JPH1140885A - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JPH1140885A JPH1140885A JP20972997A JP20972997A JPH1140885A JP H1140885 A JPH1140885 A JP H1140885A JP 20972997 A JP20972997 A JP 20972997A JP 20972997 A JP20972997 A JP 20972997A JP H1140885 A JPH1140885 A JP H1140885A
- Authority
- JP
- Japan
- Prior art keywords
- active layer
- current injection
- diffraction grating
- semiconductor laser
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、光ディスク等の
製造分野で用いられるような高出力タイプに好適な半導
体レーザ装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device suitable for a high-output type used in the field of manufacturing optical disks and the like.
【0002】[0002]
【従来の技術】半導体レーザ装置は、通常、MBE装置
(分子線エピタキシー装置)やMOCVD装置(金属有
機物化学気相堆積装置)などを使用してGaAs/Al
GaAs系やInP/InGaAsP系などの材料の結
晶を均一に成長させることにより製造される。2. Description of the Related Art A semiconductor laser device is usually formed of GaAs / Al using an MBE device (molecular beam epitaxy device) or a MOCVD device (metal organic chemical vapor deposition device).
It is manufactured by uniformly growing a crystal of a material such as GaAs or InP / InGaAsP.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来で
は、均一に結晶成長させることは現実には困難であり、
そのため結晶にわずかな不均一が生じることは避けられ
ず、その結果、従来の半導体レーザ装置では近視野像が
不均一になるという問題がある。However, conventionally, it is actually difficult to grow crystals uniformly,
Therefore, it is inevitable that a slight non-uniformity occurs in the crystal. As a result, the conventional semiconductor laser device has a problem that the near-field image becomes non-uniform.
【0004】この発明は、上記に鑑み、近視野像の均一
性が高められた半導体レーザ装置を提供することを目的
とする。[0004] In view of the above, an object of the present invention is to provide a semiconductor laser device in which the near field image uniformity is improved.
【0005】[0005]
【課題を解決するための手段】上記の目的を達成するた
め、この発明による半導体レーザ装置においては、活性
層の電流注入ストライプ領域の、層面内方向でかつ共振
器長さ方向に直角な方向の、両脇に1次回折格子を設け
たことが特徴となっている。In order to achieve the above object, in a semiconductor laser device according to the present invention, a current injection stripe region of an active layer is formed in a direction in a layer plane and a direction perpendicular to a cavity length direction. It is characterized in that primary diffraction gratings are provided on both sides.
【0006】活性層は厚さが通常1μm〜数μm程度で
あるから、層厚さ方向では横モードは単一モードとなっ
ている。ところが電流注入ストライプ領域の両脇方向、
つまり層面内方向でかつ共振器長さ方向に直角な方向で
は、ストライプ領域の幅が10μm〜数10μmとなっ
ているため、横モードは単一モードとはならない。スト
ライプ領域の両脇に1次回折格子を設けて、全反射する
入射角を小さくすれば、横モードを高次化できる。この
ようにして高次の横モードを積極利用することにより近
視野像の均一化ができるとともに高出力化可能であり、
このことは電流注入ストライプ領域の幅を100μm〜
数100μmまで広げた高出力タイプの半導体レーザ装
置においてとくに効果的である。Since the thickness of the active layer is usually about 1 μm to several μm, the transverse mode is a single mode in the layer thickness direction. However, both sides of the current injection stripe area,
In other words, in the direction in the layer plane and at right angles to the cavity length direction, the width of the stripe region is 10 μm to several tens μm, so that the transverse mode is not a single mode. If a primary diffraction grating is provided on both sides of the stripe region to reduce the angle of total reflection, the transverse mode can be made higher. In this way, the near-field image can be made uniform and the output can be increased by actively utilizing the higher-order transverse mode.
This means that the width of the current injection stripe region should be 100 μm or less.
This is particularly effective in a high-output type semiconductor laser device expanded to several 100 μm.
【0007】[0007]
【発明の実施の形態】つぎに、この発明の実施の形態に
ついて図面を参照しながら詳細に説明する。図1はウイ
ンドウ構造と呼ばれる構造を有する高出力タイプの半導
体レーザ装置にこの発明を適用した実施形態を示すもの
である。この図1において、n−GaAs基板11の表
面に、n−AlGaAsクラッド層12、GaAs活性
層13、n−AlGaAsクラッド層14、および2酸
化珪素などの絶縁層15が順次結晶成長させられてい
る。そして、絶縁層15には開口が設けられていて、そ
の開口を通してZnなどの不純物が拡散されてストライ
プ状のp−領域17がn−AlGaAsクラッド層14
内に作られ、さらにその上にp−電極層16が形成され
ている。また、n−GaAs基板11の裏面側にはn−
電極層18が形成されている。Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an embodiment in which the present invention is applied to a high-output type semiconductor laser device having a structure called a window structure. In FIG. 1, an n-AlGaAs cladding layer 12, a GaAs active layer 13, an n-AlGaAs cladding layer 14, and an insulating layer 15 such as silicon dioxide are sequentially grown on the surface of an n-GaAs substrate 11. . An opening is provided in the insulating layer 15, and impurities such as Zn are diffused through the opening to form a striped p − region 17 into the n-AlGaAs cladding layer 14.
