[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5919179B2 - Steel for line pipes with excellent wet carbon dioxide corrosion resistance - Google Patents

Steel for line pipes with excellent wet carbon dioxide corrosion resistance

Info

Publication number
JPS5919179B2
JPS5919179B2 JP6538879A JP6538879A JPS5919179B2 JP S5919179 B2 JPS5919179 B2 JP S5919179B2 JP 6538879 A JP6538879 A JP 6538879A JP 6538879 A JP6538879 A JP 6538879A JP S5919179 B2 JPS5919179 B2 JP S5919179B2
Authority
JP
Japan
Prior art keywords
less
steel
corrosion resistance
impurities
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6538879A
Other languages
Japanese (ja)
Other versions
JPS55158253A (en
Inventor
昭夫 池田
正明 田中
征一 渡辺
泰夫 大谷
富久長 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6538879A priority Critical patent/JPS5919179B2/en
Publication of JPS55158253A publication Critical patent/JPS55158253A/en
Publication of JPS5919179B2 publication Critical patent/JPS5919179B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

【発明の詳細な説明】 この発明は、機械的諸性質及び溶接性とともに、耐食性
、特に湿潤炭酸ガスに対する腐食抵抗にすぐれたライン
パイプ用鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a line pipe steel that has excellent mechanical properties and weldability as well as corrosion resistance, particularly corrosion resistance against wet carbon dioxide gas.

石油或いは天然ガスを輸送するラインパイプ用鋼には、
所定の機械的性質とともに、溶接性のすぐれたものでな
ければならない。
Steel for line pipes that transport oil or natural gas include:
In addition to the specified mechanical properties, it must have excellent weldability.

更に、近年硫化水素や炭酸ガスのごとき腐食性物質を含
む石油、ガス源からの採取が多くなるに伴って、ライン
パイプにも耐食性についてきびしい要求が課せられつつ
ある。
Furthermore, as oil and gas sources containing corrosive substances such as hydrogen sulfide and carbon dioxide gas have been increasingly extracted from oil and gas sources in recent years, strict requirements have been placed on line pipes in terms of corrosion resistance.

この発明は、特に炭酸ガス(以下Co2と記す)或いは
更に硫化水素(以下H2Sと記す)を含む石油、ガス用
のラインパイプ材として耐食性のすぐれた鋼を提供する
ことを目的とする。
An object of the present invention is to provide a steel having excellent corrosion resistance as a line pipe material for oil and gas, particularly containing carbon dioxide gas (hereinafter referred to as Co2) or hydrogen sulfide (hereinafter referred to as H2S).

CO2による腐食は通常の中性湿潤環境下での腐食や、
大気腐食に比べて、腐食速度が非常に大きいのが特徴で
ある。
Corrosion caused by CO2 is corrosion in a normal neutral humid environment,
It is characterized by a much faster corrosion rate than atmospheric corrosion.

CO2による腐食は下記に示すように、水溶液溶解した
CO2が腐食反応に関与し、反応に関与する水素イオン
濃度を高め、あるいは水素イオンの補給を容易にし、腐
食を促進する点で、原理的に酸素に依存する通常の中性
湿潤環境下での腐食や大気腐食とは別の腐食現象とみな
されており、例えばAmerican Petroli
um In5titute発行のT rainirg
B ookなどにも溶存酸素による腐食とは区別して
述べられている。
Corrosion caused by CO2 is, in principle, as shown below, in that CO2 dissolved in aqueous solution participates in the corrosion reaction, increases the concentration of hydrogen ions involved in the reaction, or facilitates the replenishment of hydrogen ions, promoting corrosion. It is considered to be a corrosion phenomenon different from normal corrosion in a neutral humid environment that depends on oxygen and atmospheric corrosion. For example, American Petroli
Trainirg published by um In5titude
It is also mentioned in Book etc. that it is distinguished from corrosion caused by dissolved oxygen.

H2O−1−CO2二H2C03=鱈−)1:O,、:
2森O「このようにCO2腐食は、全面腐食もさること
ながら、溶接部など、熱履歴の異なる部分における局部
腐食として問題になることも多い。
H2O-1-CO22H2C03=cod-)1:O,,:
2Mori O: ``In this way, CO2 corrosion often becomes a problem not only as general corrosion, but also as localized corrosion in areas with different thermal histories, such as welds.

このようなラインパイプにおけるCO2腐食は今後石油
、ガス資源の多岐化とともに一段と深刻化することが予
想されるが、目下その対策はインヒビターの注入という
不完全でランニングコストの高い方法に限られ、材料自
体の改良による根本的な防止策は採られていない。
CO2 corrosion in line pipes is expected to become even more serious as oil and gas resources diversify in the future, but currently the only countermeasures against this problem are injection of inhibitors, an incomplete and high running cost method. No fundamental preventive measures have been taken to improve the product itself.

材料自体の改良に当っても、前述のとおり溶接性、強度
、靭性のような基本的な特性を損っては意味がなく、又
大量に生産使用されるラインパイプ用鋼では、製造コス
トが低いことも欠くことのできない条件となる。
Even when improving the material itself, as mentioned above, there is no point in impairing basic properties such as weldability, strength, and toughness, and for line pipe steel that is produced and used in large quantities, manufacturing costs are low. Being low is also an indispensable condition.

