JPH11323577A - Alloy surface treatment method and alloy with excellent surface aging resistance - Google Patents
Alloy surface treatment method and alloy with excellent surface aging resistanceInfo
- Publication number
- JPH11323577A JPH11323577A JP12785598A JP12785598A JPH11323577A JP H11323577 A JPH11323577 A JP H11323577A JP 12785598 A JP12785598 A JP 12785598A JP 12785598 A JP12785598 A JP 12785598A JP H11323577 A JPH11323577 A JP H11323577A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- water
- soluble compound
- soluble
- metal element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- ing And Chemical Polishing (AREA)
Abstract
(57)【要約】
【課題】 本発明は材料表面の化合物内で、材料内部の
保護に有用な難溶性の化合物層を損なわず、吸湿性等の
表面の経時劣化上問題となる水溶性化合物のみを選択的
に溶出・除去し、より安定且つ高機能性表面を有する材
料を製造する表面処理方法及び同方法により作製した経
時劣化耐性に優れた合金材料を提供する。
【解決手段】 水溶性化合物を形成する金属元素を成分
として含有する合金をアルカリ系脱脂剤によって5〜5
0mg/m2 除去した後、pHが5から8であって且つ不純
物元素の総含有量濃度が100ppm 以下である水に浸漬
するか、または、その水を該合金に噴霧して、合金表面
に形成された水溶性化合物のみを選択的に溶出・除去
し、該合金の表面から5nm迄の深さ領域に存在する水溶
性化合物中に含有される金属元素の原子分率が、同深さ
領域に存在するHを除く全元素に対して10 at.%以下
である表面経時劣化耐性に優れた合金を提供する。
PROBLEM TO BE SOLVED: To provide a water-soluble compound which does not impair a poorly soluble compound layer useful for protecting the inside of a material and which causes a problem with time-deterioration of the surface such as hygroscopicity. Provided are a surface treatment method for producing a material having a more stable and high-functional surface by selectively eluting and removing only the material, and an alloy material produced by the method and having excellent resistance to aging. SOLUTION: An alloy containing a metal element forming a water-soluble compound as a component is mixed with an alkaline degreasing agent to form an alloy of 5 to 5%.
After the removal of 0 mg / m 2 , the alloy is immersed in water having a pH of 5 to 8 and a total concentration of impurity elements of 100 ppm or less, or the water is sprayed on the alloy so that the surface of the alloy is sprayed. Only the formed water-soluble compound is selectively eluted / removed, and the atomic fraction of the metal element contained in the water-soluble compound existing in a depth region up to 5 nm from the surface of the alloy is reduced to the same depth region. The present invention provides an alloy having excellent surface aging resistance of 10 at.% Or less with respect to all elements except H present in the alloy.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、主に、金属産業分
野、特に自動車、建材、缶材等の分野で、それらの合金
材料の作製過程や作製後の使用環境下に於て、合金材料
表面に形成され、材料特性に大きな影響を与える水溶性
化合物を選択的に除去することで、表面経時劣化耐性に
優れた合金表面を形成する合金表面の処理方法、および
表面経時劣化耐性に優れた合金に関するものである。The present invention relates mainly to the field of metal industry, particularly to the fields of automobiles, building materials, cans, and the like, in the production process of these alloy materials and in the use environment after production. By selectively removing water-soluble compounds that are formed on the surface and significantly affect the material properties, a method of treating the alloy surface to form an alloy surface with excellent surface aging resistance, and excellent surface aging resistance It is about alloys.
【0002】[0002]
【従来の技術】従来、合金表面に形成される酸化物層等
の表面層を除去する方法としては、研削等の機械的方
法、イオンスパタリングやアーク放電によるクリーニン
グ(例えば、アール エフ アシトン他:ウエルディン
グ ジャーナル 9月号(1976年)PP.1750
−59)(R. F. Ashton et al.:Welding Journal, Sep
t.(1976), pp. 1750-1759.)等の物理的方法、酸(特公
平7−116629)やアルカリ溶液(特開平4−21
4835)に浸漬する化学的方法が使用されてきた。2. Description of the Related Art Conventionally, as a method of removing a surface layer such as an oxide layer formed on the surface of an alloy, a mechanical method such as grinding, cleaning by ion sputtering or arc discharge (for example, R.F. Welding Journal September Issue (1976) PP.1750
−59) (RF Ashton et al .: Welding Journal, Sep.
t. (1976), pp. 1750-1759.), an acid (Japanese Patent Publication No. 7-116629) and an alkaline solution (Japanese Patent Application Laid-Open No.
