JPS58171878A - Polymer composite piezoelectric material - Google Patents
Polymer composite piezoelectric materialInfo
- Publication number
- JPS58171878A JPS58171878A JP57055569A JP5556982A JPS58171878A JP S58171878 A JPS58171878 A JP S58171878A JP 57055569 A JP57055569 A JP 57055569A JP 5556982 A JP5556982 A JP 5556982A JP S58171878 A JPS58171878 A JP S58171878A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- polymer composite
- polymer
- piezoelectric material
- vulcanized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/857—Macromolecular compositions
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は音響インピーダンスが小さく、かつ超音波感度
の優れた高分子複合圧電体K1gする−ので6る。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a polymer composite piezoelectric material K1g which has low acoustic impedance and excellent ultrasonic sensitivity.
従来、圧電体は対称中心をf#九ない結晶体が一つ特性
として良く知られてお9、水晶、ロッシェル塩、ジルコ
ン酸チタン酸鉛等の無機圧電体が実際によく利用されて
いる。しかしこれらの圧電体は可撓性に乏しいため、S
面等に賦形することが極めて1拳でるる他、成形加工も
できにくいために薄い圧電体t−得ることが慇しい欠点
がある。更に音響インピーダンスが大きいことから超音
波発振子として用いた場合に共振エコーが多く、信号が
不鮮IMKなるほか、振動子が直iI接触する媒体とO
音響的インピーダンスマツチングが悪いために変換効率
の低下をまねく等の大きな欠点を有している。Conventionally, it is well known that a piezoelectric substance has one characteristic of being a crystalline body with a center of symmetry f#9, and inorganic piezoelectric substances such as quartz crystal, Rochelle salt, and lead zirconate titanate are often used in practice. However, these piezoelectric materials have poor flexibility, so S
In addition to being extremely difficult to shape into a surface, it is also difficult to form and process, making it difficult to obtain a thin piezoelectric material. Furthermore, since the acoustic impedance is large, when used as an ultrasonic oscillator, there will be many resonance echoes, the signal will be unclear, and the transducer will be in direct contact with the medium and O.
It has major drawbacks such as poor acoustic impedance matching, which leads to a decrease in conversion efficiency.
一方、あるaIQ高分子材料、例えばセルロースや蛋白
質のような天然配向高分子、ポリーγ−メチルーL−グ
ルタメート合成高分子のg伸フィルム等においても圧電
性の存在が認められており、これとは別に幾つかの合成
高分子のエレクトレット、例えばポリ弗化ビ=ル!N脂
、ポリ弗化ビニリデン樹脂、ポリアクリロニトリル樹脂
、ポリカーボネー)11111等のフィルムを軟化a[
近くで数倍に延伸し死後、高電界下で熱エレクトレット
化して得九ものも圧電性t−Vすることが知られている
・これらの方法によって得られたM横圧電体は−HA性
や成形加工性に凝れ、かつ音響インピーダンスが小さい
ために共振エコーが少なく、#明なイぎ号が帰られる9
反を有するが、延伸処理や分極処理を必要とする関係で
厚IA真造が−しく、ぼって超音波診断やi!i音波探
1子に適した数MHHの発振子をmaするKri特別の
工夫を必要とする困難さを有してお夛、更に、電子走査
式超音波探触子とする場合には、その1つ1つの素子が
非常に小さくなって静電容量が低下するので、これら誘
電率のlトさい材料を用い九のでは電気的マツチングを
とるのが困−になる欠点を有している。On the other hand, the existence of piezoelectricity has been recognized in certain aIQ polymer materials, such as naturally oriented polymers such as cellulose and proteins, and g-stretched films of polyγ-methyl-L-glutamate synthetic polymers. In addition, there are some synthetic polymer electrets, such as polyvinyl fluoride! Soften a film of N resin, polyvinylidene fluoride resin, polyacrylonitrile resin, polycarbonate) 11111, etc.