本発明者は、長年のラインパイプ用鋼の研究開発と多大
の生産実績とに基いて、上記諸条件を十分に満足し、特
に耐CO2腐食にすぐれ、合せてH2Sに起因する割れ
(水素誘起割れ)に対しても高い抵抗を示す鋼を得た。
Based on many years of research and development of steel for line pipes and extensive production results, the present inventor has found that it fully satisfies the above conditions, is particularly resistant to CO2 corrosion, and has the ability to prevent cracking caused by H2S (hydrogen-induced steel). We have obtained a steel that exhibits high resistance to cracking.

その組成は下記のとおりである。Its composition is as follows.

C0,06%以下、S i O,03〜0.50%、M
n0.10〜1.20%、Cr 1.0〜3.0%、N
b001〜0.08%、At O,005〜0.10%
、残部Fe及び不純物からなり、下記式で表わされる溶
接割れ感受性指数POMが0.23%以下で、かつ不純
物中のSが0.009%以下、Cu6Z0.04%以下
の鋼。
C0.06% or less, S i O,03-0.50%, M
n0.10-1.20%, Cr 1.0-3.0%, N
b001~0.08%, AtO,005~0.10%
, the balance is Fe and impurities, the weld cracking susceptibility index POM expressed by the following formula is 0.23% or less, S in the impurities is 0.009% or less, and Cu6Z is 0.04% or less.

上記成分に加えて、下記3群の元素の中から1種又は2
種以上を選んで含有させることができる。
In addition to the above ingredients, one or two elements from the following three groups
It is possible to select and contain more than one species.

第1群 Mo 0.02〜0.20%、V O,01〜0.10
%第2群 Zr O,005〜0.10%、 Ca O,0005
〜0.05希土類元素 0.0005〜0.05% 第3群 Co O,5〜2.0%、 Ti O,005〜0.1
0%この発明鋼は上記各成分の巧みな組合せによってC
O2腐食に対する耐食性をはじめ機械的性質、溶接性な
ど総合的にすぐれた特性を発揮するのであるが、各成分
の含有量の限定理由は下記のとおりである。
1st group Mo 0.02-0.20%, VO, 01-0.10
% 2nd group Zr O,005~0.10%, Ca O,0005
~0.05 Rare earth elements 0.0005~0.05% 3rd group Co O, 5~2.0%, Ti O, 005~0.1
0% This invention steel has a C
Although it exhibits comprehensively excellent properties such as corrosion resistance against O2 corrosion, mechanical properties, and weldability, the reason for limiting the content of each component is as follows.

Cは耐炭酸ガス腐食性及び溶接性の点からできるだけ低
い方がよい。
It is preferable that C be as low as possible from the viewpoint of carbon dioxide corrosion resistance and weldability.

0.06%は許容上限値である。0.06% is the allowable upper limit.

圧延のま\或いは焼ならしのま\でパーライトの生成を
防ぎ耐食性を向上させる意味で0.04%以下に抑える
のが好ましい。
It is preferable to suppress the content to 0.04% or less in order to prevent the formation of pearlite during rolling or normalizing and improve corrosion resistance.

なお、最近の製鋼技術では、0.01%以下の極低炭素
鋼の製造も可能であり、かかる極低炭素鋼もこの発明鋼
の中に入ることはいう寸でもない。
In addition, with recent steel manufacturing technology, it is possible to manufacture ultra-low carbon steel with a carbon content of 0.01% or less, and it is not unlikely that such ultra-low carbon steel will also be included in the steel of this invention.

Siは脱酸剤および低炭素化に伴う強度低下を補う成分
として0.03%以上が必要である。
0.03% or more of Si is required as a deoxidizing agent and as a component to compensate for the decrease in strength due to low carbonization.

しかし、安定な靭性を確保するには0.5%以下、好ま
しくは0.3%以下とすべきである。
However, to ensure stable toughness, the content should be 0.5% or less, preferably 0.3% or less.

Mnは強度、靭性の向上に有効であり、0.1%以上含
有させる必要がある。
Mn is effective in improving strength and toughness, and must be contained in an amount of 0.1% or more.

しかし、1.2%を越えると002による腐食速度が増
大するだめ、上限を1.2%にとどめなければならない
However, if it exceeds 1.2%, the corrosion rate due to 002 increases, so the upper limit must be kept at 1.2%.

Crは1.0%の含有量でCO2による腐食を著しく減
少させる。
Cr significantly reduces corrosion due to CO2 at a content of 1.0%.

特に溶接部の局部腐食を減じる効果が大きい。It is particularly effective in reducing local corrosion at welded parts.

しかし3.0%を越えると溶接性を損い、溶接低温割れ
の恐れのない合金設計が困難になる。
However, if it exceeds 3.0%, weldability will be impaired and it will be difficult to design an alloy without the risk of welding cold cracking.

Nbは少量の添加で、特に圧延のま\の鋼の強度、靭性
を向上させる効果がある。
Addition of a small amount of Nb has the effect of improving the strength and toughness of as-rolled steel in particular.

合せてCO2腐食に対する抵抗の増加にも寄与する。It also contributes to increased resistance to CO2 corrosion.