4835) immersion chemistry has been used.
【0003】また、この様にして得られた材料表面の評
価法としては、主に化学分析等による元素分析法によ
り、表面の原子組成と表面性能の関係が問題にされてき
ただけで、表面に存在する元素の原子価数等での化学状
態別の存在比と表面性能の関係が問題にされることはな
かった。従って、例えば、表面酸化被膜の存在が原因
で、合金表面の経時劣化が生じたことが解った場合で
も、表面酸化被膜中のどの様な化合物が経時劣化の原因
となるかが明らかにされていなかったために、有効な対
策が講じられなかった。As a method for evaluating the surface of a material obtained in this manner, the relationship between the atomic composition of the surface and the surface performance has mainly been considered by elemental analysis such as chemical analysis. The relationship between the abundance ratio of the elements present in each chemical state, such as the valence number, and the surface performance did not matter. Therefore, for example, even when it is known that the alloy surface has deteriorated with time due to the presence of the surface oxide film, it has been clarified what compounds in the surface oxide film cause the time deterioration. As a result, no effective measures were taken.
【0004】[0004]
【発明が解決しようとする課題】従来の合金表面に形成
される酸化物層を中心とした表面層を除去する方法は、
合金を酸に浸漬する方法等の様に、表面層を最表面から
ある一定の深さまで、その組成や化学状態に関係なく、
均一に除去していく方法である。然るに、発明者らがこ
れらの合金の表面層中に存在する様々な化合物の組成や
化学状態と表面性能との関係を詳細に検討した結果、表
面経時劣化の原因となるのは表面層中の化合物のうちで
も、特に水溶性化合物である事が判明した。即ち、水溶
性化合物は、吸湿性が強く、その様な吸湿した部分は、
反応性に富み、水分中に含まれるClやF等や、空気中
のCO2 等と化合して、有害な腐食生成物を形成しやす
く、材料表面の経時劣化を起こしやすいことが判った。A conventional method for removing a surface layer centered on an oxide layer formed on the surface of an alloy is as follows.
Like the method of immersing the alloy in acid, etc., the surface layer extends from the outermost surface to a certain depth, regardless of its composition or chemical state,
It is a method of removing uniformly. However, as a result of a detailed study of the relationship between the composition and the chemical state of various compounds present in the surface layer of these alloys and the surface performance, the inventors found that the cause of surface aging is that Among the compounds, they were found to be particularly water-soluble compounds. That is, the water-soluble compound has a strong hygroscopic property, and such a hygroscopic part is
It was found to be highly reactive and to easily form harmful corrosion products by combining with Cl and F contained in water and CO 2 in the air and the like, and the material surface was easily deteriorated with time.
【0005】しかしながら、従来法である酸やアルカリ
に浸漬して表面層を除去する方法では、表面層中の化合
物を無差別に除去してしまうので、材料表面の保護等の
有用な表面機能を有する難溶性の化合物層も同時に除去
され、活性な金属層が表面に露出してしまい、かえって
表面性能を劣化させ易くすることも明らかとなった。本
発明は、材料表面層中の各種化合物の内で、材料表面の
保護等の有用な表面機能を有する難溶性の化合物を損な
うことなく、材料作製過程や作製後の使用環境中での吸
湿現象や、それらの雰囲気中に存在するClやF等の様
な表面経時劣化上で有害な元素との反応を起こす水溶性
化合物のみを選択的に溶出・除去し、より化学的に安定
で、且つ、高機能性表面を有する材料を作製するための
表面処理方法、及び同処理方法によって表面処理された
経時劣化耐性に優れた表面を有する合金材料を提供する
ことを目的とする。However, the conventional method of removing the surface layer by immersion in an acid or alkali removes the compounds in the surface layer indiscriminately, so that a useful surface function such as protection of the material surface is provided. It was also clarified that the hardly soluble compound layer was removed at the same time, and the active metal layer was exposed on the surface, which rather deteriorated the surface performance. The present invention is directed to a method of absorbing moisture in a material production process or a use environment after production without impairing a hardly soluble compound having a useful surface function such as protection of a material surface among various compounds in a material surface layer. And selectively elute and remove only water-soluble compounds that react with harmful elements on the surface with time degradation such as Cl and F existing in those atmospheres, and are more chemically stable, and It is an object of the present invention to provide a surface treatment method for producing a material having a highly functional surface, and an alloy material having a surface which has been treated by the treatment method and has excellent resistance to deterioration with time.
