JPS5940226B2 - Vapor deposition equipment - Google Patents
Vapor deposition equipmentInfo
- Publication number
- JPS5940226B2 JPS5940226B2 JP15151278A JP15151278A JPS5940226B2 JP S5940226 B2 JPS5940226 B2 JP S5940226B2 JP 15151278 A JP15151278 A JP 15151278A JP 15151278 A JP15151278 A JP 15151278A JP S5940226 B2 JPS5940226 B2 JP S5940226B2
- Authority
- JP
- Japan
- Prior art keywords
- evaporation source
- vapor deposition
- substrate
- deposition apparatus
- shielding body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000007740 vapor deposition Methods 0.000 title claims description 36
- 238000001704 evaporation Methods 0.000 claims description 63
- 230000008020 evaporation Effects 0.000 claims description 62
- 239000010408 film Substances 0.000 claims description 43
- 239000000758 substrate Substances 0.000 claims description 33
- 238000004544 sputter deposition Methods 0.000 claims description 17
- 239000010409 thin film Substances 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 3
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 2
- 238000013459 approach Methods 0.000 claims 2
- 238000009826 distribution Methods 0.000 description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000005477 sputtering target Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
- C23C14/042—Coating on selected surface areas, e.g. using masks using masks
- C23C14/044—Coating on selected surface areas, e.g. using masks using masks using masks to redistribute rather than totally prevent coating, e.g. producing thickness gradient
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrodes Of Semiconductors (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
本発明は均一な厚さの皮膜を形成することのできる蒸着
装置、特に半導体工業における精密薄膜蒸着装置に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor deposition apparatus capable of forming a film of uniform thickness, particularly to a precision thin film vapor deposition apparatus used in the semiconductor industry.
金属皮膜の形成方法として、一般に真空蒸着法、スパッ
タリング蒸着法、および気相反応法などが広く実施され
ている。Generally, vacuum evaporation methods, sputtering evaporation methods, vapor phase reaction methods, and the like are widely used as methods for forming metal films.
この種の蒸着プロセスにおいて、皮膜の膜厚の分布が大
きく、その膜厚のばらつきが同一製造ロッド内でも±2
0%程度存在し、高精度の素子の製造が困難であるとい
う欠点があつた。これは、たとえば平板型のスパッタリ
ングターゲットを用いる平行板型スパッタリング蒸着装
置において、ターゲット自体の幾何学的な寸法の制約に
起因する。この場合、一般に平板ターゲットでは、これ
に対面した位置に基板を配置するとターゲット中心付近
でその膜厚が厚く、ターゲット周辺に近づくと膜厚が薄
くなる傾向にある。すなわち、第1図Aに示すように、
円板状の蒸発源1を用い、これに対面する位置に基板2
を基板台3上に取りつけて、蒸着をすると、基板2上の
膜厚分布は第1図B,Cに示すようになる。In this type of vapor deposition process, the distribution of the film thickness is large, and the variation in film thickness is ±2 even within the same production rod.
There was a drawback that it was difficult to manufacture high-precision devices. This is due to constraints on the geometric dimensions of the target itself, for example in a parallel plate sputtering deposition apparatus using a flat plate sputtering target. In this case, in general, with a flat target, when a substrate is placed facing the target, the film thickness tends to be thick near the center of the target, and the film thickness tends to become thin near the periphery of the target. That is, as shown in FIG. 1A,
A disk-shaped evaporation source 1 is used, and a substrate 2 is placed facing it.
When the film is mounted on the substrate table 3 and vapor deposition is performed, the film thickness distribution on the substrate 2 becomes as shown in FIGS. 1B and 1C.