It is known that the M transverse piezoelectric materials obtained by these methods have -HA properties and Due to its excellent moldability and low acoustic impedance, there are fewer resonance echoes, resulting in a clear signal.9
However, since it requires stretching and polarization, thick IA fabrics are preferred, making it suitable for ultrasonic diagnosis and i! It is difficult to create an oscillator of several MHH suitable for an ultrasonic probe, which requires special ingenuity. Since each element becomes very small and the capacitance decreases, the use of materials with low dielectric constants has the drawback that it is difficult to achieve electrical matching.
これらの欠点を改良したものとしてsn電体セ2ンツク
スlIk粒子を高分子物質中に分散混合した高分子複合
圧電体が知られている。A polymer composite piezoelectric material in which sn-electronic semiconductor lIk particles are dispersed and mixed in a polymer material is known as a material that has improved these drawbacks.
例えば特開昭54−5598号分l1lO高分子複合圧
電体は無機圧電体に比較してはるかに小さな音響インピ
ーダンスをMするため、共振エコーの少ない鮮明な信号
が得られるほか、有機圧電体と比較しても圧電率に異方
性がなく成形加工も自由でるり、更に誘電率が大きいこ
とから電気的マツチング−堆シ易い等の優れ九錯長を有
している。しかしながら従来使用されてき九無機圧電体
に比較するとなお超音波感度が低く、七の改良が望まれ
ていた。For example, JP-A No. 54-5598 l1lO polymer composite piezoelectric material has a much smaller acoustic impedance than inorganic piezoelectric materials, so it is possible to obtain clear signals with fewer resonance echoes, and compared to organic piezoelectric materials. However, since there is no anisotropy in the piezoelectric constant, molding and processing can be performed freely, and furthermore, since the dielectric constant is large, it has an excellent nine complex length, which makes it easy to electrically match and deposit. However, the ultrasonic sensitivity is still lower than that of conventionally used inorganic piezoelectric materials, and improvements have been desired.
本発明者は、ゴム状高分子複合圧蝋体に4電性カーボン
ブラツクを蚕卵すると音響インピーダンスを増7JOさ
せずに圧電率を大きくシ、超音波感度を増加させる一方
、高分子複合圧電体中のゴムを加硫することによって音
響インピーダンスは殆んど増加させることなく弾性率を
向上して電気機積結は定数が増加し、また、引張りIJ
!Jl&等の機械的fidを同上することができること
を見い出し本発明を完成した。The present inventor has discovered that by applying tetraelectric carbon black to a rubber-like polymer composite piezoelectric material, the piezoelectric constant can be increased without increasing the acoustic impedance, and the ultrasonic sensitivity can be increased. By vulcanizing the rubber inside, the elastic modulus is improved with almost no increase in acoustic impedance, the constant of electromechanical bonding increases, and the tensile IJ
! The present invention was completed by discovering that a mechanical fid such as Jl& etc. can be made similar to the above.
従ってこの発明の目的は従来の無機圧電体および有機圧
電体の欠点t−排除し、優れた成形加工性、低い音響イ
ンピーダンス、大きな誘電率、圧電率に真方性のないこ
となどを保持したまま、高い超1彼、δ莢をイする、超
音波素子として通した高分子複合圧電体t−提供するこ
とにおる。Therefore, the purpose of the present invention is to eliminate the drawbacks of conventional inorganic and organic piezoelectric materials, while maintaining excellent moldability, low acoustic impedance, large dielectric constant, and lack of squareness in piezoelectric constant. The purpose of the present invention is to provide a polymer composite piezoelectric material which can be used as an ultrasonic element and which has a high ultra-high density δ capsule.
本発明の高分子複合圧電体はゴム状部分子物質中に5!
A祷電体セラミックス微粒子を混線し、所望形状に成形
後熱エレクトレット化してなる圧電体において、〃gd
条件を付したことt−%砿とするものである。The polymer composite piezoelectric material of the present invention contains 5!
