8 少なくとも前記測定極電子伝導層を多孔性保護層に
よって被覆してなること′f−特徴とする特許請求の範
囲第1〜7項のいずノ1か1項に記載の酸素濃度測定装
置。[Scope of Claims] 1. A measurement electrode electron conductive layer, an oxygen ion conductive solid electrolyte material layer, a reference electrode electron conductive layer, and a diaphragm layer are sequentially laminated, and the reference electrode electron conductive layer is the oxygen ion conductive layer. contact with the atmosphere to be measured through porous openings in both shoulders of the electroconductive solid electrolyte material layer or the diaphragm layer and the oxygen ion conductive solid electrolyte material layer, and between the measurement electrode electron conductive layer and the reference electrode electron conductive layer. 1. An oxygen concentration measuring device comprising: a measuring means for taking out a measuring electromotive force; and a controlling means for controlling a control current for controlling a reference oxygen partial pressure in the reference electrode electron conductive layer. 2. The oxygen concentration measuring device according to claim 1, wherein the positive side of the DC power source of the control means is connected to the reference electrode electron conductive layer. & The negative side of the DC power supply of the control means is connected to the reference electron conductive layer.
The oxygen concentration measuring device described in section. Claim 1, characterized in that both the ion conductive solid electrolyte material layer or the diaphragm layer and the ion conductive solid electrolyte material layer are porous materials that permeate oxygen. The oxygen concentration measuring device according to any one of items 1 to 8. Claim 1, characterized in that the shaped sintered body of the oxygen ion conductive solid electrolyte serves as the entire structural base.
- The oxygen concentration measuring device according to any one of item 4 or item 1. (a) The oxygen concentration measuring device according to any one of claims 1 to 8, wherein the diaphragm layer is a molded body of an electrical insulator, which serves as a structural base. t Comprised of a molded body of electrically insulating material such as alumina'
7. The oxygen concentration measuring device according to claim 6, characterized in that four heating elements are embedded in gold inside the fi-structure. 8. The oxygen concentration measuring device according to any one of claims 1 to 7, characterized in that at least the measurement electrode electron conductive layer is covered with a porous protective layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58184610A JPS5985951A (en) | 1983-10-03 | 1983-10-03 | Apparatus for measuring oxygen concentration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58184610A JPS5985951A (en) | 1983-10-03 | 1983-10-03 | Apparatus for measuring oxygen concentration |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53072044A Division JPS584986B2 (en) | 1978-06-16 | 1978-06-16 | Oxygen concentration measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5985951A true JPS5985951A (en) | 1984-05-18 |
JPS6217186B2 JPS6217186B2 (en) | 1987-04-16 |
Family
ID=16156228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58184610A Granted JPS5985951A (en) | 1983-10-03 | 1983-10-03 | Apparatus for measuring oxygen concentration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5985951A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0830276B2 (en) * | 1985-02-15 | 1996-03-27 | ル エ−ル リクイツド ソシエテ アノニム プ−ル ル エチユド エ ル エクスプルワテシヨン デ プロセデ ジエオルジエ クロ−ド | Solid electrolyte material, its manufacturing method and its electrochemical use |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4919838U (en) * | 1972-05-26 | 1974-02-20 | ||
JPS5269690A (en) * | 1975-12-05 | 1977-06-09 | Westinghouse Electric Corp | Partil pressure measuring apparatus for specified gages in sighted environments |
JPS5274385A (en) * | 1975-12-18 | 1977-06-22 | Nissan Motor | Airrfuel ratio detector |
JPS5366292A (en) * | 1976-11-24 | 1978-06-13 | Westinghouse Electric Corp | Combustible sensor |
JPS584986A (en) * | 1981-07-01 | 1983-01-12 | Nec Corp | Detector for divided beam |
-
1983
- 1983-10-03 JP JP58184610A patent/JPS5985951A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4919838U (en) * | 1972-05-26 | 1974-02-20 | ||
JPS5269690A (en) * | 1975-12-05 | 1977-06-09 | Westinghouse Electric Corp | Partil pressure measuring apparatus for specified gages in sighted environments |
JPS5274385A (en) * | 1975-12-18 | 1977-06-22 | Nissan Motor | Airrfuel ratio detector |
JPS5366292A (en) * | 1976-11-24 | 1978-06-13 | Westinghouse Electric Corp | Combustible sensor |
JPS584986A (en) * | 1981-07-01 | 1983-01-12 | Nec Corp | Detector for divided beam |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0830276B2 (en) * | 1985-02-15 | 1996-03-27 | ル エ−ル リクイツド ソシエテ アノニム プ−ル ル エチユド エ ル エクスプルワテシヨン デ プロセデ ジエオルジエ クロ−ド | Solid electrolyte material, its manufacturing method and its electrochemical use |
Also Published As
Publication number | Publication date |
---|---|
JPS6217186B2 (en) | 1987-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4207159A (en) | Apparatus for measurement of oxygen concentration | |
JP2636883B2 (en) | NOx concentration measuring device | |
US4264425A (en) | Device for detection of air/fuel ratio from oxygen partial pressure in exhaust gas | |
EP0294085B1 (en) | Electrochemical elements | |
JPS6118857A (en) | Manufacture of electrochemical cell | |
JPH0617891B2 (en) | Oxygen concentration detector | |
EP0896219B1 (en) | Improved structure of oxygen sensing element | |
JPS63738B2 (en) | ||
JPH0542624B2 (en) | ||
US4313810A (en) | Oxygen concentration sensing apparatus | |
JPS5965758A (en) | Electrochemical device and cell | |
US4485369A (en) | Sensor for measuring air-fuel ratio | |
JPS5985951A (en) | Apparatus for measuring oxygen concentration | |
JP2851632B2 (en) | Electrochemical element | |
JP3770456B2 (en) | Measuring method of gas concentration | |
JP2004536307A (en) | Oxygen / nitrogen oxide composite sensor | |
JPS6111376B2 (en) | ||
JPH03120456A (en) | oxygen sensor | |
GB2051379A (en) | Air-fuel ratio detecting apparatus | |
JPH0114534B2 (en) | ||
JPS6311644Y2 (en) | ||
JPH0234605Y2 (en) | ||
JPH0121901B2 (en) | ||
JPH0921782A (en) | Oxygen concentration sensor | |
JPS59136651A (en) | Air-fuel ratio meter for automobile |