図Bは板状蒸発源1に対面した位置における面内分布(
等膜厚線)を示し、図Cは径方向分布(図BO)a−A
7線)を示す。これは、たとえばスパツタリングターゲ
ーツトを蒸発源に用いたときに相当するものである。発
明者らは、このような従来の蒸着装置における幾何学的
な寸法による膜厚分布を、蒸発源に対して基板を部分的
に遮蔽するための遮蔽体を両者間に設置することにより
、いちぢるしく減少させることに成功した(特開昭53
−108885号)。Figure B shows the in-plane distribution (
Figure C shows the radial distribution (Figure BO) a-A
7 line). This corresponds to, for example, when a sputtering target is used as an evaporation source. The inventors have solved the film thickness distribution due to geometric dimensions in such conventional evaporation equipment by installing a shield between the two to partially shield the substrate from the evaporation source. Succeeded in significantly reducing the
-108885).
本発明はこの技術を改良した、膜厚の均一な薄膜を形成
することのできる蒸着装置を提供しようとするものであ
る。以下、本発明の装置について詳細に説明する。第2
図Aは本発明にかかる蒸着装置の主要部の構成を示す0
すなわち、その主要部分は、円板状の蒸発源11と、こ
れに対面した位置に設置された基板台12と、蒸発源1
1と基板台12間に設置された円弧状薄板の遮蔽体14
から構成され、基板台12に基板13が取りつけられる
。The present invention aims to improve this technique and provide a vapor deposition apparatus capable of forming a thin film with uniform thickness. Hereinafter, the apparatus of the present invention will be explained in detail. Second
Figure A shows the configuration of the main parts of the vapor deposition apparatus according to the present invention.
That is, its main parts are a disk-shaped evaporation source 11, a substrate stand 12 installed at a position facing it, and the evaporation source 1.
1 and the board stand 12. An arc-shaped thin plate shield 14 is installed between
A board 13 is attached to a board stand 12.
円弧状の遮蔽体14は円板状の蒸発源11の径方向dに
往復運動をするとともに、中心軸0の周囲を周方向に移
動する。第3図Aに直径10cmの蒸発源11を使用し
たときの詳細を示す。The arc-shaped shield 14 reciprocates in the radial direction d of the disc-shaped evaporation source 11 and moves circumferentially around the central axis 0. FIG. 3A shows details when an evaporation source 11 with a diameter of 10 cm is used.
図の曲線101は遮蔽体14を用いないときの膜厚分布
を示す。この場合には、基板13の周縁部分での膜厚は
、中心部分でのそれのほぼ80%程度であることがわか
る。ところが、第2図に示すような遮蔽体14を用いる
と、その膜厚分布は第3図Aの曲線102に示すように
、ほぼ均一になつた。この場合、膜厚分布を少なくする
ためには、第3図Bに示すように、径方向dの往復運動
の速度を蒸着膜の膜厚が厚くなる基板11面の部分に接
近rるときには遅くし、蒸着膜の膜厚が薄くなる部分に
接近するときには速くすることが重要である。この原理
が、他の蒸着装置についても適用できることはいうまで
もないことである。上述のように、蒸発源や基板が円形
もしくはそれに類似した形状をしているときには、弧状
の形状をした遮蔽体を、蒸発源の径方向に往復させ、か
つその周方向に移動させれば、膜厚の均一な蒸着膜を得
ることができるけれども、より均一な膜厚を再現性よく
得るには、円板状蒸発源をその中心の廻りに回転させる
方がよい。A curve 101 in the figure shows the film thickness distribution when the shield 14 is not used. In this case, it can be seen that the film thickness at the peripheral portion of the substrate 13 is approximately 80% of that at the central portion. However, when the shield 14 shown in FIG. 2 was used, the film thickness distribution became almost uniform as shown by the curve 102 in FIG. 3A. In this case, in order to reduce the film thickness distribution, as shown in FIG. However, it is important to speed up when approaching a portion where the thickness of the deposited film becomes thin. It goes without saying that this principle can also be applied to other vapor deposition apparatuses. As mentioned above, when the evaporation source and the substrate have a circular or similar shape, if the arc-shaped shield is moved back and forth in the radial direction of the evaporation source and in the circumferential direction, Although it is possible to obtain a deposited film with a uniform film thickness, in order to obtain a more uniform film thickness with good reproducibility, it is better to rotate the disc-shaped evaporation source around its center.
