JPS59180006A - Gas turbine stator blade segment - Google Patents
Gas turbine stator blade segmentInfo
- Publication number
- JPS59180006A JPS59180006A JP5263583A JP5263583A JPS59180006A JP S59180006 A JPS59180006 A JP S59180006A JP 5263583 A JP5263583 A JP 5263583A JP 5263583 A JP5263583 A JP 5263583A JP S59180006 A JPS59180006 A JP S59180006A
- Authority
- JP
- Japan
- Prior art keywords
- blade
- gas turbine
- side wall
- stator blade
- segment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/04—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
- F01D9/042—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators
- F01D9/044—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators permanently, e.g. by welding, brazing, casting or the like
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はガスタービン靜翼構造に係り、特に、翼部に過
大な熱応力が発生すること全防止するための静翼セグメ
ント構造に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a gas turbine silent blade structure, and particularly to a stator blade segment structure for completely preventing generation of excessive thermal stress in the blade portion.
カスタービン靜真セグメント購造の一例全第1図ないし
第3図に示す。An example of purchasing a cast turbine silence segment is shown in FIGS. 1 to 3.
第1図は静翼セグメントの斜視図である。静翼セグメン
トは翼1、外側サイドウオール2、内側サイドウオール
3から構成されており、翼1ケと両サイドウオールとが
一体となっているもの全単典セグメント、第1図のよう
に複数の翼が両サイドウオールで一体となっているもの
全多連翼セグメン]・という。実機の静翼はこのセグメ
ントが連なって、円筒状に組立てられたものでめる。第
2図は翼の内部構造1示す。燃焼器で燃焼されたガス1
1は翼前縁4より後縁5の方向へ流扛る。翼外壁は燃焼
ガスと接触する几め、非常に高温になり、冷却1施こさ
なけれは強度が低下する。このため、一般に、翼内部全
空洞にし、冷却空気奢内壁に吹きつけて金属面の冷却を
行なう。翼内部に無数の冷却孔7をもつコア・プラグ6
全挿入し、翼外周方向より冷却空気9を流し、冷却孔7
よりコア・プラグ外に噴出させ、翼内壁に冷却空気を吹
きつけた後、翼本体に設けらnた冷却孔8.9に通過し
て外部に噴出させる。FIG. 1 is a perspective view of a stator vane segment. A stationary blade segment is composed of a blade 1, an outer sidewall 2, and an inner sidewall 3.A single blade segment is composed of a single blade and both sidewalls. A wing in which the wing is integrated with both sidewalls is called a fully multiple wing segment. The stator vane of an actual aircraft is made up of these segments connected in a cylindrical shape. FIG. 2 shows the internal structure 1 of the wing. Gas burned in the combustor 1
1 flows from the leading edge 4 of the blade toward the trailing edge 5. When the outer wall of the blade comes into contact with combustion gas, it becomes very hot and its strength will decrease unless it is cooled. For this reason, generally, the entire interior of the blade is hollow, and the metal surface is cooled by blowing cooling air onto the inner wall of the cavity. Core plug 6 with countless cooling holes 7 inside the wing
Fully insert the blade, let the cooling air 9 flow from the outer circumferential direction of the blade, and open the cooling hole 7.
After cooling air is blown out of the core plug and blown onto the inner wall of the blade, it passes through cooling holes 8.9 provided in the blade body and is blown out to the outside.
第3図は第1図の外側サイドウメール側より静翼セグメ
ントに見た図である。コア・フラグ6は夕1側サイドウ
オールと溶接部]2で接合されている。FIG. 3 is a view of the stator vane segment viewed from the outer side mail side of FIG. 1. The core flag 6 is joined to the sidewall on the side 1 at a welded part]2.
