JPS5837396A - Hydrogen occlusion device - Google Patents
Hydrogen occlusion deviceInfo
- Publication number
- JPS5837396A JPS5837396A JP56134204A JP13420481A JPS5837396A JP S5837396 A JPS5837396 A JP S5837396A JP 56134204 A JP56134204 A JP 56134204A JP 13420481 A JP13420481 A JP 13420481A JP S5837396 A JPS5837396 A JP S5837396A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- hydrogen occlusion
- alloys
- hydrogen storage
- foaming material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 44
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 44
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 239000011232 storage material Substances 0.000 claims description 10
- 239000006260 foam Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 abstract description 11
- 229910045601 alloy Inorganic materials 0.000 abstract description 7
- 239000000956 alloy Substances 0.000 abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 abstract description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 4
- 150000002431 hydrogen Chemical class 0.000 abstract description 4
- 229910010069 TiCo Inorganic materials 0.000 abstract description 3
- 238000000034 method Methods 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract description 3
- 229910019758 Mg2Ni Inorganic materials 0.000 abstract description 2
- 229910001069 Ti alloy Inorganic materials 0.000 abstract description 2
- 239000000919 ceramic Substances 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 239000007769 metal material Substances 0.000 abstract description 2
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 2
- 150000002910 rare earth metals Chemical class 0.000 abstract description 2
- 238000005187 foaming Methods 0.000 abstract 4
- 238000007599 discharging Methods 0.000 abstract 2
- 229910002335 LaNi5 Inorganic materials 0.000 abstract 1
- 229910010340 TiFe Inorganic materials 0.000 abstract 1
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 235000000421 Lepidium meyenii Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 101100010153 Streptomyces lividus livC gene Proteins 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000013461 intermediate chemical Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 235000012902 lepidium meyenii Nutrition 0.000 description 1
- 101150032623 livK gene Proteins 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C11/00—Use of gas-solvents or gas-sorbents in vessels
- F17C11/005—Use of gas-solvents or gas-sorbents in vessels for hydrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/45—Hydrogen technologies in production processes
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は水素貯蔵材料更に詳しくは、水素化物の形態で
多菫の水素を吸蔵し、一方、所定の加熱又は減圧等によ
り、水素を放出し得る水素貯藏金嘴材料に発泡体を混在
させることにより、水素貯蔵材料材料の微粉化にともな
う水素の吸・脱蔵特性の劣化を改善した水素貯藏装fW
livC関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrogen storage material, more specifically, a hydrogen storage metal material that can store a large amount of hydrogen in the form of a hydride, and on the other hand, can release hydrogen by predetermined heating or depressurization, etc. Hydrogen storage device fW that improves the deterioration of hydrogen absorption and devolatilization characteristics caused by pulverization of hydrogen storage materials by mixing foam with
Regarding livC.
水素貯蔵材料は水素の発生系及び利用系の間で。Hydrogen storage materials are used in hydrogen generation and utilization systems.
水素の貯蔵、輸送の一手段として用いられるものである
。水素の貯蔵輸送方法としては、従来から行なわれてい
る気体水素、液体水素による方法と相対して考えられる
。水素貯蔵材による方法は。It is used as a means of storing and transporting hydrogen. As a method for storing and transporting hydrogen, it can be considered in contrast to the conventional methods using gaseous hydrogen and liquid hydrogen. The method using hydrogen storage materials.
極めて高い水素密度が得られ、既存材において、気体水
素の約2000倍、液体水素の2倍にも達するものであ
る。また、高圧容器や液体水素用の冷却容器等を必要と
せず、圧力や温度等の比較的低い領域で取“扱える丸め
、安全も含め信頼性が高い。Extremely high hydrogen density can be obtained, reaching about 2000 times that of gaseous hydrogen and twice that of liquid hydrogen among existing materials. In addition, it does not require a high-pressure container or a cooling container for liquid hydrogen, can be handled in relatively low pressure and temperature ranges, and is highly reliable, including safety.
一方、水素の吸蔵゛及び放出は、気体水素、液体水素の
場合は、短時間に可能:Cあり、を九、繰返反応を利用
するため、繰返しにともなう金属化合物の微細化が生じ
、目詰抄による、吸′R−放出特性の劣化が生ずる。On the other hand, in the case of gaseous hydrogen and liquid hydrogen, absorption and release of hydrogen can be done in a short time. Stuffing causes deterioration of absorption and release properties.
本発明は、上記の点に鑑み、水素貯蔵−放出特性の劣化
を改善し、長期間安定した特性を示す水素貯蔵装置を提
供することを目的とする。In view of the above points, it is an object of the present invention to provide a hydrogen storage device that improves the deterioration of hydrogen storage-release characteristics and exhibits stable characteristics over a long period of time.