【0006】[0006]
【課題を解決するための手段】本発明は、水溶性化合物
を形成する金属元素を含有する合金の作製過程、あるい
は作製後の使用環境下で、合金表面に形成された水溶性
化合物を除去する方法であって、アルカリ系脱脂剤を用
いて該合金の表面層を5〜50mg/m2 除去した後、pH
が5から8であって且つ不純物元素の総含有量濃度が1
00ppm 以下である水に浸漬するか、または、該水を該
合金に噴霧して、合金表面に形成された水溶性化合物の
みを選択的に溶出させ、除去することを特徴とする合金
表面の処理方法を提供するものである。SUMMARY OF THE INVENTION The present invention removes a water-soluble compound formed on the surface of an alloy in the process of preparing an alloy containing a metal element forming a water-soluble compound or in a use environment after the preparation. After removing 5 to 50 mg / m 2 of the surface layer of the alloy using an alkaline degreasing agent,
Is 5 to 8 and the total content concentration of impurity elements is 1
A treatment of an alloy surface characterized by immersing in water of not more than 00 ppm or spraying the water on the alloy to selectively elute and remove only water-soluble compounds formed on the alloy surface. It provides a method.
【0007】その内でも特に、水溶性化合物を形成する
金属元素を含有する合金が、Mgを含有する合金であっ
て、該合金の表面に形成される水溶性化合物が水溶性マ
グネシウム化合物であることを特徴とする合金表面処理
方法を提供するものである。更に、その内でも特に、M
gを含有する合金が、Alを主成分とする合金であるこ
とを特徴とする合金表面処理方法を提供するものであ
る。In particular, the alloy containing the metal element forming the water-soluble compound is an alloy containing Mg, and the water-soluble compound formed on the surface of the alloy is a water-soluble magnesium compound. An alloy surface treatment method is provided. Further, among them, M
Another object of the present invention is to provide an alloy surface treatment method, wherein the alloy containing g is an alloy containing Al as a main component.
【0008】また、水溶性化合物を形成する金属元素を
含有する合金であって、該合金の表面から5nm迄の深さ
領域に存在する水溶性化合物中に含有される該金属元素
の原子分率が、該深さ領域に存在するHを除く全元素に
対して10 at.%以下であることを特徴とする表面経時
劣化耐性に優れた合金を提供するものである。その内で
も特に、水溶性化合物を形成する金属元素を含有する合
金が、Mgを含有する合金であって、該合金の表面に形
成される水溶性化合物が水溶性マグネシウム化合物であ
ることを特徴とするMgを含有する表面経時劣化耐性に
優れた合金を提供するものである。An alloy containing a metal element forming a water-soluble compound, wherein the atomic fraction of the metal element contained in the water-soluble compound existing in a depth region up to 5 nm from the surface of the alloy Provides an alloy having excellent surface aging resistance, characterized in that the content is 10 at.% Or less with respect to all elements except H present in the depth region. Among them, particularly, the alloy containing the metal element forming the water-soluble compound is an alloy containing Mg, and the water-soluble compound formed on the surface of the alloy is a water-soluble magnesium compound. The present invention provides an alloy containing Mg and having excellent surface aging resistance.
【0009】更にその内でも特に、Mgを含有する合金
が、Alを主成分とする合金であることを特徴とする表
面経時劣化耐性に優れた合金を提供するものである。ま
た、水溶性化合物を形成する金属元素を含有する合金
を、アルカリ系脱脂剤を用いて表面層を5〜50mg/m
2 除去した後、pHが5から8であり且つ不純物元素の総
含有量濃度が100ppm 以下である水に浸漬するか、ま
たは、該水を該合金に噴霧して、該合金の表面から5nm
迄の深さ領域に存在する水溶性化合物を溶出・除去し、
該深さ領域に存在する水溶性化合物中に含有される該金
属元素の原子分率が、Hを除く全元素に対して10 at.