このように、翼は内部より冷却され、外部より加熱され
るために肉厚方向に温度分布が生じ、又AtT縁より後
縁−fでの間では、熱伝達係数が場所により異なり、又
、冷却孔の有無によって、翼長方向に温度分布ができる
。そして、翼が外側、内側両サイドウオールによって固
定されているため、熱応力が発生する。一方、サイドウ
オールの温度は比較的低温であり、翼部は高温であるた
め、両者の間の温■差によっても熱応力が発生する。単
質セグメントの場合には、サイドウオールが翼の変形に
沿って変形し7、熱応力が緩和される余地があるが、多
連翼セグメントの場合には、サイドウオールの変形が隣
り合う翼により拘束されるため、サイドウオールと翼の
接合部に過大な応力が発生し7、プラントの起動、停止
に伴って熱応力が繰返されるため、疲几@裂が発生し、
プラントに重太な損傷γ与える。In this way, since the blade is cooled from the inside and heated from the outside, a temperature distribution occurs in the thickness direction, and the heat transfer coefficient differs depending on the location from the AtT edge to the trailing edge -f. Depending on the presence or absence of cooling holes, a temperature distribution can be created in the blade span direction. Since the wing is fixed by both the outer and inner sidewalls, thermal stress occurs. On the other hand, since the temperature of the sidewall is relatively low and the temperature of the wing is high, thermal stress is also generated due to the temperature difference between the two. In the case of a single segment, the sidewall deforms along with the deformation of the blade7, and there is room for thermal stress to be alleviated, but in the case of a multiple blade segment, the deformation of the sidewall is caused by the deformation of the adjacent blade. Due to the restraint, excessive stress is generated at the joint between the sidewall and the blade7, and thermal stress is repeated as the plant starts and stops, resulting in fatigue cracks.
Causes heavy damage to the plant.
なお、図中5翼後縁部、10は冷却空気、11は燃焼ガ
ス、18は上部固定治具とサイドウオールとの境界であ
る。In the figure, 5 is the trailing edge of the blade, 10 is the cooling air, 11 is the combustion gas, and 18 is the boundary between the upper fixing jig and the sidewall.
本発明の目的は静翼セグメントに発生する熱応力を低減
させ、疲r、き裂発生全防止して、信頼性の高い静翼セ
グメンIf提供するにある。An object of the present invention is to provide a highly reliable stator blade segment by reducing thermal stress generated in the stator blade segment and completely preventing fatigue and cracking.
本発明の要点は翼とザイドウオール間?構造的に分離す
ることにより、翼とサイドウオール間の変形拘束全低減
させるにある。Is the main point of this invention between the wing and the Zyde wall? The structural separation reduces the overall deformation constraints between the wing and sidewall.
〔発明の実施例゛I 第4図ないし第6図に本発明の実施例1示す。[Embodiment of the invention I Embodiment 1 of the present invention is shown in FIGS. 4 to 6.
第4図は外側サイドウオール方向より見た平面図であり
、第5図は背側−腹側間IV−V)の断面シ1、第6図
は前縁−後縁間CM−Vl)の断面図である。Fig. 4 is a plan view seen from the direction of the outer sidewall, Fig. 5 is a cross section between the dorsal side and the ventral side (IV-V), and Fig. 6 is a cross section between the leading edge and the rear edge (CM-Vl). FIG.
不実施例では、外、内側サイドウオール2,3および翼
1の両端に固定冶具13,14全備えた部品との組立て
構造奢とる。すなわち、外側サイドウオール2の上方よ
り、固定治具13,14のついた翼1全挿入し、内側サ
イドウオール3と溶接部15で固定する。固定冶具13
は第5図、第6図に示すように、段全もち、外側サイド
ウオールに引っかかる構造とする。外側サイドウオール
と固定治具13とは固定しないものとする。翼1の付根
部20に曲率がないと燃焼ガスの流れが悪くなり、効率
が低下する。付根部に曲率全つける関係上、固定治具1
3,14と両サイドウオールとの境界は曲率がなくなり
、平面になった場所に設ける。In the non-embodiment, the assembly structure is such that the outer and inner sidewalls 2 and 3 and the fixing jigs 13 and 14 are all provided at both ends of the wing 1. That is, the blade 1 with fixing jigs 13 and 14 is fully inserted from above the outer sidewall 2 and fixed to the inner sidewall 3 by the welded portion 15. Fixing jig 13
As shown in Fig. 5 and Fig. 6, the structure is such that the entire stage is gripped and hooked onto the outer side wall. It is assumed that the outer sidewall and the fixing jig 13 are not fixed. If there is no curvature in the root portion 20 of the blade 1, the flow of combustion gas will be poor and efficiency will be reduced. Due to the full curvature at the base, fixing jig 1
The boundaries between 3 and 14 and both side walls are provided at locations where the curvature disappears and the boundaries become flat.