水素貯蔵材としては、金属水素化物の形で吸脱蔵するも
のとしてマグネシウム系合金として。As a hydrogen storage material, it is used as a magnesium-based alloy that absorbs and desorbs in the form of metal hydrides.
Mg2Ni 、MaCa、NaMg、 すどチタン系合
金としテ’r i Fe 。Mg2Ni, MaCa, NaMg, and titanium alloys.
T iCo 、TiCoo、sMno、s 、TiCo
o、sFe o、s 、’I’ i o、sZr o、
2Mn t 8MOO,2。TiCo, TiCoo, sMno, s, TiCo
o, sFe o, s, 'I' io, sZr o,
2Mnt 8MOO,2.
T i o、eZr o、tVinl、4V0.2Cr
O,4、T i o、sZr O,2Cr o、sM
n O,2など希土類系合金としてLaNi 5 、L
aNi 4Fe、LaNi 4Cu、LaNi 4A1
。T io, eZr o, tVinl, 4V0.2Cr
O,4,T i o,sZr O,2Cr o,sM
LaNi 5 , L as rare earth alloys such as n O,2
aNi 4Fe, LaNi 4Cu, LaNi 4A1
.
LaNi 4.6AI O,4*LaO,gLi 54
10,1 、I’vtnNi 5 、MnNi 5 X
AI Xs〜Ln4+ 1’kl □、3.iV+b’
Ji 4.5扁05?vtrbNi 25c025など
tその他V、Nb等の単体3属がある。こ比ら各合金は
、水素の吸・脱蔵特性に種々の特長を有し、利用目的(
lこ応じて選択されることになる。LaNi 4.6AI O, 4*LaO, gLi 54
10,1, I'vtnNi5, MnNi5X
AI Xs~Ln4+ 1'kl □, 3. iV+b'
Ji 4.5 flat 05? There are three single genera such as vtrbNi 25c025, t, and V and Nb. Each of these alloys has various characteristics in terms of hydrogen adsorption and devolatilization properties, depending on the purpose of use (
The selection will be made accordingly.
本イ4明はこれらの水素貯幀材と発泡体を混在させて、
水素貯蔵特性を構成し、発泡体が水素ガスの流通路とし
て作用することにより、水素貯蔵材つL]詰による吸・
脱蔵特性の劣化を改善すること1(なる。This I4Ai mixes these hydrogen storage materials and foam,
The foam has hydrogen storage properties and acts as a flow path for hydrogen gas, which reduces the absorption and absorption caused by the hydrogen storage material.
Improving the deterioration of devolatilization characteristics 1.
以下、本発明の実梅例について述べる。Hereinafter, actual examples of the present invention will be described.
多孔質の発泡アルミニウムfllと粒状のTiF’e金
属間化合物(2)を見かけ体積比で2対8の比率で混在
させ第1図に示す如く水素貯蔵容器+31 +’こ装填
し、水素の吸・脱蔵を繰奴し吸蔵−一時間の苅係で評1
曲 ! た。A mixture of porous aluminum foam and granular TiF'e intermetallic compound (2) in an apparent volume ratio of 2:8 was loaded into a hydrogen storage container +31 +' as shown in Figure 1, and hydrogen was absorbed.・Repeat dezoarization and occlusion - Rating 1 for one hour's care
song ! Ta.
第2図は1回目(曲線a)と100 lPI繰x’L
I、だ場合(曲線b)の吸蔵特性の変化を示している。Figure 2 shows the first cycle (curve a) and the 100 lPI cycle x'L.
It shows the change in storage characteristics when I, (curve b).
また、比較のため、同量のIll i 1iIe会4間
化会vDを水素貯嵯装置間に直接装填し、繰返し試験を
行い、100回目の結果を曲線Cとして示しである。同
図から明らかな様(で発泡アルミニウムを混在させろこ
とtでより、吸・脱蔵の繰・、クシにともなう吸蔵特性
の劣化が改善されて^ろ。For comparison, the same amount of Ill i 1 I Ie 4 Intermediate Chemical Society vD was directly loaded between the hydrogen storage devices, repeated tests were conducted, and the results of the 100th test are shown as curve C. As is clear from the figure, by mixing foamed aluminum, the deterioration of the occlusion property due to repeated occlusion and devolatilization and the comb is improved.
以上示した発泡体は、アルミニウムに限定されるもので
なく、他の金蝙、合金、またセラミックなど種々のもの
が選択されるし、水素貯蔵材も当然種々のものが選択さ
れる。The foam shown above is not limited to aluminum, and various materials such as other metals, alloys, and ceramics can be selected. Naturally, various hydrogen storage materials can also be selected.