In a piezoelectric body made by cross-circuiting ceramic fine particles of A-electromagnetic body and forming it into a desired shape, it becomes a thermoelectret.
It is assumed that the condition is t-%.
本発明に用いらnる4を性カーボンブランクrユ特別に
限定されるものではなく、例えばアセチレンブラック、
ファーネスブラック等が用いられるが、ケッチェンブラ
ック11(ライオンマクゾ社製造)が少量のLfSυ口
によって音響インピーダンスを殆んど増υDさせずンて
超ta感度を増大させるので特に好ましいatfcふ/
Jl+菫は、増えるに従って効果は大きくなるが、同時
に高分子複合体の厚み方向の抵抗’tLt−低下させ、
体積固有抵抗憧にして概略lO”Q−cs以下になると
成形体に電界を印1ノロして熱エレクトレット化する際
に漏れ1tfiが犬きくなりす!′実効電界が低下する
。従って成形体の圧電4が小さくなるので本発明の9j
J釆を示きなくなる。一方、カーボンブラックの欧がゴ
ムにkjシて1重を部以下になると本発明の効果に乏し
くなる・一般にゴム状部分子及び樹脂状高分子への奈加
蓋としてアセチレンブラック、7アーネスブラツクの通
正便用緻は1〜A5重j1チ、ケッチェンブラックの適
正使用量は0.5〜101iJi−でbる。The carbon blank used in the present invention is not particularly limited, but includes, for example, acetylene black,
Furnace black or the like is used, but Ketjenblack 11 (manufactured by Lion Maxo Co., Ltd.) is particularly preferred because it increases ultra-ta sensitivity without increasing acoustic impedance υD with a small amount of LfSυ port.
The effect of Jl + Violet increases as it increases, but at the same time it lowers the resistance 'tLt- in the thickness direction of the polymer composite,
If the volume resistivity becomes approximately 1O"Q-cs or less, the leakage 1tfi will become too large when an electric field is applied to the molded body to make it into a thermal electret!'The effective electric field will decrease.Therefore, the effective electric field will decrease. 9j of the present invention because the piezoelectric 4 becomes smaller.
J-button is no longer displayed. On the other hand, if the weight of carbon black is less than 1 part by weight with rubber, the effect of the present invention will be poor.In general, acetylene black, 7 Arnes black is used as a cover for rubber-like molecules and resin-like polymers. The appropriate amount for regular delivery is 1~A5 weight j1 inch, and the appropriate amount of Ketjen Black is 0.5~101 inch.
7I11VLF′iゴムを加硫させるために通常用いら
れる方法で良く、詭黄、酸化亜鉛、ステアリン酸、老化
防止剤等と共に用いられるが、加硫促進剤をカロえると
更に効果的である。加硫促進剤としてはチアゾール類、
例えば2−ペンゾデアゾールジサルファイド、2−メル
カプトベンゾチアゾール項、またジンエニルグアニジン
、テトシクロロベンゾキノン、4.4’−ジチオモルホ
リン、P−ベンゾキノンジオ中サイド等が用いられる。A method commonly used for vulcanizing 7I11VLF'i rubber may be used, and it may be used in combination with sulfur, zinc oxide, stearic acid, anti-aging agents, etc., but it is even more effective if a vulcanization accelerator is added. As vulcanization accelerators, thiazoles,
For example, 2-penzodeazole disulfide, 2-mercaptobenzothiazole, dienylguanidine, tetracyclobenzoquinone, 4,4'-dithiomorpholine, P-benzoquinone diamide, etc. are used.
ゴム状昼分子物質としては、天然ゴム、8ER。Examples of rubbery diurnal molecular substances include natural rubber and 8ER.