もつとも、円板状の蒸発源が蒸発面のあらゆる位置で蒸
発速度の同じものであれば、それを回転させる必要はな
い。特に基板を回転させる場合、その必要偏は一見ない
と考えられるが、実際には蒸発には位置的なむらの生ず
る場合が多く、このことを考えるとやはり蒸発源をも回
転させることが望ましい。この場合、発明者らの実際に
よれば、上述した径方向の移動速度は0.05〜50c
m/秒程度、回転送度は0.1〜100rpm程度であ
ることが望ましい。以上は、円板状もしくはそれに類似
する形状の蒸発源を用いた例についてであるが、かかる
形状の蒸発源以外に、正方形あるいは長方形の蒸発源を
使用した場合でも、本発明によれば均一な膜厚を与える
蒸着装置を朶現できることが確認され、それにもとづい
て、正方形あるいは長方形の蒸発源を用いた均一膜厚分
布を与える蒸着装置を発明したO第第4図A,Bは正方
形あるいは長方形の蒸発源を用いた蒸着装置の基本構成
を示す。However, if the disk-shaped evaporation source has the same evaporation rate at all positions on the evaporation surface, there is no need to rotate it. Particularly when rotating the substrate, it may seem that there is no necessary deviation, but in reality, positional unevenness often occurs in evaporation, and considering this, it is desirable to also rotate the evaporation source. In this case, according to the inventors' actual experience, the above-mentioned radial movement speed is 0.05 to 50c.
It is preferable that the speed is about m/sec and the rotation speed is about 0.1 to 100 rpm. The above is an example in which an evaporation source having a disk shape or a shape similar to it is used. However, even if a square or rectangular evaporation source is used in addition to such a shape, according to the present invention, a uniform evaporation source can be obtained. It was confirmed that it was possible to create a vapor deposition apparatus that provides a uniform film thickness, and based on this, a vapor deposition apparatus that uses a square or rectangular evaporation source that provides a uniform film thickness distribution was invented. The basic configuration of a vapor deposition apparatus using an evaporation source is shown below.
この蒸着装置の要部は、正方形または長方形の蒸発源2
1、基板台22上に設置した基板23、複数枚の短冊伏
遮蔽体24,25で構成され、かつ遮蔽体24,25を
、正方形あるいは長方形の蒸発源21の直交する各二辺
方向X,Yにそつて蒸着膜が厚くなる部分では遅く、そ
れが薄くなる部分では速い速度で、往復運動させている
。遮蔽体24,25を用いないときには、基板21面に
は、第4図CQ)曲線103,104に示すような膜厚
分布が得られる。たとえば、周辺部分の膜厚が中心部分
の膜厚の80(f)であるような分布状態であつても、
遮蔽体24,25を使用することによつて、第4図Cの
曲線105,106に示すような10/)以下の膜厚偏
差に改善することができる。ここで、本発明にかかる蒸
着装置について、実施例をあげて説明する。The main part of this evaporation device is a square or rectangular evaporation source 2.
1. It is composed of a substrate 23 installed on a substrate stand 22 and a plurality of rectangular shielding bodies 24 and 25, and the shielding bodies 24 and 25 are arranged in two orthogonal directions X, The reciprocating motion is performed at a slow speed in the areas where the deposited film becomes thicker along Y, and at a faster speed in the areas where it becomes thinner. When the shields 24 and 25 are not used, a film thickness distribution as shown in curves 103 and 104 in FIG. 4 (CQ) is obtained on the surface of the substrate 21. For example, even if the distribution state is such that the film thickness in the peripheral part is 80(f) of the film thickness in the central part,
By using the shields 24 and 25, the film thickness deviation can be improved to 10/) or less as shown by curves 105 and 106 in FIG. 4C. Here, the vapor deposition apparatus according to the present invention will be explained by giving examples.