%以下にしたことを特徴とする表面経時劣化耐性に優れ
た合金を提供するものである。Further, among them, the present invention provides an alloy excellent in surface aging resistance, characterized in that the alloy containing Mg is an alloy containing Al as a main component. An alloy containing a metal element forming a water-soluble compound is coated with an alkaline degreasing agent to form a surface layer of 5 to 50 mg / m 2.
2 After the removal, immerse in water having a pH of 5 to 8 and a total content of impurity elements of 100 ppm or less, or spray the water on the alloy so that 5 nm
Elute and remove water-soluble compounds present in the depth range up to
The atomic fraction of the metal element contained in the water-soluble compound present in the depth region is 10 at.
% Or less, which provides an alloy having excellent surface aging resistance.
【0010】その内でも特に、水溶性化合物を形成する
金属元素を含有する合金が、Mgを含有する合金であっ
て、該合金の表面に形成される水溶性化合物が水溶性マ
グネシウム化合物であることを特徴とする表面経時劣化
耐性に優れた合金を提供するものである。更にその内で
も特に、Mgを含有する合金が、Alを主成分とする合
金であることを特徴とする表面経時劣化耐性に優れた合
金を提供するものである。In particular, the alloy containing a metal element forming a water-soluble compound is an alloy containing Mg, and the water-soluble compound formed on the surface of the alloy is a water-soluble magnesium compound. The present invention provides an alloy having excellent surface aging resistance. In particular, the present invention provides an alloy excellent in surface aging resistance, characterized in that the alloy containing Mg is an alloy containing Al as a main component.
【0011】[0011]
【発明の実施の形態】前述のように、使用環境下で経時
劣化を起こす合金の表面には、合金作製時の高温での圧
延や焼鈍等の材料作製過程に於て、経時劣化の原因とな
る水溶性化合物が生成する。このような合金は、合金表
面に水溶性化合物を形成する金属元素を含んでおり、そ
の様な金属元素としては、Li,Mg,Ca,Ba等が
ある。またそれらの金属元素を成分として含有する合金
としては、Al−Mg,Al−Li,Cu−Mg,Fe
−Mg合金等がある。これらの合金表面に生成する水溶
性化合物の内、現在、工業的に問題になる化合物として
は、Li2 O,MgO,CaO,BaO等が挙げられ
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the surface of an alloy that deteriorates with time under the use environment is considered to be a cause of the deterioration with time in the material manufacturing process such as rolling at a high temperature and annealing at the time of manufacturing the alloy. A water-soluble compound is produced. Such an alloy contains a metal element that forms a water-soluble compound on the surface of the alloy, and examples of such a metal element include Li, Mg, Ca, and Ba. Alloys containing these metal elements as components include Al-Mg, Al-Li, Cu-Mg, Fe
-Mg alloy and the like. Among the water-soluble compounds formed on the surface of these alloys, compounds that presently pose an industrial problem include Li 2 O, MgO, CaO, BaO and the like.