この構造では、プラントが運転状態となり、高温の燃焼
ガスが流入し、翼部が高温となって膨張しても、隣り合
う翼のサイドウオール全弁した拘束による熱応力の発生
は回避される。Lまたがって、従来構造に見うけられる
き裂の発生が防止でき、プラントの信頼性が向上する。With this structure, even when the plant is in operation and high-temperature combustion gas flows in, causing the blades to reach high temperatures and expand, the generation of thermal stress due to the full restraint of the sidewalls of adjacent blades is avoided. By straddling the L, the occurrence of cracks seen in conventional structures can be prevented, improving the reliability of the plant.
一方、翼は燃焼ガスの圧力(より曲げの負荷奢受けるが
、これに対しては、外側サイドウオールと上部固定治具
間の境界18のクリアランス全翼の許容変形量以下に設
定することにより、翼の形状を利用して、翼2支持する
ことができる。On the other hand, the blades are subjected to the pressure of combustion gas (more bending load), but this can be done by setting the clearance at the boundary 18 between the outer sidewall and the upper fixing jig to less than the allowable deformation of the entire blade. The wing 2 can be supported by utilizing the shape of the wing.
外側サイドウオールと上部固定治具の境界より冷却空気
が燃焼ガス通路側に漏れ、プラントの効率が減少するこ
とが考えらnる。この場合には、第7図に示すように、
外側サイドウオールと固定治具の境界1!−またぐよう
に、シールプレート16に敷きつめ、溶接部17で固定
する。このことにより、冷却空気の漏れ全防止すること
ができる。It is conceivable that cooling air leaks from the boundary between the outer sidewall and the upper fixture to the combustion gas passage side, reducing the efficiency of the plant. In this case, as shown in Figure 7,
Boundary between outer sidewall and fixing jig 1! - Lay it on the seal plate 16 so as to straddle it and fix it with the welded part 17. This completely prevents cooling air from leaking.
ただし、このシールプレートは可能なかき゛り薄く、上
部固定治具13とサイドウオール2の変形全拘束しない
ものとする。However, this seal plate is as thin as possible and does not completely restrict the deformation of the upper fixing jig 13 and the side wall 2.
又、第8図に示すように、上部固定治具13と外側サイ
ドウオール2の境界に冷却用スリット19金設け、これ
全利用して、翼部に直接冷却空気を吹きつけて、翼の冷
却を実施することも可能でおる。In addition, as shown in Fig. 8, cooling slits are provided at the boundary between the upper fixing jig 13 and the outer sidewall 2, and these are fully utilized to blow cooling air directly onto the blades to cool the blades. It is also possible to implement
更に、本実施例では、静翼のケーシングへの増付構造は
外側サイドウオール全ケーシングにつり下げるという従
来構造と同様にすることが可能で、現在、稼動中のガス
タービンにも適用可能である。Furthermore, in this embodiment, the structure for adding stationary vanes to the casing can be similar to the conventional structure in which the stator vanes are suspended from the entire outer sidewall casing, and can be applied to gas turbines currently in operation. .
本発明によれば、静翼セグメントに発生する熱応カケ低
減でき、その結果、プラントの信頼性の向上2図れる。According to the present invention, it is possible to reduce thermal response chips occurring in the stator vane segments, and as a result, the reliability of the plant can be improved.
第1図は静翼セグメントの斜視図、第2図は翼構造の斜
視図、第3図は静翼セグメントの平面図、第4図は本発
明の静翼セグメントの平面図、第5図は本発明の静翼セ
グメントの背側−腹側間の断面図、第6図は本発明の静
翼セグメントの買前縁−後縁間の断面図、第7図は本発
明の一実施例の静置セグメントの断面図、第8図は本発
明の他の実施例の静翼セグメントの断面図である。
■・・・翼、2・・・外側サイドウオール、3・・・内
側サイドウオール、7・・・コアープラグ冷却孔、8・
・・翼腹部冷却孔、9・・・翼後縁部冷却孔、10・・
・冷却空気、(7)
茅3図
特開昭59−180006 (4)
第4−2
茶5図
15
不(l=霞
特開+1ff59−18000に(5)5
第2図
2層り畠
/FIG. 1 is a perspective view of a stator blade segment, FIG. 2 is a perspective view of the blade structure, FIG. 3 is a plan view of the stator blade segment, FIG. 4 is a plan view of the stator blade segment of the present invention, and FIG. 5 is a perspective view of the stator blade segment. FIG. 6 is a cross-sectional view between the dorsal side and the ventral side of the stator vane segment of the present invention, FIG. 6 is a cross-sectional view between the leading edge and the trailing edge of the stator vane segment of the present invention, and FIG. FIG. 8 is a cross-sectional view of a stationary vane segment according to another embodiment of the present invention. ■... Wing, 2... Outer side wall, 3... Inner side wall, 7... Core plug cooling hole, 8...