実施例 1
蒸着装置として、平板状蒸発源を使用する高周波二極平
行平板羽スパツタ装置を用いた。Example 1 As a vapor deposition apparatus, a high frequency bipolar parallel plate blade sputtering apparatus using a flat plate evaporation source was used.
構成要素の配置は第2図Aに示すとおりである。蒸発源
11として直径20cmの金の円板とSiO2の円板を
用いた。基板13としてシリコンウエハ一を用いた。ス
パツタは、それぞれアルゴン雰囲気中およびアルゴンと
酸素との混合雰囲気中で行ない、スパツタガス圧は4〜
5Paとした。蒸発源11と基板13との距離は30m
m一定とした。この場合、蒸着速度は中心部分でそれぞ
れ1μm/時および0.3μm/時であつた。皮膜の膜
厚をそれぞれ1μmとなるよう蒸着した。蒸着後に化学
エツチング処理し、それぞれの膜厚分布を測定した。そ
の結果は、遮蔽板14を使用しなかつたときには、第3
図の曲線101に示す膜厚となつた。これはターゲツト
材料が違つても同じであつた。この膜厚分布101にも
とづいて、円弧状の遮蔽板14を、第3図Bに示すよう
に位置によつて移動速度を異ならせて、径方向dに往復
させるとともに、蒸発源11の径方向Rに回転させて、
上述と同じ条件でスパツタ蒸着をし、厚さ1μmの皮膜
を形成した。上記と同様にして膜厚分布を測定したとこ
ろ、測定誤差内(く±1%)で一様となつた。この際、
ターゲツト材料による違いは認められなかつた。なお、
遮蔽板14の回転速度は0.1rp[0であつた。実施
例 2
第5図Aに、高周波プレーナ−マグネトロン型スパツタ
装置の主要部を示す。The arrangement of the components is as shown in FIG. 2A. As the evaporation source 11, a gold disk and a SiO2 disk with a diameter of 20 cm were used. A silicon wafer was used as the substrate 13. Sputtering is performed in an argon atmosphere and a mixed atmosphere of argon and oxygen, and the sputtering gas pressure is 4 to 4.
It was set to 5Pa. The distance between the evaporation source 11 and the substrate 13 is 30 m.
m was set constant. In this case, the deposition rate was 1 μm/hour and 0.3 μm/hour, respectively, in the central region. Each film was deposited to a thickness of 1 μm. After vapor deposition, chemical etching was performed and the thickness distribution of each film was measured. The results showed that when the shielding plate 14 was not used, the third
The film thickness was as shown by curve 101 in the figure. This was the same regardless of the target material. Based on this film thickness distribution 101, the arc-shaped shielding plate 14 is moved back and forth in the radial direction d at different moving speeds depending on the position as shown in FIG. Rotate to R,
Sputter deposition was performed under the same conditions as above to form a film with a thickness of 1 μm. When the film thickness distribution was measured in the same manner as above, it was found to be uniform within a measurement error (±1%). On this occasion,
No difference was observed depending on the target material. In addition,
The rotation speed of the shielding plate 14 was 0.1 rp[0. Embodiment 2 FIG. 5A shows the main parts of a high frequency planar-magnetron type sputtering device.
これについても、基板31として直径20cmの円形の
金板とSlO2板を使用した。32は基板台、33は基
板、34は遮蔽板、35は蒸発物質、矢印Bは蒸発源3
1に印加されている磁界の方向を示す0スパツタガス圧
は4〜5X10−1Paとした。In this case as well, a circular gold plate with a diameter of 20 cm and a SlO2 plate were used as the substrate 31. 32 is a substrate stand, 33 is a substrate, 34 is a shielding plate, 35 is an evaporation substance, and arrow B is an evaporation source 3
The zero sputtering gas pressure, which indicates the direction of the magnetic field applied to the sample, was 4 to 5×10 −1 Pa.