これらの効果は0.01%以上の含有量で顕著になるが
、0.08%を越えると溶接部の靭性劣化など好ましく
ない影響が生じる。
These effects become noticeable when the content is 0.01% or more, but when the content exceeds 0.08%, undesirable effects such as deterioration of the toughness of the weld zone occur.

Atは鋼の脱酸の安定化を図るだめに添加され、靭性の
向上に寄与する。
At is added to stabilize the deoxidation of steel, and contributes to improving toughness.

0.005%は、この効果を確実にする最少量である。0.005% is the minimum amount that ensures this effect.

一方、0.10%を越えると疵の発生や靭性劣化を招く
On the other hand, if it exceeds 0.10%, it will cause scratches and deterioration of toughness.

本願発明の基本鋼は以上の成分の外、残部Fe及び不純
物からなり、POM値が0.23%以下に調整されてい
る。
In addition to the above components, the basic steel of the present invention consists of the balance Fe and impurities, and the POM value is adjusted to 0.23% or less.

不純物中特にSとCuをきびしく管理することが重要で
ある。
It is important to strictly control S and Cu among impurities.

Sは靭性及び耐食性に悪影響を及ぼすものであるから、
できるだけ少ない方がよい。
Since S has a negative effect on toughness and corrosion resistance,
It is better to have as few as possible.

特に溶接部の局部腐食、及びH2Sによる水素誘起割れ
を防止するために、0.009%以下に抑える必要があ
る。
In particular, in order to prevent local corrosion of welded parts and hydrogen-induced cracking due to H2S, it is necessary to suppress the content to 0.009% or less.

耐食性を一層安定させるためには0.006%以下にす
るのが望ましい。
In order to further stabilize corrosion resistance, it is desirable that the content be 0.006% or less.

0.001%以下の極低S鋼の製造も可能である。It is also possible to manufacture ultra-low S steel of 0.001% or less.

Cuは大気腐食などに対しては耐食性を向上させる成分
として知られている。
Cu is known as a component that improves corrosion resistance against atmospheric corrosion.

しかし、本発明者の試験結果(実施例参照)によれば、
C02腐食に対してはむしろ悪影響が大きい。
However, according to the inventor's test results (see Examples),
It has a rather large negative effect on C02 corrosion.

図は実施例の比較鋼AIからA4までの腐食率指数なC
u含有についてプロットしたものである。
The figure shows the corrosion rate index C of comparative steels AI to A4 in the example.
This is a plot of u content.

Cu含有量の低下とともに腐食が減少し2ていることが
明らかであり、CuO,04%以下で腐食率指数が10
0以下となる。
It is clear that corrosion decreases as the Cu content decreases, and the corrosion rate index decreases to 10 at CuO, 0.4% or less.
It becomes 0 or less.

これらの結果から、この発明では不純物としてのCuの
上限許容値を0.04%とした。
Based on these results, in this invention, the upper limit permissible value of Cu as an impurity was set to 0.04%.

なお、0,02%以下に抑えるのが一層好捷しい。Note that it is more preferable to suppress it to 0.02% or less.

上記第1群元素は鋼の耐食性を損うことなく強度、靭性
を向上させるだめ添加する。
The above-mentioned Group 1 elements are added to improve the strength and toughness of the steel without impairing its corrosion resistance.

Mo及びVは、それぞれ0.02%未満、0.01%未
満ではその効果が得られない。
If Mo and V are less than 0.02% and less than 0.01%, respectively, the effect cannot be obtained.

しかし、それぞれ0.2%、0.10%を越えると、靭
性、溶接性、加工性に悪影響を及ぼすので、Moは0.
02〜0.2%、■は0.01〜0.10%とした。
However, if Mo exceeds 0.2% and 0.10%, respectively, it will adversely affect toughness, weldability, and workability.
02 to 0.2%, ■ 0.01 to 0.10%.

第2群元素はMnSを主体とする介在物を球状化し、鋼
材の異方性をなくすると共に靭性、伸びを向上させるた
め添加する。
Group 2 elements are added to make inclusions mainly composed of MnS spheroidal, eliminate anisotropy of the steel material, and improve toughness and elongation.

Ca及び希土類元素は、MnSを主体とする非金属介在
物の形状を改良し、機械的性質の異方性を軽減する。
Ca and rare earth elements improve the shape of nonmetallic inclusions mainly composed of MnS and reduce anisotropy in mechanical properties.

併せて、石油、ガス中に含有される微量のH2Sに起因
する水素誘起割れを防止する。
In addition, hydrogen-induced cracking caused by trace amounts of H2S contained in oil and gas is prevented.

しかし、いずれも0.0005%未満では効果が得られ
ず、Caは0.05%、希土類元素は0.05%を越え
ると溶接性、靭性を損うのでCaO00005〜0.0
5%、希土類元素0.0005〜0.05%とした。
However, if any of them is less than 0.0005%, no effect will be obtained, and if Ca exceeds 0.05% and rare earth elements exceeds 0.05%, weldability and toughness will be impaired, so CaO00005~0.0
5%, and rare earth elements 0.0005 to 0.05%.