【0012】ところで、この様な合金材料の最表面に
は、高温での圧延や焼鈍等の材料作製過程に於て、潤滑
油や圧延油として使用された油脂成分が付着している場
合が多い。この様な油脂成分は難溶性化合物であるか
ら、合金材料をそのまま水溶性化合物を除去するのと同
じ条件で処理して、除去することは困難である。更にこ
の様な油脂成分は合金最表面に不均一に付着している場
合が多いので、油脂成分を除去する為に何らかの前処理
を施すことなく、いきなり、水溶性化合物を除去するの
と同じ条件で処理すると、油脂成分が付着している部分
は撥水してしまうので除去されずに、油脂成分が付着し
ていない部分の水溶性化合物のみを溶解してしまい、結
果的に酸化膜厚が不均一になり、色調むら等の表面性能
にとって好ましくない現象を生じる場合がある。そこで
この様に最表面層に油脂成分が不均一に付着している合
金材料の場合は、前処理として、アルカリ系脱脂剤を用
いて、不均一な最表面層の難溶性油脂成分を除去した後
(以下、前処理と呼ぶ。)、合金板をpH5から8であっ
て且つ不純物元素の総含有量濃度が100ppm 以下であ
る処理水浴中に浸漬するか、合金表面にこの処理水を噴
霧すれば(以下、本処理と呼ぶ。)、表面層中の水溶性
化合物を均一に除去することが可能であり、色調むら等
の表面性能にとって好ましくない現象が発生しないこと
が解った。この様な前処理工程のアルカリ脱脂剤による
最表面層の除去量は5〜50mg/m2 程度が良いことが
実験の結果から解った。尚、前処理の場合も、本処理の
場合も、合金が厚板のような切り板の場合は、合金板を
加工などのために、搬送ロール上に載せて搬送する途中
に、ロールの上下にノズルを設けて、処理水を噴霧する
のが最も効果的である。また薄板のようにコイル状のも
のは、浸漬水槽を設けて、その中にコイルを通すのが良
い。By the way, on the outermost surface of such an alloy material, a grease component used as a lubricating oil or a rolling oil in a material manufacturing process such as rolling or annealing at a high temperature is often attached. . Since such a fat component is a hardly soluble compound, it is difficult to remove the alloy material by treating it under the same conditions as those for removing the water-soluble compound. Furthermore, since such fats and oils components are often non-uniformly adhered to the outermost surface of the alloy, the same conditions as those for removing the water-soluble compounds without any pretreatment to remove the fats and oils components are used. When the treatment is carried out, the portion where the oil component is adhered will be water-repellent and thus will not be removed, and only the water-soluble compound in the portion where the oil component is not adhered will be dissolved. It may be uneven and may cause unfavorable phenomena such as uneven color tone for surface performance. Thus, in the case of an alloy material in which the fat and oil component is non-uniformly adhered to the outermost surface layer as described above, as a pretreatment, the hardly soluble fat and oil component in the non-uniform outermost surface layer was removed using an alkaline degreasing agent. Thereafter (hereinafter referred to as pretreatment), the alloy plate is immersed in a treatment water bath having a pH of 5 to 8 and the total content of impurity elements is 100 ppm or less, or the treated water is sprayed on the alloy surface. In this case (hereinafter, referred to as the present treatment), it was found that the water-soluble compound in the surface layer could be uniformly removed, and that a phenomenon unfavorable for surface performance such as uneven color tone did not occur. Experimental results have shown that the removal amount of the outermost surface layer by the alkaline degreasing agent in such a pretreatment step is preferably about 5 to 50 mg / m 2 . In the case of the pre-treatment and the present treatment, when the alloy is a cut plate such as a thick plate, the alloy plate is placed on a transport roll and transported for processing or the like during processing. It is most effective to provide a nozzle for spraying the treated water. In the case of a coil-like material such as a thin plate, it is preferable to provide an immersion water tank and let the coil pass therethrough.
【0013】一般的にアルカリ脱脂剤としては市販の苛
性ソーダー系、燐酸ソーダー系、珪酸ソーダー系のどの
脱脂剤でも良い。しかし、特にMgを含有するAl合金
の表面酸化層はアルカリにも、酸にも溶出するので、苛
性ソーダー系、燐酸ソーダー系の脱脂剤の様に同表面酸
化層に対する溶出速度の速い脱脂剤を用いると、短時間
の間に同表面酸化層全体を溶出・除去してしまい、表面
層の除去量を5〜50mg/m2 に制御し、最表面層中の
油脂成分のみを除去することが技術的に難しくなる。従
って、Mgを含有するAl合金を、これらの溶出速度の
速い脱脂剤を用いてアルカリ脱脂処理を行う場合は、脱
脂液のpHを下げ、処理温度も低くしなければならないの
で、除去量を精密に制御することが難しい。その点、珪
酸ソーダー系の脱脂剤はMgを含有するAl合金の表面
酸化層の溶出速度が遅く、特にAl2 O3 等の難溶性化
合物は殆どエッチングしないので、最表面層の除去量を
5〜50mg/m2 に管理することが比較的容易であり、
Mgを含有するAl合金の表面酸化層の最表面層の油脂
成分を除去するためのアルカリ脱脂剤として最も適して
いる。In general, as the alkaline degreasing agent, any of commercially available caustic soda, sodium phosphate and sodium silicate degreasing agents may be used. However, since the surface oxidized layer of the Al alloy containing Mg elutes in both alkali and acid, a degreasing agent having a high elution rate with respect to the surface oxidized layer, such as a caustic soda-based or sodium phosphate-based degreaser, must be used. If it is used, the entire surface oxide layer is eluted and removed in a short time, the removal amount of the surface layer is controlled to 5 to 50 mg / m 2, and only the fat component in the outermost surface layer can be removed. Technically difficult. Therefore, when performing alkali degreasing treatment on an Mg-containing Al alloy using these degreasing agents having a high elution rate, the pH of the degreasing solution must be lowered and the treatment temperature must be lowered, so that the removal amount is precisely controlled. Difficult to control. On the other hand, the sodium silicate degreasing agent has a low elution rate of the surface oxide layer of the Mg-containing Al alloy and hardly etches hardly soluble compounds such as Al 2 O 3. it is relatively easy to manage to 50 mg / m 2,
It is most suitable as an alkaline degreasing agent for removing the fat component of the outermost surface layer of the surface oxide layer of the Mg-containing Al alloy.