遮蔽板34の径方向の移動速度は第5図Bに示すとおり
とし、回転速度は10rp1とした。その他の条件は実
施例1と同じである。このときの金、SiO2の蒸着速
度はそれぞれ12μm/時、1.5μm/時程度であつ
た。The moving speed of the shielding plate 34 in the radial direction was as shown in FIG. 5B, and the rotational speed was 10 rpm. Other conditions are the same as in Example 1. The deposition rates of gold and SiO2 at this time were approximately 12 μm/hour and 1.5 μm/hour, respectively.
遮蔽板34を使用しなかつたときには、基板33上の膜
厚分布は第5図Cの曲線107のとおりであつたが、遮
蔽板34を使用し、それを第5図Bに示すような移動速
度で往復させることによつて、第5図Cの曲線108の
ような均一の厚さ(±1%以内)の皮膜を形成すること
ができる。これから明らかなように、膜厚分布がいちぢ
るしく異なる場合にも、遮蔽板34による効果が認めら
れる。人施例 3
第6図Aに示す配置状態の方形の蒸発源41を有する高
周波平行平板プレーナマグネトロンスパツタ装置を用い
た場合について説明する。When the shielding plate 34 was not used, the film thickness distribution on the substrate 33 was as shown by the curve 107 in FIG. 5C, but when the shielding plate 34 was used and it was moved as shown in FIG. 5B. By reciprocating at a high speed, a film with a uniform thickness (within ±1%) as shown by curve 108 in FIG. 5C can be formed. As is clear from this, the effect of the shielding plate 34 is recognized even when the film thickness distribution is significantly different. Example 3 A case will be described in which a high frequency parallel plate planar magnetron sputtering apparatus having a rectangular evaporation source 41 arranged as shown in FIG. 6A is used.
スパツタ条件は、実施例2と同じである。図において、
42は蒸発領域であり、矢印Bは蒸発源4tに印加した
磁場の方向である。他の構成要素については、第4図に
示したものと同じとした。そして、一方の遮蔽板(巾1
cin)を蒸発源41の長辺方向に第6図Bの曲線10
9に示す速度で往復させ、また他方の遮蔽板(巾1cm
)を短辺方向へ同図曲線110に示す速度で往復された
。これによつて、膜厚分布が1%以下の皮膜を形成する
ことができた。以上の実施例で明らかなように、本発明
は、特にスパツタリング蒸着装置において有効である。The sputtering conditions are the same as in Example 2. In the figure,
42 is an evaporation region, and arrow B is the direction of the magnetic field applied to the evaporation source 4t. The other components were the same as those shown in FIG. Then, one shielding plate (width 1
cin) in the long side direction of the evaporation source 41 along the curve 10 in FIG. 6B.
9, and the other shielding plate (width 1 cm)
) was reciprocated in the short side direction at a speed shown by curve 110 in the figure. As a result, a film with a film thickness distribution of 1% or less could be formed. As is clear from the above examples, the present invention is particularly effective in sputtering vapor deposition equipment.
とりわけ、蒸発速度の速いマグネトロン型のスパツタリ
ング蒸着装置に用いると、高速蒸着が均一な膜厚分布で
実現されるという大きな特色が得られる。上述の実施例
ではプレーナ−マグネトロン蒸発源を使用した装置につ
いて述べたが、これ以外のマグネトロン蒸着装置たとえ
ば第7図に示すような筒状のマグネトロン型(図A)、
同軸マグネトロン型(図B)、逆マグネトロン型(図C
)、スパツタガン型(図D)、ホロウカソードマグネト
ロン型(図E)にも本発明を適用することができる。さ
らに、この種の考え方は、各種の変形スパツタリング装
置たとえば逆V型(図F)にも適応することができる。
図において、51は蒸発源、53は基板台52に置かれ
た基板を示す0矢印Bは磁界の方向を示し、54は蒸発
物質、55は遮蔽板を示している〇本発明にかかる蒸着
装置は、蒸発源と、この蒸発源に対面して配置された基
板、および蒸発源と基板との間に、蒸発源に対して基板
を部分的に遮蔽する遮蔽体が設置されたもので、特に遮
蔽体を基板に対して相対運動させて蒸着を行い、かつ遮
蔽体の相対運動の速度を蒸着膜の膜厚に応じて変化させ
ることを特徴としている。In particular, when used in a magnetron-type sputtering vapor deposition apparatus with a high evaporation rate, a great feature is obtained in that high-speed vapor deposition is achieved with a uniform film thickness distribution. In the above embodiment, an apparatus using a planar magnetron evaporation source was described, but other magnetron evaporation apparatuses such as a cylindrical magnetron type as shown in Fig. 7 (Fig. A),
Coaxial magnetron type (Figure B), inverted magnetron type (Figure C)
), sputter gun type (Figure D), and hollow cathode magnetron type (Figure E). Furthermore, this type of concept can also be applied to various modified sputtering devices, such as the inverted V type (FIG. F).