エチレンプロピレンゴム、シリコンゴム、アクリロニト
リル−ブタジェンゴム、エピクロルヒドリンゴム、フッ
素ゴム、ウレタンゴム等を用いることがです、轡に、ア
クリqニトリルーズタジエンゴム、エピクロルヒドリン
ゴム、フッ素ゴム、ウレタンゴム等のそれ自体が!1t
4の大きなゴム金柑いることが好ましい。Ethylene propylene rubber, silicone rubber, acrylonitrile-butadiene rubber, epichlorohydrin rubber, fluororubber, urethane rubber, etc. can be used. ! 1t
It is preferable to have 4 large rubber kumquats.
天然ゴム、エチレンプロピレンゴム寺の非極性ゴムを用
いる場合には、上記高d電卓ゴム又は後述する樹脂状高
分子中、高誘胤卓のものを言M菫が40遁鑑−以上好ま
しくに一這瀘一以上となるように混合して用いることが
望ましい。When using a non-polar rubber such as natural rubber or ethylene propylene rubber, the above-mentioned high d calculator rubber or the resinous polymer mentioned below is preferably one with a violet of 40 or more. It is desirable to use the mixture in such a way that the amount of water is equal to or greater than 100 ml.
このゴム状高分子には、ゴム状高分子1菌重量部に対し
て他の樹脂状高分子′に0〜2000重を部好ましくは
加〜900tf部/A加して使用することができる。This rubbery polymer can be used by adding 0 to 2000 parts by weight, preferably 900 tf parts/A, to other resinous polymers per 1 part by weight of the rubbery polymer.
樹脂状高分子物質としては籍に限定さ九ないカベt1品
性に≦み、かつ鍔電4も高いポリアセタール樹脂)ポリ
弗化ビニリデン樹脂、ポリアクリロニトリル樹脂、ポリ
アミド樹脂等が好ましい、これらと#紀#5I4IC4
の高いゴムとの組み合せから成る高分子物質を用いると
、高分子榎汁圧鑞体としての低いf醤インピーダンス特
性、高い超音波感度と共に優nた機械的A度を得ること
ができる。Preferred resin-like polymer materials include polyvinylidene fluoride resins, polyacrylonitrile resins, polyamide resins, etc. (polyacetal resins that have a wall t1 quality of ≦1 and have a high surging resistance 4); #5I4IC4
By using a polymer material in combination with a rubber having a high viscosity, it is possible to obtain low impedance characteristics, high ultrasonic sensitivity, and an excellent mechanical A degree as a polymer pressurized body.
強縛電体七2ミックス徽粒゛子としては、チタン酸鉛、
チタン酸バリウム、ジルコン酸チタン酸鉛等それ自体公
知の無機圧電体を粉砕しIIkLJllJllを施した
VILt40.1乃至勇μmの倣粒子が用いられる・七
2ミックス微粒子は、ゴム状高分子、樹脂状高分子及び
カーボンブラックのlt+uO直lit部に対して50
0〜2000重量1g!蚕加される・これらのM&方法
としてはニーダ、ミキシングロール、押出機、プラスド
グ2フ、各捕ミャサー、ボールミル等一般的な混合方法
として知られる任意の手段が便用でき、また成形方法と
しては押出成形法、カレング成形法等が便用できる。ま
丸底形体は板状、円尚状、シート状等各櫨の形状にさn
うる。As the hard-bound electric material 72 mix particles, lead titanate,
Copy particles with a VILt of 40.1 to 100 μm are used, which are obtained by crushing known inorganic piezoelectric materials such as barium titanate and lead zirconate titanate, and subjecting them to IIkLJllJll. 50 for lt+uO straight lit part of polymer and carbon black
0-2000 weight 1g! As the M& method for adding silkworms, any means known as a general mixing method such as a kneader, mixing roll, extruder, plus dog 2-f, various collectors, ball mill, etc. can be conveniently used, and as a molding method, Extrusion molding method, curling molding method, etc. can be conveniently used. The round bottom shape is available in various shapes such as plate, round, and sheet shapes.
sell.