【0014】ところで、この様なアルカリ脱脂処理によ
る除去量は処理前後の重量差の測定により容易に求める
ことが可能である。また色調むらの判定は、目視でも十
分できるが、光学顕微鏡、特に偏光顕微鏡を用いれば更
に正確に行うことができる。アルカリ脱脂後の処理に用
いる浸漬水または噴霧水は、pHが5から8の水であれ
ば、蒸留水である必要はなく、各種のイオンや有機物質
を不純物として含む通常の上水道水でも十分な効果を上
げることが可能である。しかしながら、水中の含有不純
物の総量含有濃度は100ppm 以下のものを用いる必要
がある。By the way, the removal amount by such an alkali degreasing treatment can be easily obtained by measuring the weight difference before and after the treatment. The determination of color tone unevenness can be sufficiently made by visual inspection, but can be performed more accurately by using an optical microscope, particularly a polarizing microscope. The immersion water or spray water used for the treatment after the alkali degreasing is not required to be distilled water as long as the pH is 5 to 8, and even ordinary tap water containing various ions and organic substances as impurities is sufficient. It is possible to increase the effect. However, it is necessary to use water having a total impurity concentration of 100 ppm or less.
【0015】この処理水のpHが5未満または8を越えて
酸やアルカリ領域になると、水溶性化合物ばかりでな
く、表面の保護層である難溶性の化合物も溶出するの
で、好ましくない。また、処理水に含まれる不純物の種
類は、微量であれば、水溶性化合物の溶出速度に殆ど影
響しないが、含有不純物の総含有濃度が100ppm を越
える場合は、逆にこれらの不純物が、表面に析出してし
まい、水溶性化合物の溶出速度が遅くなり、効果がなく
なってしまう。従来、材料表面に物理的に付着した汚染
物質等を除去するために利用されてきた工業用水には、
Si,P,Ca,Mg,SO4 ,Cl,F等の多量の不
純物を含むため、水溶性化合物が溶出する前に、水の中
に含まれた不純物元素が合金表面に付着してしまうの
で、本発明の処理水としてこのような工業用水は適しな
い。When the pH of the treated water is less than 5 or more than 8 and is in an acid or alkali region, not only water-soluble compounds but also poorly soluble compounds which are protective layers on the surface are eluted, which is not preferable. In addition, the kind of impurities contained in the treated water has little effect on the elution rate of the water-soluble compound if it is a trace amount, but if the total concentration of the contained impurities exceeds 100 ppm, on the other hand, these impurities are contaminated on the surface. And the elution rate of the water-soluble compound is reduced, and the effect is lost. Conventionally, industrial water that has been used to remove contaminants and the like physically attached to the material surface includes:
Since it contains a large amount of impurities such as Si, P, Ca, Mg, SO 4 , Cl, and F, the impurity element contained in water adheres to the alloy surface before the water-soluble compound elutes. Such industrial water is not suitable as the treated water of the present invention.