In the figure, 51 indicates an evaporation source, 53 indicates a substrate placed on a substrate stand 52, 0 arrow B indicates the direction of a magnetic field, 54 indicates an evaporation substance, and 55 indicates a shielding plate. 0 Vapor deposition apparatus according to the present invention. is an evaporation source, a substrate placed facing the evaporation source, and a shield installed between the evaporation source and the substrate to partially shield the substrate from the evaporation source. The method is characterized in that vapor deposition is performed by moving the shielding body relative to the substrate, and the speed of the relative movement of the shielding body is changed in accordance with the thickness of the deposited film.
この場合、蒸発源の実施例として、スノマツタリング蒸
発源をあげたが、必ずしもスパツタリング蒸発源に限定
されたものではなく、蒸着に際して再現性よく上記の等
膜厚線が発生するような蒸発源でありさえすればよい。
たとえばレーザ光照射による熱蒸発源を使用する蒸着装
置に対しても、本発明を適用することができる。さらに
、以上の実施例では、半導体集積回路の薄膜形成に本発
明の装置を使用する場合について説明したが、本発明装
置は半導体装置関連以外の薄膜精密加工、たとえば超精
密級薄膜抵抗器といつた超精密級電子部品、ADコンバ
ータ、磁気ヘツド、表面弾性波デバイス、さらには超精
密薄膜センサなどの製造に使用して特に有効で、その実
用の範囲は広い。In this case, as an example of the evaporation source, a snow sputtering evaporation source was given, but it is not necessarily limited to a sputtering evaporation source, and any evaporation source that produces the above-mentioned iso-thickness line with good reproducibility during evaporation. It is enough as long as it is.
For example, the present invention can also be applied to a vapor deposition apparatus that uses a thermal evaporation source using laser light irradiation. Furthermore, in the above embodiments, the case where the apparatus of the present invention is used for forming thin films of semiconductor integrated circuits has been described, but the apparatus of the present invention can also be used for thin film precision processing other than those related to semiconductor devices, such as ultra-precision thin film resistors. It is particularly effective for use in manufacturing ultra-precision electronic components, AD converters, magnetic heads, surface acoustic wave devices, and even ultra-precision thin film sensors, and has a wide range of practical applications.