加硫は、添加さnるゴム状高分子を予め加硫しておくこ
とによって達成することができる。また1ゴム状高分子
、ll盾状^分子及びセラミックスを1婦成形後に〃0
億させること−できる。Vulcanization can be accomplished by previously vulcanizing the rubbery polymer that is added. In addition, after molding 1 rubber-like polymer, 1 shield-like molecule, and ceramics, 0
To make a billion - possible.
しかし、高軟化点の樹脂状高分子と併用する場合には、
ゴム状高分子と11橿状高分子を4M混韓する際に急直
に加硫を生じ成分の分蚊柱が阻害されることを111け
るために予めゴム状高分子を予備加硫をしたものを用い
るのが孟ましい、予偏加億を行った一合は諷ag形後圧
加硫を完結させるための操作が行なわれる。However, when used in combination with a resinous polymer with a high softening point,
Rubber-like polymer is pre-vulcanized in order to prevent sudden vulcanization and inhibition of component separation when mixing 4M of rubber-like polymer and 11 rod-like polymer. It is advisable to use vulcanization, and in the case where preliminary vulcanization has been performed, an operation is performed to complete the vulcanization after pressure vulcanization.
上記成形体に圧を性を賦与するために、成形体をB11
*度にl)Q惑した状態で成形体の六員から直流電がも
しくは交流電界を相乗したll1t/を電界を一定時間
印mし、その後家1まで冷却させて電界を取り去ること
によって熱エレクトレット化を行う。In order to impart pressure properties to the molded body, the molded body was
*In a Q-disturbed state, an electric field is applied from the six members of the molded body to a DC electric field or an alternating current electric field for a certain period of time, and then the body 1 is cooled and the electric field is removed, thereby converting it into a thermal electret. I do.
熱エレクトレット化のaFitt−1,高分子物質の流
動開始mK以下、一般的にVio乃至150’C好まし
くはl乃至+000が用いられる。ま九電界印加は通常
成形体の表層面に四層させた金I!4箔、導電性樹脂、
4電性ベーヌト、るるいは真空蒸層もしくは化学メッキ
による金A被膜を電極として用い、電界は一般にrt
10 k V / amから絶縁破壊を生じない程叢の
電界1ム好°ましくは(資)乃至300kV/cym位
でbp1分他時間d%に限定されないが10分間以上が
好ましい。aFitt-1 for thermal electretization, below mK at which the polymer substance starts flowing, generally from Vio to 150'C, preferably from 1 to +000. The electric field is usually applied using four layers of gold I on the surface of the molded body! 4 foil, conductive resin,
A gold A coating formed by a four-electrode Bernet, Rurui, or vacuum evaporation layer or chemical plating is used as an electrode, and the electric field is generally set at rt.
The electric field is preferably from 10 kV/am to 300 kV/cym so as not to cause dielectric breakdown, and the time is not limited to d%, but it is preferably 10 minutes or more.
次に本発明の実施例について説明するが、これに限定さ
れるものではない。Next, examples of the present invention will be described, but the present invention is not limited thereto.
なお、実施例において圧電率(d、、)は130Eiで
1比祷電卓C−/a・)はl圓kHzで各々#1足した
。またf4インピーダンス(1)および超音波惑mはパ
ナメトリクス社のMiillタイムインターバロメータ
ー50531iを用いて#l11〆した。In the example, the piezoelectric constant (d, , ) was 130Ei, and the 1 ratio calculation calculator C-/a.) was added by #1 at 1 kHz. Further, the f4 impedance (1) and the ultrasonic wave impedance were measured using a Miill time interval meter 50531i manufactured by Panametrics.