【0016】浸漬水または噴霧水の水温は特に制限はな
いが、溶解度の温度係数によって、反応速度が異なるの
で、実用的な時間内に溶出させるためには、通常50℃
以上の温水を用いるのが好ましい。また、噴霧ではなく
浸漬する場合は、水として安定な90℃以下で使用する
のが望ましい。ところで、材料表面の化合物層の内で
も、特に経時劣化との関連に於て問題となるのは、環境
と直接接触、反応する材料最表層部である。そこで、最
表層中に存在する元素の化学状態と経時劣化との相関を
調べたところ、水溶性化合物を形成する可能性のある元
素の内でも、ある特定の化学状態にある原子の最表層の
存在量が、経時劣化現象に影響を及ぼすことを見いだし
た。即ち、合金の表面から5nm迄の深さ領域に存在する
水溶性化合物中に含有される元素の存在量が、同深さ領
域に存在するHを除く全元素に対する原子分率で10 a
t.%以下のとき、優れた経時劣化耐性を示すことが判明
した。The temperature of the immersion water or the spray water is not particularly limited, but the reaction rate varies depending on the temperature coefficient of solubility.
It is preferable to use the above warm water. In the case of immersion instead of spraying, it is desirable to use water at 90 ° C. or lower, which is stable as water. By the way, among the compound layers on the material surface, a problem which is particularly problematic in relation to deterioration with time is the outermost layer portion of the material which directly contacts and reacts with the environment. Therefore, when examining the correlation between the chemical state of the elements present in the outermost layer and the deterioration with time, among the elements that may form a water-soluble compound, the outermost layer of the atoms in a specific chemical state is also considered. It has been found that the abundance affects the aging phenomenon. That is, the abundance of the elements contained in the water-soluble compound present in a depth region up to 5 nm from the surface of the alloy is 10 a in terms of the atomic fraction with respect to all the elements except H present in the depth region.
It was found that when the content was less than t.%, excellent aging resistance was exhibited.
【0017】本発明の表面処理方法を施し、経時劣化試
験によって経時劣化が進行しないことを確認した数種の
合金について、合金表面から5nm程度の深さ領域の原子
組成と化学状態をX線光電子分光法によって解析したと
ころ、同深さ領域内に存在する経時劣化の原因となる水
溶性化合物中に含まれる金属元素の存在量が、Hを除く
全元素に対する原子分率で10 at.%以下になってい
た。(尚、X線光電子分光法によって、合金表面の原子
組成や化学状態を解析する方法については後述する。)
また、同一材料の最表層5nm程度の層をアルゴンイオン
によってスパタリングして除去し、表面からの深さが5
〜10nm程度の領域を最表面層と同様の方法で解析した
ところ、同層に於ける水溶性化合物中に含まれる金属元
素の存在量が、Hを除く全元素に対する原子分率で10
at.%以上のものもあった。つまり、合金表面から5nm
迄の層に存在する水溶性化合物に含有される金属元素の
存在量が、Hを除く全元素に対する原子分率で10 at.
%以下であれば、内部の層に水溶性化合物が10 at.%
以上存在しても、吸湿や表面反応などの経時劣化現象が
進行しないことを示している。これは、本発明の表面処
理方法によって、最表面層の水溶性化合物を除去した際
にも、除去されずに残っていた最表面に存在する難溶性
化合物が保護層となり、それ以上の吸湿や表面反応など
の経時劣化現象が進行しないことによるものである。更
に、比較のために、経時劣化耐性が低い無処理材につい
て同一の解析を行ったところ、表面からの深さが5〜1
0nm程度の領域では、経時劣化耐性に優れた合金とあま
り変わらないが、表面から5nm迄の深さに存在する水溶
性化合物に含有される金属の存在量は、Hを除く全元素
に対する原子分率で10 at.%を越えていた。With respect to several alloys which have been subjected to the surface treatment method of the present invention and whose deterioration with time has not progressed by a time-dependent deterioration test, the atomic composition and chemical state of a region at a depth of about 5 nm from the alloy surface are determined by X-ray photoelectron Analysis by spectroscopy revealed that the content of metal elements contained in the water-soluble compound present in the same depth region and causing deterioration with time was not more than 10 at.% In atomic fraction with respect to all elements except H. Had become. (A method of analyzing the atomic composition and chemical state of the alloy surface by X-ray photoelectron spectroscopy will be described later.)