第1図Aは蒸着装置の主要部分の構成を示し、同図B,
Cはそれによつて得られる膜厚の分布を示している。
第2図は本発明にかかる蒸着装置の主要部分の構成を示
し、第3図Aはこの装置によつて得られた膜厚分布を従
来装置によるそれと対比して示す図、第3図Bは遮蔽体
の径方向の移動速度を示す図である。第4図Aは本発明
にかかる蒸着装置の主要部分の他の構成例を示し、同図
Bはその遮蔽板の配置状態を、また同図Cはそれによつ
て得られる膜厚分布をそれぞれ示している。第5図Aは
本発明にかかる蒸着装置の主要部分のさらに他の構成例
を示し、第5図Bは遮蔽体の移動速度を示し、第5図C
はこの装置によつて得られた膜厚分布を従来装置による
それと対比して示す図である。第6図Aは本発明にかか
る蒸着装置の蒸発源のさらに他の構成例を示し、同図B
はその遮蔽体の移動速度を示している。第7図A,B,
C,D,E,Fはさらに本発明にかかる蒸着装置の他の
構成を示す。11,21,31,41,51・・・・・
・蒸発源、12,22,32,53・・・・・・基板台
、13,23,33,52・・・・・・基板、14,2
4,25,34,55・・・・・・遮蔽体。Figure 1A shows the configuration of the main parts of the vapor deposition apparatus, Figure 1B,
C shows the distribution of film thickness obtained thereby. Fig. 2 shows the configuration of the main parts of the vapor deposition apparatus according to the present invention, Fig. 3A shows the film thickness distribution obtained by this apparatus in comparison with that obtained by the conventional apparatus, and Fig. 3B shows It is a figure showing the moving speed of a shielding body in the radial direction. FIG. 4A shows another configuration example of the main parts of the vapor deposition apparatus according to the present invention, FIG. 4B shows the arrangement of the shielding plate, and FIG. 4C shows the film thickness distribution obtained thereby. ing. FIG. 5A shows still another configuration example of the main parts of the vapor deposition apparatus according to the present invention, FIG. 5B shows the moving speed of the shield, and FIG. 5C
is a diagram showing a film thickness distribution obtained by this apparatus in comparison with that obtained by a conventional apparatus. FIG. 6A shows still another configuration example of the evaporation source of the vapor deposition apparatus according to the present invention, and FIG.
indicates the moving speed of the shield. Figure 7 A, B,
C, D, E, and F further show other configurations of the vapor deposition apparatus according to the present invention. 11, 21, 31, 41, 51...
・Evaporation source, 12, 22, 32, 53... Substrate stand, 13, 23, 33, 52... Substrate, 14, 2
4, 25, 34, 55... Shielding body.
Claims (1)
よび前記の蒸発源と基板との間に前記蒸発源に対して前
記基板を部分的に遮蔽する遮蔽体を有し、前記蒸発源の
物質を前記基板に蒸着させる際に、前記遮蔽体を少なく
とも前記基板に対して相対運動させて蒸着を行う蒸着装
置において、遮蔽体の相対運動の速度を、蒸着膜の膜厚
の厚い基板面に前記遮蔽体が接近するときには遅く、蒸
着膜の膜厚の薄い基板面に前記遮蔽体が接近するときに
速くすることを特徴とする蒸着装置。 2 特許請求の範囲第1項に記載の蒸着装置において、
円板状の蒸発源を使用し、かつ遮蔽体を円弧状の薄板で
構成し、前記遮蔽体を前記蒸発源の径方向に往復運動を
させるとともに、その周に沿つて回転させることを特徴
とする蒸着装置。 3 特許請求の範囲第1項に記載の蒸着装置において、
正方形状または長方形状の蒸発源を使用し、かつ遮蔽体
を複数個の短冊状の薄板で構成して、少なくとも2枚の
短冊状の遮蔽体を正方形あるいは長方形の前記蒸発源の
相直交する各二辺にそつて往復運動させることを特徴と
する蒸着装置。 4 特許請求の範囲第1項から第3項までのいずれか一
つの項に記載の蒸着装置において、蒸発源として、スパ
ッタリング蒸発源を用いることを特徴とする蒸着装置。 5 特許請求の範囲第4項に記載の蒸着装置において、
スパツタリング蒸発源として、マグネトロンスパツタリ
ング蒸発源を用いたことを特徴とする蒸着装置。 6 特許請求の範囲第4項記載の蒸着装置において、ス
パツタリング蒸発源として、プラナーマグネトロン蒸発
源を用いることを特徴とする蒸着装置。[Claims] 1. An evaporation source, a substrate disposed facing the evaporation source, and a shield between the evaporation source and the substrate that partially shields the substrate from the evaporation source. and a vapor deposition apparatus that performs vapor deposition by moving the shielding body at least relative to the substrate when depositing the substance of the evaporation source on the substrate, the speed of the relative movement of the shielding body is set to A vapor deposition apparatus characterized in that when the shielding body approaches a substrate surface with a thick film thickness, the speed is slow, and when the shielding body approaches a substrate surface with a thin film thickness of a deposited film, the speed is fast. 2. In the vapor deposition apparatus according to claim 1,