なお、希土類元素として代表的なものはLa、C8であ
るが、実際にはミツシュメタルとして使用すればよい。
Although La and C8 are typical rare earth elements, they may actually be used as Mitsushi metal.

Zrは0.005%以上で介在物の形状制御に有効で機
械的性質の異方性を改善すると共に、溶接ボンド部の靭
性を向上させる。
When Zr is 0.005% or more, it is effective in controlling the shape of inclusions, improves the anisotropy of mechanical properties, and improves the toughness of the weld bond.

しかし、0.10%を越えると、かえって靭性な劣化さ
せるので、成分範囲を0.005〜0.10%とした。
However, if it exceeds 0.10%, the toughness will deteriorate, so the component range is set to 0.005 to 0.10%.

第3群元素は主に耐食性、特に湿潤炭酸ガスに対する腐
食抵抗を向上させるため添加される。
Group 3 elements are added mainly to improve corrosion resistance, especially corrosion resistance against wet carbon dioxide gas.

coは特に炭酸ガス腐食の速度を減する効果が大きいが
、0.5%未満ではその効果が得られず、しかし2%を
越え増大してもその効果はほぼ飽和し、鋼材価格を徒ら
に高めるので0.5〜2,0%としだ。
Co has a particularly great effect in reducing the rate of carbon dioxide corrosion, but if it is less than 0.5%, this effect cannot be obtained, but even if it increases beyond 2%, the effect is almost saturated, and the price of steel is not wasted. It increases to 0.5 to 2.0%.

Tiはその添加により耐炭酸ガス腐食性を向上させるが
、0.005%未満ではその効果がなく、又0.10%
を越えると靭性が劣化するから0.005〜0.10%
とした。
Addition of Ti improves carbon dioxide corrosion resistance, but if it is less than 0.005% it has no effect, and if it is less than 0.10%
If it exceeds 0.005 to 0.10%, the toughness will deteriorate.
And so.

POMは低く規制することによって、溶接部の水素に起
因する溶接割れを抑制することができる。
By controlling POM to a low level, weld cracking caused by hydrogen in the welded area can be suppressed.

又、POMは溶接部の硬化性も良く表わし、微量のH2
Sによる硫化物割れを防止するためPOM≦0.23%
とした。
In addition, POM exhibits good hardenability of welds, and a trace amount of H2
POM≦0.23% to prevent sulfide cracking due to S
And so.

この発明鋼は熱間加工のま\、或いは焼ならし、焼入れ
一層もどしの熱処理を施して使用できる。
The steel of this invention can be used as hot-worked, or after being subjected to heat treatment such as normalizing, quenching, and further resetting.

熱処理の採否及びその条件は製造されるラインパイプに
要求される性能に応じて決定される。
Whether or not to apply heat treatment and its conditions are determined depending on the performance required of the line pipe to be manufactured.

ラインパイプはこの発明鋼を素材とする熱延鋼板を成形
溶接したもの、或いはこの発明鋼のビレットを穿孔、延
伸圧延した継目無鋼管のいずれでもよい。
The line pipe may be formed by forming and welding a hot-rolled steel plate made of this invention steel, or a seamless steel pipe made by punching and elongating a billet of this invention steel.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

第1表に示す組成の鋼を電気炉により溶製し、造塊した
後分塊圧延し、継目無鋼管(4i X 8mmt)及び
熱間圧延鋼板(900m胞lx20mmt )を得た。
Steel having the composition shown in Table 1 was melted in an electric furnace, formed into an ingot, and then bloomed to obtain a seamless steel pipe (4i x 8mmt) and a hot rolled steel plate (900m cell lx20mmt).

。継目無鋼管及び熱間圧延鋼板共に、その製造法として
は圧延のままの材料(第2表にAの符号で示す)及び焼
入れ焼もどし材(第2表にQの符号で示す)である。
. The manufacturing methods for both seamless steel pipes and hot rolled steel sheets are as-rolled materials (indicated by the symbol A in Table 2) and quenched and tempered materials (indicated by the symbol Q in Table 2).

その熱処理条件は920°C×1h加熱して水冷した後
600°CX1h焼もどしを施した。
The heat treatment conditions were as follows: heating at 920°C for 1 hour, cooling with water, and then tempering at 600°C for 1 hour.

なお、鋼板は高靭性溶接大径鋼管用素材として製造した
ものである。
The steel plate was manufactured as a material for high-toughness welded large-diameter steel pipes.

このようにして製造された鋼管は酢酸セルローズ系溶接
棒により通常の輸送用鋼管の周溶接条件によって溶接さ
れた。
The steel pipes thus produced were welded using a cellulose acetate welding rod under the conditions of circumferential welding normally used for steel pipes for transportation.

次に性能について述べる。Next, let's talk about performance.

(1)母材の炭酸ガス腐食性能 母材部より4d’X2mm肉厚の試験片を切出し表面を
320メツシユのエメリー紙で研磨した後、10 m/
seeの流速を有する80;CのCO2を飽和した人工
海水中で500hの循環液浸漬試験を実施した。
(1) Carbon dioxide corrosion performance of base material A test piece of 4 d' x 2 mm thick was cut from the base material, and the surface was polished with 320 mesh emery paper.
A circulating fluid immersion test for 500 h was conducted in artificial seawater saturated with CO2 at 80°C with a flow rate of 500 h.