実施肉1
(1)アクリロニトリル−ブタジェンゴム(日本合成ゴ
ム社PMカム)I/C導電性カーボンブラック(ライオ
ンアクゾ社ケッチェンブラレク1110)とカロ鷹剤、
加硫促進剤等を加えて元℃のミキシングロールでlO分
関混練した。配合の割合は次の通9でるる。Practical Meat 1 (1) Acrylonitrile-butadiene rubber (PM Cam, Nippon Gosei Rubber Co., Ltd.) I/C conductive carbon black (Lion Akzo Kechenbrarek 1110) and Karo hawk agent,
A vulcanization accelerator and the like were added, and the mixture was kneaded at 10° C. using a mixing roll. The mixing ratio is as follows.
PM、3OA 2)Fケッ
チェンブラック10 1.5F、4*(m児化
学’) 8.06tステアリン戚(和
元純県粒状)−0,2F鐵化亜鉛(正1町化学)
O,ey(2)前記(1)で、i4整したもの
を1550に加熱したミキシングロール中で5分間加硫
した。PM, 3OA 2) F Ketjen Black 10 1.5F, 4* (mji Kagaku') 8.06t stearin relative (Wamotojunken granular) - 0,2F zinc ironide (Shoichicho Kagaku)
O, ey (2) The i4 prepared product in (1) above was vulcanized for 5 minutes in a mixing roll heated to 1550°C.
(3) 185℃に))a熱したミキシングロール上
でポリアセタール樹脂(デュポン社デルリン500 )
12ft″gas均−Kgけたところで紡紀(2)で祠
整したブレンド物18Fを少量ずつ添加し、史にジルコ
ン酸チタン酸鉛(粒径が0.5乃至10μmで平均粒径
2μyn ) 323 fを少量ずつ添加しながら加分
関均−に混合し九。(3) Polyacetal resin (DuPont Delrin 500) on a heated mixing roll to 185°C
At about 12 ft'' gas average - Kg, the blend 18F prepared in Boku (2) was added little by little, and lead zirconate titanate (particle size of 0.5 to 10 μm, average particle size of 2 μyn) was added 323 f. Add the ingredients little by little and mix evenly.
(4) 190℃に加熱した圧縮プレスを用いて、前
記(3)で調整した高分子複合体から10 t:xi
X 10 car X200μmのシートを作成した。(4) Using a compression press heated to 190°C, 10 t:xi was obtained from the polymer composite prepared in (3) above.
A sheet with a size of x 10 car x 200 μm was prepared.
このシートの両面に金蒸着によって電極を設けた。Electrodes were provided on both sides of this sheet by gold vapor deposition.
(5)4t)Cに加熱したオーブン中で前記(4)でg
A!Iし九シートの表裏から4000 Vの直流電界を
1時間印力口し、室温に冷却した後、電界を取p云るこ
とKよって熱エレクトレット化したー従って電界は20
0 k ’I / cxaで必る・′(5)前記〈5)
で調整した高分子複合圧電体の性能を棚定して得九値を
第1表に示す。(5) 4t) g in the above (4) in an oven heated to C.
A! A DC electric field of 4,000 V was applied to the front and back of the sheet for 1 hour, and after cooling to room temperature, the electric field was changed to a thermal electret.
0 k 'I/cxa required・'(5) Above <5)
The performance of the polymer composite piezoelectric material prepared in the above was evaluated and the nine values obtained are shown in Table 1.
比較例1
実施例1の工程(1)においてゴムには何も加えない他
は実施例1と同様に11!iL、て傅た高分子複合圧電
体の性能1を測定した結果を第1表に示す[相]
比較例2
実施例1の工程(1)において導電性カーボンブラック
を加えない他は実施例1と同様に調整した高分子複合圧
電体の性能を測定した結果を第1表に示す。Comparative Example 1 11! Same as Example 1 except that nothing was added to the rubber in step (1) of Example 1! Table 1 shows the results of measuring performance 1 of the polymer composite piezoelectric material measured by iL [Phase] Comparative Example 2 Example 1 except that conductive carbon black was not added in step (1) of Example 1. Table 1 shows the results of measuring the performance of the polymer composite piezoelectric material prepared in the same manner as above.