A disc-shaped evaporation source is used, the shielding body is composed of an arc-shaped thin plate, and the shielding body is reciprocated in the radial direction of the evaporation source and rotated along its circumference. Vapor deposition equipment. 3. In the vapor deposition apparatus according to claim 1,
A square or rectangular evaporation source is used, and the shielding body is composed of a plurality of strip-shaped thin plates. A vapor deposition device characterized by reciprocating motion along two sides. 4. A vapor deposition apparatus according to any one of claims 1 to 3, characterized in that a sputtering evaporation source is used as an evaporation source. 5. In the vapor deposition apparatus according to claim 4,
A vapor deposition apparatus characterized in that a magnetron sputtering evaporation source is used as a sputtering evaporation source. 6. The vapor deposition apparatus according to claim 4, characterized in that a planar magnetron evaporation source is used as the sputtering evaporation source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15151278A JPS5940226B2 (en) | 1978-12-06 | 1978-12-06 | Vapor deposition equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15151278A JPS5940226B2 (en) | 1978-12-06 | 1978-12-06 | Vapor deposition equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5579869A JPS5579869A (en) | 1980-06-16 |
JPS5940226B2 true JPS5940226B2 (en) | 1984-09-28 |
Family
ID=15520123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15151278A Expired JPS5940226B2 (en) | 1978-12-06 | 1978-12-06 | Vapor deposition equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5940226B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4416760A (en) * | 1981-11-27 | 1983-11-22 | Varian Associates, Inc. | Apparatus for asymmetrically contouring the thickness of sputter coated layers |
CN113046700A (en) * | 2019-12-26 | 2021-06-29 | 山东华光光电子股份有限公司 | Semi-shielding device for end face coating of strip-shaped semiconductor laser and coating method |
-
1978
- 1978-12-06 JP JP15151278A patent/JPS5940226B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5579869A (en) | 1980-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH036990B2 (en) | ||
US4315960A (en) | Method of making a thin film | |
JPS62116764A (en) | Method and apparatus for precipitation of film on surface ofworks | |
US6579420B2 (en) | Apparatus and method for uniformly depositing thin films over substrates | |
JP2006052461A (en) | Magnetron sputtering device, cylindrical cathode, and method of coating thin multicomponent film on substrate | |
EP0213922A2 (en) | Planar magnetron sputtering device with combined circumferential and radial movement of magnetic fields | |
JPH07116588B2 (en) | Method for manufacturing transparent body of mask for X-ray lithography | |
JPS5940226B2 (en) | Vapor deposition equipment | |
US3746571A (en) | Method of vacuum evaporation | |
CN114703455A (en) | Composite film preparation method and device | |
JPH11222670A (en) | Film thickness monitor and film forming device using this | |
JPS5940225B2 (en) | Vapor deposition equipment | |
JPH01202700A (en) | X-ray mirror and its manufacturing method | |
JPH0310710B2 (en) | ||
JP4274452B2 (en) | Sputtering source and film forming apparatus | |
JPH0211761A (en) | Sputtering device | |
JP2000226604A (en) | FORMATION OF hBN FILM AND SLIDING PARTS IN WHICH hBN FILM IS FORMED | |
JPS6014832B2 (en) | Vapor deposition equipment | |
JP3545050B2 (en) | Sputtering apparatus and sputtering thin film production method | |
JPS63109163A (en) | Sputtering device | |
JPH0246667B2 (en) | HAKUMAKUJOCHAKUSOCHI | |
JPH0328369A (en) | Target of thin film coating device | |
JP3014022B2 (en) | Film thickness equalizer | |
JP2000265261A (en) | Vacuum deposition device | |
JPH0526755Y2 (en) |