これはCO2を含有する高速流体の輸送パイプラインの
腐食を想定したものである。
This assumes corrosion of a pipeline that transports high-speed fluid containing CO2.

比較鋼A1〜A4はCu含有量の変化したAPIX−6
5級ラインパイプであるが、図面に示すようにCu含有
量の増加とともに炭酸ガス腐食による腐食率指数〔(対
象鋼の腐食速度/AI鋼の腐食)×100〕が上昇する
Comparative steels A1 to A4 are APIX-6 with varying Cu content.
For class 5 line pipes, as the Cu content increases, the corrosion rate index [(corrosion rate of target steel/corrosion of AI steel) x 100] due to carbon dioxide corrosion increases as the Cu content increases.

すなわち、Cu含有量増加とともに耐食性が劣化する。That is, as the Cu content increases, the corrosion resistance deteriorates.

この意味から鋼中Cu量の含有量制限が耐食性向上に有
効になる。
In this sense, limiting the amount of Cu in steel is effective in improving corrosion resistance.

通常のCr含有鋼を含む比較鋼に比べ、成分コントロー
ルを実施した本発明鋼の耐食性の良好なることが第2表
における比較において明瞭である。
It is clear from the comparison in Table 2 that the corrosion resistance of the steel of the present invention, which has undergone component control, is better than that of the comparative steel containing ordinary Cr-containing steel.

通常のX−65級ラインパイプ材である鋼A1を基準と
し腐食率指数を100とする時本発明鋼の耐食性はいず
れも25以下であり、耐食性が4倍以上向上しているこ
とが示される。
When the corrosion rate index is set to 100 based on steel A1, which is a normal X-65 class line pipe material, the corrosion resistance of the steel of the present invention is 25 or less, indicating that the corrosion resistance is improved by more than 4 times. .

(2)溶接部耐局部腐食性能 溶接熱影響部の局部腐食を検討するだめに、継目なし鋼
管の周溶接部より切出された7 0mmW×50朋7
X 4.5m71Ltの弧状試験片の表面を、酸洗によ
り脱スケールした後流速2.5m/sec、80°Cの
CO2飽和人工海水中で500hの循環液浸漬試験を実
施し、溶接熱影響部の局部塵 。
(2) Local corrosion resistance of welded parts In order to examine the localized corrosion of the weld heat affected zone, a 70 mmW
After descaling the surface of a 4.5m71Lt arc-shaped specimen by pickling, a circulating fluid immersion test was conducted for 500h in CO2-saturated artificial seawater at a flow rate of 2.5m/sec and 80°C, and the welding heat-affected zone was local dust.

食発生の有無を評価した。The presence or absence of phagocytosis was evaluated.

比較鋼に局部腐食が発生しているのに対し、本発明鋼に
は局部腐食かない。
While local corrosion occurs in the comparative steel, there is no local corrosion in the steel of the present invention.

このような局部腐食は、高速流体の流れるパイプライン
などでは特に乱流発生の起点となり、腐食速度を極端に
速める効果をもつだめ、その発生を止めることが重要に
なる。
Such localized corrosion becomes a starting point for the generation of turbulence, especially in pipelines where high-speed fluid flows, and has the effect of extremely accelerating the corrosion rate, so it is important to stop its occurrence.

(3)溶接部耐硫化物割れ性能 母材は701cg/mrtF以下であり、CO2に共存
する微量のH2Sの存在によっては硫化物割れは発生し
ない。
(3) Resistance to sulfide cracking in the weld zone The base material is 701 cg/mrtF or less, and sulfide cracking does not occur due to the presence of a small amount of H2S coexisting with CO2.

溶接部は熱影響を受けること、及び強度上昇があること
で硫化物割れ感受性が□ 高くなる。
Welds are susceptible to sulfide cracking due to thermal effects and increased strength.

この上うなCO2共存下で微量のH2S存在による硫化
物割れ性能を検討するために、流速2.5 m/ se
e、40℃以下5%NaCtにH2S 50ppm、、
CO2180ppm を含有する流体中で応力腐食割れ
試験が実施された。
In order to investigate the sulfide cracking performance due to the presence of a trace amount of H2S in the coexistence of CO2, the flow rate was set at 2.5 m/sec.
e, H2S 50ppm in 5% NaCt below 40℃,
Stress corrosion cracking tests were carried out in a fluid containing 180 ppm of CO2.

試験片は溶接部を試験片中央に置いた切欠付4点曲げ試
験片であり、負荷応力は母材降伏点の1σyである。
The test piece is a four-point bending test piece with a notch in which the welded part is placed in the center of the test piece, and the applied stress is 1σy of the yield point of the base metal.

結果は第2表に示されるように、この発明鋼では割れな
し、比較鋼では割れが発生しており、1 この発明鋼
の低POM対策による溶接部硬度の低下、及びSなど成
分元素の調整のすぐれた効果が明らかである。
As shown in Table 2, the results are as follows: No cracking occurred in the inventive steel, while cracking occurred in the comparative steel. The excellent effects of

(4)靭性 ラインパイプに要求される性能の一つに靭性がある。(4) Toughness One of the performance requirements for line pipes is toughness.