第1図は水素貯蔵特性の断面図、第2図は水素貯蔵特性
を吸*を一時間の・1係で示す曲線図。
!・・・発泡体
2・・・水素貯蔵材
代理人 弁理士 則 近 憲 佑
(ほか1名)
第1図
塑
第2図
tρ
ρ ” l :i) v
柵 内 (5,・訂Fig. 1 is a cross-sectional view of hydrogen storage characteristics, and Fig. 2 is a curve diagram showing hydrogen storage characteristics as a coefficient of absorption per hour. ! ...Foam 2...Hydrogen storage material agent Patent attorney Noriyuki Chika (and 1 other person) Figure 1 Plastic Figure 2 tρ ρ ” l :i) v Inside the fence (5,・edited)
Claims (1)
水素貯蔵装置。A hydrogen storage device characterized in that a foam is mixed in a hydrogen storage material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56134204A JPS5837396A (en) | 1981-08-28 | 1981-08-28 | Hydrogen occlusion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56134204A JPS5837396A (en) | 1981-08-28 | 1981-08-28 | Hydrogen occlusion device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5837396A true JPS5837396A (en) | 1983-03-04 |
Family
ID=15122852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56134204A Pending JPS5837396A (en) | 1981-08-28 | 1981-08-28 | Hydrogen occlusion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5837396A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3338879A1 (en) | 1983-10-24 | 1985-05-09 | Mannesmann AG, 4000 Düsseldorf | COMPRESSED GAS TANK |
JPS60248439A (en) * | 1984-05-22 | 1985-12-09 | Japan Metals & Chem Co Ltd | Fuel tank for hydrogen car |
EP1074785A1 (en) * | 1999-08-05 | 2001-02-07 | DaimlerChrysler Aerospace AG | Storage vessel for gaseous fluids |
-
1981
- 1981-08-28 JP JP56134204A patent/JPS5837396A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3338879A1 (en) | 1983-10-24 | 1985-05-09 | Mannesmann AG, 4000 Düsseldorf | COMPRESSED GAS TANK |
JPS60248439A (en) * | 1984-05-22 | 1985-12-09 | Japan Metals & Chem Co Ltd | Fuel tank for hydrogen car |
EP1074785A1 (en) * | 1999-08-05 | 2001-02-07 | DaimlerChrysler Aerospace AG | Storage vessel for gaseous fluids |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ron et al. | Preparation and properties of porous metal hydride compacts | |
Reilly et al. | The correlation between composition and electrochemical properties of metal hydride electrodes | |
Buschow et al. | Hydrogen absorption in intermetallic compounds of thorium | |
Song et al. | Influence of titanium on the hydrogen storage characteristics of magnesium hydride: a first principles investigation | |
JPS6362254B2 (en) | ||
Ulmer et al. | Performance improvement of V–Fe–Cr–Ti solid state hydrogen storage materials in impure hydrogen gas | |
JPH0369501A (en) | Hydrogen storage body and method for occluding hydrogen in the same | |
Boffito et al. | The properties of some zirconium-based gettering alloys for hydrogen isotope storage and purification | |
CN113390011A (en) | Pressurization and hydrogen filling method for metal hydrogen embrittlement test in high-pressure hydrogen environment | |
Sandrock | Hydrogen-metal systems | |
JPS5837396A (en) | Hydrogen occlusion device | |
Goudy et al. | Desorption kinetics of LaNi5, LaNi4. 7Al0. 3,(CFM) Ni5 and MNi4. 5Al0. 5 hydrides | |
Feng et al. | Mathematical model for the plateau region of P–C-isotherms of hydrogen-absorbing alloys using hydrogen reaction kinetics | |
JPS581032A (en) | Method for producing hydrogen storage metal material | |
Clark et al. | Hydrogen absorption in the Zr Al system | |
JPS55149101A (en) | Novel hydrogen absorbent | |
JPS62167201A (en) | Method for activating hydrogen storage alloy | |
Saldan et al. | Ti–Ni alloys as MH electrodes in Ni–MH accumulators | |
Ming et al. | The hydriding and dehydriding kinetics of some RCo5 alloys | |
Bennett et al. | Investigation of hydriding processes in low-temperature/low-pressure metal hydrides | |
Lundin et al. | Solid-state hydrogen storage materials of application to energy needs | |
Mazzolai | Kinetics of hydrogen absorption by scandium at high temperature | |
Oliver et al. | Mössbauer studies on LaNi4. 7Sn0. 3 and its hydride | |
JP4417805B2 (en) | Hydrogen storage alloy and hydrogen storage container | |
Bratanich et al. | Reversible Hydriding of LaNi5− x Al x―Pd Composites in the Presence of Carbon Monoxide |