比較例3
実施例1の工程(1)においてゴムには導電性カーボン
ブラックのみしか加えず、従って加硫剤も加硫促進剤も
加えない他は実施fillと同様にfA整して得た高分
子複合圧電体の性能を測定し九結釆を第1表に示す。Comparative Example 3 A high-density polymer obtained by adjusting fA in the same manner as in Example 1 except that only conductive carbon black was added to the rubber in step (1) of Example 1, and neither vulcanizing agent nor vulcanization accelerator was added. The performance of the molecular composite piezoelectric material was measured and nine results are shown in Table 1.
比較例1に比べると、はとんど1iFl#インピーダン
スを変化させることなく超f波感直が著しく改良されて
いる。Compared to Comparative Example 1, the ultra-f wave sensitivity is significantly improved without changing the 1iFl# impedance.
第 l 餞
実施例2
実施例1の工程(3)においてポリアセタール樹脂とブ
レンド物の利金を種々変化させた他は実A省1と同様に
調整して得た高分子複合圧電体の性能を測定した結果を
第2表に示す。Part 1 Example 2 The performance of the polymer composite piezoelectric material obtained by adjusting the polyacetal resin and the blended material in step (3) of Example 1 in the same manner as in Example 1 except that the interest rate of the polyacetal resin and the blend was varied was evaluated. The measured results are shown in Table 2.
第 2 訝
但しムメボリアセタール1tfilB:ブレンド吻以上
−細にl112明し九ように本発明によれば、導電性カ
ーボンブラックと、ゴム状高分子物質と、強鱒電体セラ
ミックス微粒子とをさvL、かつ加硫された組成物を熱
エレクトレット化してなるので、優れた成形加工性、低
い音響インピーダンス、大きなn1L4.圧電4に異方
性のないことなどを保持したまま、高い超音波感匿を有
する、Jl!l音波A子として通した高分子複合圧電体
を提供することができる効果を奏する。2. However, according to the present invention, conductive carbon black, a rubbery polymeric substance, and strong electric ceramic fine particles are mixed together. , and since the vulcanized composition is made into a thermoelectret, it has excellent moldability, low acoustic impedance, and large n1L4. Jl! has high ultrasonic sensitivity while maintaining the absence of anisotropy in the piezoelectric 4! This has the effect of being able to provide a polymer composite piezoelectric material through which a single sound wave can pass.
1 〜1 代珈人弁埴土 石 戸 、 フc1:、・、ノ1 ~1 Daikojin benban clay stone door, fu c1:,・,ノ
Claims (1)
電体セラミックス微粒子とを含有し、かつ加硫された組
成物を熱エレクトレット化し九ことを%値とする高分子
複合圧電体。A polymer composite piezoelectric material containing electrically conductive carbon black, a rubber-like polymeric substance, and strong electric ceramic fine particles, and obtained by converting a vulcanized composition into a thermal electret.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57055569A JPS58171878A (en) | 1982-04-02 | 1982-04-02 | Polymer composite piezoelectric material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57055569A JPS58171878A (en) | 1982-04-02 | 1982-04-02 | Polymer composite piezoelectric material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58171878A true JPS58171878A (en) | 1983-10-08 |
JPH021382B2 JPH021382B2 (en) | 1990-01-11 |
Family
ID=13002342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57055569A Granted JPS58171878A (en) | 1982-04-02 | 1982-04-02 | Polymer composite piezoelectric material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58171878A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63126283A (en) * | 1986-11-14 | 1988-05-30 | Ngk Spark Plug Co Ltd | Piezoelectric probe |
US6057044A (en) * | 1996-10-11 | 2000-05-02 | Hoechst Aktiengesellschaft | Composite body of a thermoplastic polymer with directly molded on rubber copolymer functional elements |
EP1564824A3 (en) * | 1996-05-10 | 2005-11-09 | Shishiai-Kabushikigaisha | Energy conversion composition |