第2表は本発明鋼がすぐれた靭性を有することを示して
いる。
Table 2 shows that the steel according to the invention has excellent toughness.

低S−低C化など成分元素調整の有効さを示している。This shows the effectiveness of component element adjustment such as low S-low C.

以上のように、この発明鋼は従来鋼と比較し、CO2又
はCO2と微量のH2Skを含むような環境下での腐食
割れに対しきわめて優秀な性質な示すとともに、機械的
諸性質及び溶接性においてもすぐれていることが明らか
である。
As described above, compared to conventional steels, the steel of this invention exhibits excellent properties against corrosion cracking in environments containing CO2 or CO2 and trace amounts of H2Sk, and has excellent mechanical properties and weldability. It is clear that it is also excellent.

【図面の簡単な説明】 図面はラインパイプ用鋼における湿潤炭酸ガス腐食にお
よぼすCuの影響を示す図表である。
[BRIEF DESCRIPTION OF THE DRAWINGS] The drawing is a chart showing the influence of Cu on wet carbon dioxide corrosion in line pipe steel.

Claims (1)

【特許請求の範囲】 I C0,06%以下、Si0.03〜0.50%、
Mn0.10〜1.20%、Cr1.O〜3.0%、N
b0101〜0.08%、Ato、005〜0.10%
、残部Fe及び不可避的不純物からなり、下記溶接割れ
感受性指数PCM値が0.23%以下でかつ不純物中の
S−b″−0,OO9%以下、Cuが0,04%以下で
ある湿潤炭酸ガス腐食抵抗にすぐれたラインパイプ用鋼
。 2 C0,06%・以下、S i 0.03〜0.5
0%、Mn0、10〜1.20%、Cr 1.0〜3.
0%、N b O,01〜0.08%、A40.005
〜0.10%、更にMoo、02〜0.20%、Vo、
01〜0.10%の1種又は2種を含有し、残部Fe及
び不可避的不純物からなり、下記溶接割れ感受性指数P
CM値が0.23%以下でかつ不純物中のSが0.00
9%以下、Cuが0.04%以下である湿潤炭酸ガス腐
食抵抗にすぐれたラインパイプ用鋼。 3C0,06%以下、SiO,03〜0.50%、Mn
0.10〜1.2%、Cr1.0〜3.0%、Nb0
101〜0.08%、AtO,005〜0.10%、更
にCa O,0005〜0.05%、希土類元素0.0
005〜0.05%、Z r O,005〜0.10%
のうち1種又は2種以上を含有し、残部Fe及び不可避
的不純物からなり、下記溶接割れ感受性指数PCM値が
0.23%以下でかつ不純物中のSが0.009%以下
、Cuが0.04%以下である湿潤炭酸ガス腐食抵抗に
すぐれたラインパイプ用鋼。 4 C0,06%以下、3i0.03〜0.50%、
Mn 0.10〜1.20%、Cr 1.0〜3.0%
、Nb0.01〜0.08%、AtO,005〜0.1
0%、更にCo O,5〜2.0%、T i O,00
5〜0.10%の1種又は2種を含有し、残部Fe及び
不可避的不純物からなり、下記溶接割れ感受性指数PC
M値が0.23%以下でかつ不純・物中のS−b″−0
,009%以下、Cuが0.04%以下である湿潤炭酸
ガス腐食抵抗にすぐれたラインパイプ用鋼。 5C0,06%以下、Si0.03〜0.50%、Mn
0.10〜1.20%、Cr 1.0〜3.0%、N
b0901〜0.08%、AtO,005〜0.10%
、更にM o 0.02〜0.20%、V O,01〜
0.10’%の1種又は2種と、CaO,0O05〜0
.05%、希土類元素0.0005〜0.05%、Zr
0.005〜0.10%の1種又は2種以上を含有し、
残部Fe及び不可避的不純物からなり、下記溶接割れ感
受性指数PCM値が0.23%以下でかつ不純物中のS
が0.009%以下、Cuが0.04%以下である湿潤
炭酸ガス腐食抵抗にすぐれたラインパイプ用鋼。 6 C0,06%以下、Si0.03〜0.50%、
Mn0.10〜1.20%、Cr 1.0〜3.0%、
Nb0001〜0.08%、A40.005〜0.10
%、更にM o 0.02〜0.20%、Vo、01〜
0.10%の1種又は2種と、Co 0.5〜2.0%
、Ti0.005〜0.10%の1種又は2種を含有し
、残部Fe及び不可避的不純物からなり、下記溶接割れ
感受性指数PcM値が0.23%以下でかつ不純物中の
Sが0.009%以下、Cu6’0.04%以下である
湿潤炭酸ガス腐食抵抗にすぐれたラインパイプ用鋼。 7C0,06%以下、Si0.03〜0.50%、Mn
0.10〜1.20%、Cr 1.0〜3.0%、N
b0801〜0.08%、A40.005〜0.10%
、更にCa0.0005〜0.05%、希土類元素0.
0005〜0.05%、Z r O,005〜0.10
%のうち1種又は2種以上と、co 0.5〜2.0%
、Ti0.005〜0.10%の1種又は2種を含有し
、残部Fe及び不可避的不純物からなり、下記溶接割れ
感受性指数PCM値が0.23%以下でかつ不純物中の
Sが0.009%以下、Cu#Z0.04%以下である
湿潤炭酸ガス腐食抵抗にすぐれたラインパイプ用鋼。 8 C0,06%以下、SiO,03〜0.50%、
Mn 0.10〜1.20%、Cr1.0〜3.0%、
Nb0.01〜0.08%、AtO,005〜0.10
%、更にMo 0.02〜0.20%、Vo、01〜0
.10%の1種又は2種と、Ca O,0005〜0.
05%、希土類元素0.0005〜0.05%、Zr0
.005〜0.10%のうち1種又は2種以上と、Co
0.5〜2.0%、TiO,005〜0.10%の1種
又は2種を含有し、残部Fe及び不可避的不純物からな
り、下記溶接割れ感受性指数PCM値が0.23%以下
でかつ不純物中のSが0.009%以下、Cuが0.0
4%以下である湿潤炭酸ガス腐食抵抗にすぐれたライン
パイプ用鋼。
[Claims] I C 0.06% or less, Si 0.03 to 0.50%,
Mn0.10-1.20%, Cr1. O~3.0%, N
b0101~0.08%, Ato, 005~0.10%
, the balance is Fe and unavoidable impurities, and the following weld cracking susceptibility index PCM value is 0.23% or less, and the impurities include S-b''-0,OO 9% or less and Cu 0.04% or less. Steel for line pipes with excellent gas corrosion resistance. 2 C0.06% or less, Si 0.03-0.5
0%, Mn0, 10-1.20%, Cr 1.0-3.
0%, NbO, 01-0.08%, A40.005
~0.10%, further Moo, 02~0.20%, Vo,
01 to 0.10% of one kind or two kinds, the balance consists of Fe and unavoidable impurities, and has the following weld cracking susceptibility index P
CM value is 0.23% or less and S in impurities is 0.00