... Wing abdomen cooling hole, 9... Wing trailing edge cooling hole, 10...
・Cooling air, (7) Chi 3 Figure JP 59-180006 (4) 4-2 Brown 5 Figure 15 Not (l = Kasumi JP + 1ff 59-18000 (5) 5 Figure 2 2-layered hatch/
Claims (1)
グメントが集合して構成されているガスタービン静翼に
おいて、 前記サイドウオールと前記翼部分間Yルーズなはめ合い
構造としたこと1特徴とするガスタービン静翼セグメン
ト。 24 %許請求の範囲第一項において、前記ルーズな
はめ合い構造部に設けられる間隙を利用して、前記翼の
表面の冷却管可能とする手段1設けたこと全特徴とする
ガスタービン静翼セグメント。[Claims] 1. In a gas turbine stationary blade in which a blade and a sidewall form a sedamane lf and these segments are assembled, a Y loose fitting structure is provided between the sidewall and the blade part. One feature of the gas turbine stationary blade segment. 24% Permissible scope The gas turbine stationary blade according to claim 1, further comprising means 1 for forming a cooling pipe on the surface of the blade by utilizing a gap provided in the loose fitting structure. segment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5263583A JPS59180006A (en) | 1983-03-30 | 1983-03-30 | Gas turbine stator blade segment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5263583A JPS59180006A (en) | 1983-03-30 | 1983-03-30 | Gas turbine stator blade segment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59180006A true JPS59180006A (en) | 1984-10-12 |
Family
ID=12920278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5263583A Pending JPS59180006A (en) | 1983-03-30 | 1983-03-30 | Gas turbine stator blade segment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59180006A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002061503A (en) * | 2000-06-27 | 2002-02-28 | General Electric Co <Ge> | Cooling of brazed spot back part of nozzle |
JP2002138802A (en) * | 2000-07-27 | 2002-05-17 | General Electric Co <Ge> | Turbine nozzle using brazeless fillet |
WO2007030925A1 (en) | 2005-09-12 | 2007-03-22 | Pratt & Whitney Canada Corp. | Vane assembly with improved vane roots |
JP2007085342A (en) * | 2005-09-19 | 2007-04-05 | General Electric Co <Ge> | Seal-less cmc blade/platform border plane |
EP1801357A1 (en) | 2005-12-22 | 2007-06-27 | Techspace aero | Bladed nozzle of a turbomachine, turbomachine comprising this nozzle and turbomachine vane |
EP1847689A2 (en) | 2006-04-21 | 2007-10-24 | General Electric Company | Apparatus and method of diaphragm assembly |
EP1548235A3 (en) * | 2003-12-22 | 2008-11-19 | United Technologies Corporation | Cooled vane cluster |
EP2204547A1 (en) | 2008-12-29 | 2010-07-07 | Techspace aero | Assembly for stator stage of a turbomachine, comprising an external annular shroud and at least one stator vane |
JP2010180827A (en) * | 2009-02-06 | 2010-08-19 | Mitsubishi Heavy Ind Ltd | Gas turbine blade and gas turbine |
JP2011058497A (en) * | 2009-09-09 | 2011-03-24 | Alstom Technology Ltd | Blade of turbine |
-
1983
- 1983-03-30 JP JP5263583A patent/JPS59180006A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1167694A3 (en) * | 2000-06-27 | 2003-09-10 | General Electric Company | Cooled nozzle vane |
JP2002061503A (en) * | 2000-06-27 | 2002-02-28 | General Electric Co <Ge> | Cooling of brazed spot back part of nozzle |
JP2002138802A (en) * | 2000-07-27 | 2002-05-17 | General Electric Co <Ge> | Turbine nozzle using brazeless fillet |
EP1176284A3 (en) * | 2000-07-27 | 2003-11-26 | General Electric Company | Brazeless fillet turbine nozzle |
EP1548235A3 (en) * | 2003-12-22 | 2008-11-19 | United Technologies Corporation | Cooled vane cluster |