And a p-electrode layer 16 is formed thereon. On the back side of the n-GaAs substrate 11, n-
An electrode layer 18 is formed.
【0008】この半導体レーザ装置では、n−AlGa
Asクラッド層14内に作ったストライプ状のp−領域
17により電流注入領域を制限し、逆バイアスp−n接
合を利用した電流狭窄を行なうようにしている。そし
て、ストライプ状のp−領域17が、光学的共振器をな
す2つの鏡面状のへき開端面(図では手前面と後背面)
とに到達しないようにして、端面近傍に禁止帯域の広い
窓領域を設けて、端面近傍にレーザビームの吸収の少な
い非励起領域を設けるようにし、高出力化をはかってい
る。In this semiconductor laser device, n-AlGa
The current injection region is limited by the striped p-region 17 formed in the As cladding layer 14, and current confinement using a reverse-biased pn junction is performed. Then, the striped p-regions 17 form two mirror-like cleaved end faces forming an optical resonator (the front and back sides of the hand in the figure).
In such a case, a window region having a wide forbidden band is provided near the end face, and a non-excitation area with less absorption of the laser beam is provided near the end face to achieve high output.
【0009】このような半導体レーザ装置において、G
aAs活性層13の、ストライプ状電流注入領域の両
脇、つまり、層面内方向で、かつ共振器長さ方向(両へ
き開面間方向)に直角な方向に、1次回折格子19が設
けられている。この1次回折格子19は、たとえばGa
As活性層13の結晶成長後、フォトリソグラフィ技術
を用いてマスキング・露光・選択エッチングを行なうこ
とにより作成可能である。In such a semiconductor laser device, G
A first-order diffraction grating 19 is provided on both sides of the stripe-shaped current injection region of the aAs active layer 13, that is, in a direction in the plane of the layer and at right angles to the resonator length direction (direction between both cleavage planes). I have. The primary diffraction grating 19 is, for example, Ga
After the crystal growth of the As active layer 13, it can be formed by performing masking, exposure, and selective etching using a photolithography technique.
【0010】そして、この1次回折格子19は、図2に
示すように、GaAs活性層13のストライプ状電流注
入領域の両脇方向に向かう光が全反射する入射角θが小
さくなるように作成する。Then, as shown in FIG. 2, the first-order diffraction grating 19 is formed such that the incident angle θ at which light traveling in both sides of the stripe-shaped current injection region of the GaAs active layer 13 is totally reflected becomes small. I do.
【0011】そのため、この1次回折格子19により、
GaAs活性層13のストライプ状電流注入領域の両脇
方向での横モードが高次化する。これにより高次の横モ
ードを積極利用することができ、均一な近視野像を得る
ことができるとともに、高出力化をはかることができ
る。とくに、p−電極層16およびストライプ状のZn
拡散p−領域17の幅を広げることによって、GaAs
活性層13の電流注入ストライプ領域の幅を100μm
〜数100μmまで広げて高出力化をはかる場合に効果
的である。Therefore, the first-order diffraction grating 19
The lateral mode in both sides of the stripe-shaped current injection region of the GaAs active layer 13 has a higher order. As a result, a higher-order transverse mode can be positively used, a uniform near-field image can be obtained, and high output can be achieved. In particular, p-electrode layer 16 and striped Zn
By increasing the width of the diffusion p-region 17, GaAs
The width of the current injection stripe region of the active layer 13 is 100 μm
This is effective when the output is increased to about 100 μm to increase the output.
【0012】なお、上記の説明はこの発明の一つの実施
形態についてのものであり、この発明がこれに限定され
る趣旨ではないことはもちろんである。適用する半導体
レーザ装置の構造は上記のようなウインドウ構造だけに
限らないし、材料もGaAs/AlGaAs系のみでな
く、InP/InGaAsP系等他の材料を用いること
ができる。電流狭窄のための構造も上記に限らず埋め込
み型(BH型)など他の構造とすることができる。また
ダブルヘテロ構造以外に量子井戸構造を採用してもよ
い。The above description is for one embodiment of the present invention, and it is a matter of course that the present invention is not limited to this embodiment. The structure of the semiconductor laser device to be applied is not limited to the window structure as described above, and the material may be not only GaAs / AlGaAs-based material but also other materials such as InP / InGaAsP-based material. The structure for current confinement is not limited to the above, but may be another structure such as a buried type (BH type). Further, a quantum well structure other than the double hetero structure may be employed.