Steel for line pipes with excellent wet carbon dioxide corrosion resistance and Cu content of 9% or less and 0.04% or less. 3C0.06% or less, SiO,03~0.50%, Mn
0.10-1.2%, Cr1.0-3.0%, Nb0
101~0.08%, AtO, 005~0.10%, further CaO, 0005~0.05%, rare earth elements 0.0
005-0.05%, ZrO, 005-0.10%
Contains one or more of the following, the remainder consists of Fe and unavoidable impurities, the following weld cracking susceptibility index PCM value is 0.23% or less, S in the impurities is 0.009% or less, and Cu is 0. Steel for line pipes with excellent wet carbon dioxide corrosion resistance of .04% or less. 4 C0.06% or less, 3i0.03-0.50%,
Mn 0.10-1.20%, Cr 1.0-3.0%
, Nb0.01~0.08%, AtO,005~0.1
0%, further Co O, 5-2.0%, T i O, 00
Contains 5 to 0.10% of one or two types, with the balance consisting of Fe and unavoidable impurities, and has the following weld cracking susceptibility index PC
M value is 0.23% or less and S-b''-0 in impurities and substances
,009% or less, and a line pipe steel having excellent wet carbon dioxide corrosion resistance and containing Cu of 0.04% or less. 5C 0.06% or less, Si 0.03-0.50%, Mn
0.10-1.20%, Cr 1.0-3.0%, N
b0901~0.08%, AtO,005~0.10%
, further M o 0.02-0.20%, V O,01-
0.10'% of one or two types and CaO,0O05~0
.. 05%, rare earth elements 0.0005-0.05%, Zr
Containing 0.005 to 0.10% of one or more types,
The balance consists of Fe and unavoidable impurities, and the following weld cracking susceptibility index PCM value is 0.23% or less and S in the impurities
Steel for line pipes that has excellent wet carbon dioxide corrosion resistance and has Cu content of 0.009% or less and Cu content of 0.04% or less. 6 C0.06% or less, Si0.03-0.50%,
Mn 0.10-1.20%, Cr 1.0-3.0%,
Nb0001~0.08%, A40.005~0.10
%, further Mo 0.02-0.20%, Vo 01-
0.10% of one or two types and Co 0.5-2.0%
, 0.005 to 0.10% of Ti, and the remainder consists of Fe and unavoidable impurities, and the following weld cracking susceptibility index PcM value is 0.23% or less and S in the impurities is 0.005 to 0.10%. Steel for line pipes with excellent wet carbon dioxide corrosion resistance, containing 0.009% or less and Cu6'0.04% or less. 7C 0.06% or less, Si 0.03-0.50%, Mn
0.10-1.20%, Cr 1.0-3.0%, N
b0801~0.08%, A40.005~0.10%
, furthermore Ca0.0005-0.05%, rare earth element 0.
0005-0.05%, Z r O, 005-0.10
% and one or more of them and co 0.5-2.0%
, 0.005 to 0.10% of Ti, and the remainder consists of Fe and unavoidable impurities, and the following weld crack susceptibility index PCM value is 0.23% or less and S in the impurities is 0.005 to 0.10%. Steel for line pipes with excellent wet carbon dioxide corrosion resistance, with Cu#Z of 0.09% or less and Cu#Z of 0.04% or less. 8 C0.06% or less, SiO,03-0.50%,
Mn 0.10-1.20%, Cr1.0-3.0%,
Nb0.01~0.08%, AtO,005~0.10
%, further Mo 0.02-0.20%, Vo, 01-0
.. 10% of one or two kinds and Ca O,0005-0.
05%, rare earth elements 0.0005-0.05%, Zr0
.. 005 to 0.10% and one or more kinds of Co
0.5-2.0%, TiO, 0.005-0.10% or two, the balance is Fe and unavoidable impurities, and the following weld crack susceptibility index PCM value is 0.23% or less. And S in impurities is 0.009% or less, Cu is 0.0%
Steel for line pipes with excellent wet carbon dioxide corrosion resistance of 4% or less.
JP6538879A 1979-05-25 1979-05-25 Steel for line pipes with excellent wet carbon dioxide corrosion resistance Expired JPS5919179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6538879A JPS5919179B2 (en) 1979-05-25 1979-05-25 Steel for line pipes with excellent wet carbon dioxide corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6538879A JPS5919179B2 (en) 1979-05-25 1979-05-25 Steel for line pipes with excellent wet carbon dioxide corrosion resistance