WO2007030925A1 (en) | 2005-09-12 | 2007-03-22 | Pratt & Whitney Canada Corp. | Vane assembly with improved vane roots |
EP1926887A4 (en) * | 2005-09-12 | 2010-04-07 | Pratt & Whitney Canada | Vane assembly with improved vane roots |
JP2007085342A (en) * | 2005-09-19 | 2007-04-05 | General Electric Co <Ge> | Seal-less cmc blade/platform border plane |
US7722321B2 (en) | 2005-12-22 | 2010-05-25 | Techspace Aero | Turbo-engine stator blading, turbo-engine comprising the blading and turbo-engine blade |
EP1801357A1 (en) | 2005-12-22 | 2007-06-27 | Techspace aero | Bladed nozzle of a turbomachine, turbomachine comprising this nozzle and turbomachine vane |
JP2007292071A (en) * | 2006-04-21 | 2007-11-08 | General Electric Co <Ge> | Diaphragm assembly and steam turbine |
EP1847689A3 (en) * | 2006-04-21 | 2009-04-01 | General Electric Company | Apparatus and method of diaphragm assembly |
EP1847689A2 (en) | 2006-04-21 | 2007-10-24 | General Electric Company | Apparatus and method of diaphragm assembly |
KR101378193B1 (en) * | 2006-04-21 | 2014-03-26 | 제너럴 일렉트릭 캄파니 | Apparatus and method of diaphragm assembly |
EP2204547A1 (en) | 2008-12-29 | 2010-07-07 | Techspace aero | Assembly for stator stage of a turbomachine, comprising an external annular shroud and at least one stator vane |
US8430629B2 (en) | 2008-12-29 | 2013-04-30 | Techspace Aero | Assembly for a stator stage of a turbomachine, the assembly comprising an outer shroud and at least one stationary vane |
JP2010180827A (en) * | 2009-02-06 | 2010-08-19 | Mitsubishi Heavy Ind Ltd | Gas turbine blade and gas turbine |
JP2011058497A (en) * | 2009-09-09 | 2011-03-24 | Alstom Technology Ltd | Blade of turbine |
US8801381B2 (en) | 2009-09-09 | 2014-08-12 | Alstom Technology Ltd. | Turbine blade |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10309240B2 (en) | Method and system for interfacing a ceramic matrix composite component to a metallic component | |
JP5231600B2 (en) | Gas turbine engine shroud and gas turbine engine | |
JP5414200B2 (en) | Turbine rotor blade assembly and method of making the same | |
US6224337B1 (en) | Thermal barrier coated squealer tip cavity | |
US10408073B2 (en) | Cooled CMC wall contouring | |
US10619491B2 (en) | Turbine airfoil with trailing edge cooling circuit | |
EP1626162A1 (en) | Temperature tolerant vane assembly | |
US6409473B1 (en) | Low stress connection methodology for thermally incompatible materials | |
JP2007513281A (en) | Peristaltic joint between combustor wall and nozzle platform | |
JP2007107524A (en) | Assembly for controlling thermal stress in ceramic matrix composite article | |
US4378961A (en) | Case assembly for supporting stator vanes | |
JPS6196140A (en) | Support structure of gas turbine engine | |
US9938836B2 (en) | Turbine airfoil with trailing edge cooling circuit | |
JPH0151883B2 (en) | ||
JP2016535827A (en) | Rotary assembly for turbomachinery | |
JPS59180006A (en) | Gas turbine stator blade segment | |
JP2017061932A (en) | Nozzle and nozzle assembly for gas turbine engine | |
JP2006125402A (en) | Gas turbine rotor blade | |
US20220412222A1 (en) | Attachment structures for airfoil bands | |
JPS5979007A (en) | Turbine blade | |
EP3789585B1 (en) | Airfoil with metallic shield | |
JPS6189906A (en) | Cooling structure of ceramic/metal composite stator vanes | |
JP2025093874A (en) | Gas turbine exhaust diffuser, strut assembly and trailing member for strut of gas turbine exhaust diffuser | |
JPS6327523B2 (en) | ||
JPH0953462A (en) | Gas turbine containment ring |