【0013】[0013]
【発明の効果】以上説明したように、この発明の半導体
レーザ装置によれば、横モードを高次化することによっ
て近視野像の均一性を向上させ、かつ高出力化をはかる
ことができる。As described above, according to the semiconductor laser device of the present invention, the uniformity of the near-field image can be improved and the output can be increased by increasing the order of the transverse mode.
【図1】この発明の実施の形態を示す模式的な斜視図。FIG. 1 is a schematic perspective view showing an embodiment of the present invention.
【図2】活性層内でのストライプ状電流注入領域の両脇
方向に向かう光を示す断面図。FIG. 2 is a cross-sectional view showing light traveling in both sides of a stripe-shaped current injection region in an active layer.
11 n−GaAs基板 12 n−AlGaAsクラッド層 13 GaAs活性層 14 n−AlGaAsクラッド層 15 2酸化珪素絶縁層 16 p−電極層 17 Zn拡散ストライプ状p−領域 18 n−電極層 19 1次回折格子 Reference Signs List 11 n-GaAs substrate 12 n-AlGaAs cladding layer 13 GaAs active layer 14 n-AlGaAs cladding layer 15 2 silicon oxide insulating layer 16 p-electrode layer 17 Zn diffusion stripe p-region 18 n-electrode layer 19 primary diffraction grating
Claims (1)
面内方向でかつ共振器長さ方向に直角な方向の、両脇に
1次回折格子を設けたことを特徴とする半導体レーザ装
置。2. A semiconductor laser device comprising: a first-order diffraction grating provided on both sides of a current injection stripe region of an active layer in a direction in a plane of a layer and perpendicular to a longitudinal direction of a resonator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20972997A JPH1140885A (en) | 1997-07-18 | 1997-07-18 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20972997A JPH1140885A (en) | 1997-07-18 | 1997-07-18 | Semiconductor laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1140885A true JPH1140885A (en) | 1999-02-12 |
Family
ID=16577680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20972997A Pending JPH1140885A (en) | 1997-07-18 | 1997-07-18 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1140885A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1028504A1 (en) * | 1999-02-10 | 2000-08-16 | TRW Inc. | High power single mode semiconductor lasers and optical amplifiers using 2D bragg gratings |
JP2002324948A (en) * | 2001-04-25 | 2002-11-08 | Furukawa Electric Co Ltd:The | Semiconductor laser and laser module |
-
1997
- 1997-07-18 JP JP20972997A patent/JPH1140885A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1028504A1 (en) * | 1999-02-10 | 2000-08-16 | TRW Inc. | High power single mode semiconductor lasers and optical amplifiers using 2D bragg gratings |
US6366598B1 (en) | 1999-02-10 | 2002-04-02 | Trw Inc. | High power single mode semiconductor lasers and optical amplifiers using 2D Bragg gratings |
JP2002324948A (en) * | 2001-04-25 | 2002-11-08 | Furukawa Electric Co Ltd:The | Semiconductor laser and laser module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7941024B2 (en) | Buried heterostructure device having integrated waveguide grating fabricated by single step MOCVD | |
JPH08107251A (en) | Manufacture of reflection digital tuning laser | |
US5684823A (en) | Method of fabricating a diffraction grating and a distributed feedback semiconductor laser incorporating the diffraction grating | |
US5654557A (en) | Quantum wire structure and a method for producing the same | |
EP0177221B1 (en) | Semiconductor laser | |
JP2558744B2 (en) | Semiconductor laser device and manufacturing method thereof | |
JPH0864906A (en) | Manufacture of semiconductor device | |
US6744797B2 (en) | Semiconductor laser device | |
JP3191784B2 (en) | Method of manufacturing diffraction grating and method of manufacturing semiconductor laser | |
JPH09139550A (en) | Manufacture of semiconductor laser device, and semiconductor laser device | |
JPH06252510A (en) | Gain combined distributed feedback semiconductor laser and manufacture thereof | |
JP4194844B2 (en) | Semiconductor laser with multiple optically active regions | |
KR100305301B1 (en) | Method of manufacturing optical semiconductor device | |
JPH10229246A (en) | Ridge semiconductor laser diode and its manufacturing method | |
JP2882335B2 (en) | Optical semiconductor device and method for manufacturing the same | |
JP2677232B2 (en) | Long wavelength semiconductor laser and manufacturing method thereof | |
US20050185909A1 (en) | Buried heterostructure device fabricated by single step MOCVD | |
JP2894186B2 (en) | Optical semiconductor device | |
JP2001057459A (en) | Semiconductor laser | |
JPH1140885A (en) | Semiconductor laser device | |
US5490159A (en) | Visible light semiconductor laser | |
JPH11150321A (en) | Semiconductor light-emitting device and manufacture thereof | |
JPH0745907A (en) | Distributed feedback type semiconductor laser | |
JPH0388382A (en) | Semiconductor laser | |
JP5810482B2 (en) | Manufacturing method of optical semiconductor device |