JP2006290939A (en) * | 2005-04-06 | 2006-10-26 | Ntn Corp | High dielectric elastomer composition |
JP2008120950A (en) * | 2006-11-14 | 2008-05-29 | Sumitomo Rubber Ind Ltd | Rubber composition |
WO2013129142A1 (en) * | 2012-02-29 | 2013-09-06 | 日本バルカー工業株式会社 | Cellular resin sheet for piezoelectric element and process for producing same |
JP2014037451A (en) * | 2012-08-10 | 2014-02-27 | Sekisui Chem Co Ltd | Electret sheet |
-
1982
- 1982-04-02 JP JP57055569A patent/JPS58171878A/en active Granted
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63126283A (en) * | 1986-11-14 | 1988-05-30 | Ngk Spark Plug Co Ltd | Piezoelectric probe |
EP1564824A3 (en) * | 1996-05-10 | 2005-11-09 | Shishiai-Kabushikigaisha | Energy conversion composition |
US6057044A (en) * | 1996-10-11 | 2000-05-02 | Hoechst Aktiengesellschaft | Composite body of a thermoplastic polymer with directly molded on rubber copolymer functional elements |
JP2006290939A (en) * | 2005-04-06 | 2006-10-26 | Ntn Corp | High dielectric elastomer composition |
JP2008120950A (en) * | 2006-11-14 | 2008-05-29 | Sumitomo Rubber Ind Ltd | Rubber composition |
WO2013129142A1 (en) * | 2012-02-29 | 2013-09-06 | 日本バルカー工業株式会社 | Cellular resin sheet for piezoelectric element and process for producing same |
JP2014037451A (en) * | 2012-08-10 | 2014-02-27 | Sekisui Chem Co Ltd | Electret sheet |
Also Published As
Publication number | Publication date |
---|---|
JPH021382B2 (en) | 1990-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3801839A (en) | Mechanical to electrical transducer device | |
JPH05152638A (en) | High polymer piezo-electric material | |
JPS5946112B2 (en) | Atsudenzairiyo | |
JP5633509B2 (en) | Organic piezoelectric material, ultrasonic probe, and ultrasonic image detection apparatus | |
JPS58171878A (en) | Polymer composite piezoelectric material | |
US4204135A (en) | Piezoelectric elements of organic high molecular weight materials | |
JPH07297461A (en) | Piezoelectric ceramics-polymer composite material and method for producing the same | |
JPS58145178A (en) | High-molecular composite piezoelectric body | |
JP3256254B2 (en) | Flexible composite piezoelectric material | |
JPS63217674A (en) | Composite piezoelectric material | |
JPS5810878A (en) | Piezoelectric material | |
JPS641947B2 (en) | ||
CN118061570A (en) | Flexible piezoelectric film and preparation method thereof | |
JPH05226092A (en) | Electrostatic diffusion resin complex | |
JPS58135687A (en) | Piezoelectric material | |
KR20200137318A (en) | Piezoelectric composite with novel structure, manufacuring method thereof, manufacturing method of piezoelectric element comprising the same, and piezoelectric element | |
JPS59215778A (en) | Ceramic piezoelectric element body and manufacture thereof | |
EP0295895A1 (en) | Piezoceramic composite | |
JP2934970B2 (en) | Underwater acoustic transducer | |
GB2243946A (en) | A method of poling an electroactive composite material | |
JP2676385B2 (en) | Piezoelectric composite material for hydrophone | |
KR20230074108A (en) | Polyolefin-based piezoelectric polymer composites | |
JPS6022518B2 (en) | Method for manufacturing piezoelectric polymer composite material | |
JPS60200581A (en) | Composite macromolecule material | |
JP2724393B2 (en) | Piezoelectric composite materials |