Publications (2)

Publication Number Publication Date
JPS55158253A JPS55158253A (en) 1980-12-09
JPS5919179B2 true JPS5919179B2 (en) 1984-05-02

Family

ID=13285546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6538879A Expired JPS5919179B2 (en) 1979-05-25 1979-05-25 Steel for line pipes with excellent wet carbon dioxide corrosion resistance

Country Status (1)

Country Link
JP (1) JPS5919179B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188776U (en) * 1984-11-17 1986-06-10
JPS626874U (en) * 1985-06-28 1987-01-16
JPS6316083U (en) * 1986-07-16 1988-02-02
JPH0536451Y2 (en) * 1984-03-08 1993-09-14
CN111172458A (en) * 2020-01-15 2020-05-19 北京科技大学 High-temperature-resistant high-humidity high-salt-spray-resistant weather-resistant steel for marine atmospheric environment and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199736B (en) * 2010-03-23 2013-03-13 宝山钢铁股份有限公司 High-strength and anti-CO2/H2S corrosion seamless gathering-line pipe
CN114107810B (en) * 2021-11-12 2022-07-22 江苏科技大学 Carbon dioxide corrosion resistant low-alloy material and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536451Y2 (en) * 1984-03-08 1993-09-14
JPS6188776U (en) * 1984-11-17 1986-06-10
JPS626874U (en) * 1985-06-28 1987-01-16
JPS6316083U (en) * 1986-07-16 1988-02-02
CN111172458A (en) * 2020-01-15 2020-05-19 北京科技大学 High-temperature-resistant high-humidity high-salt-spray-resistant weather-resistant steel for marine atmospheric environment and preparation method thereof

Also Published As

Publication number Publication date
JPS55158253A (en) 1980-12-09

Similar Documents

Publication Publication Date Title
EP2163658B9 (en) Ferritic stainless steel sheet having excellent corrosion resistance against sulfuric acid, and method for production thereof
KR101690441B1 (en) Ferritic stainless steel sheet having excellent heat resistance
US7347903B2 (en) Duplex stainless steel for urea manufacturing plants
CN112522602A (en) Chromium-free molybdenum hot-rolled steel strip for H2S corrosion resistant L360MS spiral welded pipe and manufacturing method thereof
CN114959468B (en) Nickel-free L360MSX52MS H-resistant thick-specification extreme cold-resistant 2 S-corrosion hot-rolled coil and preparation method thereof
JPS5919179B2 (en) Steel for line pipes with excellent wet carbon dioxide corrosion resistance
CN112779453B (en) Fe-Ni-Cr-Mo-Cu alloy excellent in corrosion resistance
JPS6145697B2 (en)
JPH032227B2 (en)
JP3966136B2 (en) Stainless steel pipe for line pipe with excellent corrosion resistance
JPS648694B2 (en)
JP2002038241A (en) Free cutting stainless steel
JP3529946B2 (en) Ferritic stainless steel for heat transfer member of exhaust gas and manufacturing method
JPS5915977B2 (en) Seamless steel for pipes with excellent corrosion resistance
JP3266247B2 (en) Duplex stainless steel with excellent hot workability
JPH0635615B2 (en) Manufacturing method of ferritic stainless steel with excellent corrosion resistance of welds
JP2721420B2 (en) Sour-resistant steel for electric resistance welded steel
JPS6013419B2 (en) Structural steel with improved cracking resistance in the Z direction
JP3141646B2 (en) Austenitic stainless steel for nitric acid containing environment
JP3501882B2 (en) Manufacturing method of ferritic stainless steel pipe for exhaust gas heat transfer member
CN109047694B (en) Economic HIC-resistant pipeline steel plate X65MS for TMCP delivery and manufacturing method thereof
JP2745070B2 (en) Martensitic stainless steel having high strength and excellent corrosion resistance and method for producing the same
JPS63157838A (en) Two-phase stainless steel excellent in crevice corrosion resistance
JPS637328A (en) Production of steel having excellent sulfide corrosion cracking resistance
JPS59159975A (en) Ferritic chromium stainless steel containing al