Also, the outermost layer of the same material having a thickness of about 5 nm is removed by sputtering with argon ions, and the depth from the surface is 5 nm.
When a region of about 10 nm to about 10 nm was analyzed by the same method as that for the outermost surface layer, the amount of the metal element contained in the water-soluble compound in the same layer was 10
Some were more than at.%. In other words, 5 nm from the alloy surface
Up to 10 at.% Of the metal element contained in the water-soluble compound present in the layers up to 10 at.
% Or less, the water-soluble compound is 10 at.
This indicates that even with the above-described presence, deterioration with time such as moisture absorption and surface reaction does not progress. This is because, even when the water-soluble compound of the outermost surface layer is removed by the surface treatment method of the present invention, the hardly soluble compound present on the outermost surface remaining without being removed becomes a protective layer, and further moisture absorption and This is because deterioration with time such as a surface reaction does not progress. Further, for comparison, the same analysis was performed on an untreated material having low aging resistance, and the depth from the surface was 5 to 1%.
In a region of about 0 nm, the alloy is not so different from an alloy excellent in aging resistance, but the amount of metal contained in the water-soluble compound existing at a depth of 5 nm from the surface is determined by the atomic fraction of all elements except H. Rate exceeded 10 at.%.
【0018】以上のことから、合金の表面から5nm迄の
深さ領域に存在する水溶性化合物中に含有される金属元
素の存在量が、同深さ領域に存在するHを除く全元素に
対する原子分率で10 at.%以下の合金が、経時劣化耐
性に優れた合金であることがわかる。このような合金表
面に生成した化合物が、水溶性であるか、或は難溶性で
あるかは、その化合物に含まれる元素の種類だけでな
く、その化合状態によって異なる。例えば、Mgの場
合、水溶性を有し、表面性状にとって有害なのは、Mg
を含有する化合物のうちでもMgOやMgCl2 ,Mg
CO3 のみであって、他の酸化物であるMgAl2 O4
(スピネル)やMgFe2 O4 (マグネシウムフェライ
ト)にはこの様な性質がない。From the above, the amount of the metal element contained in the water-soluble compound existing in the depth region up to 5 nm from the surface of the alloy is determined by the atomic amount relative to all the elements except H existing in the same depth region. It can be seen that alloys having a fraction of 10 at.% Or less are alloys having excellent resistance to deterioration over time. Whether the compound formed on the surface of such an alloy is water-soluble or poorly soluble depends not only on the type of element contained in the compound but also on its compounding state. For example, in the case of Mg, it is water-soluble and harmful to the surface properties is Mg.
Among compounds containing MgO, MgCl 2 , Mg
MgAl 2 O 4 which is only CO 3 and other oxide
(Spinel) and MgFe 2 O 4 (magnesium ferrite) do not have such properties.
【0019】この様な水溶性化合物の内でも、特に、A
l−Mg,Fe−Mg,Cu−Mg合金等のMgを含有
する合金の表面に形成されるMgOを中心とする水溶性
マグネシウム化合物は吸湿性、反応性が強いことが知ら
れている。このような合金系の材料を、珪酸ソーダー系
の脱脂剤で温度70℃の溶液に浸漬して5〜50mg/m
2 除去した後、水洗して、処理水温度50〜90℃、不
純物総含有濃度が50〜100ppm のイオン交換水中
で、15sec 浸漬した後、X線光電子分光法によって、
最表面層5nm程度のMgの原子組成と化学状態を測定し
た結果、表面に形成された水溶性マグネシウム化合物で
あるMgO中に含まれるMgは総ての合金材料に於て、
10 at.%以下になっており、MgO以外では各合金系
とも、それぞれAl2 O3 ,Fe2 O3 ,CuOのみが
表面に存在していた。これらの表面処理を施した合金に
経時劣化試験を施したところ、吸湿や表面反応等の経時
劣化現象が進行しなかった。即ち、処理後の表面に存在
する化合物はすべて難溶性化合物であり、様々な経時劣
化の原因となる水溶性マグネシウム化合物のみが溶出・
除去されたために、経時劣化現象が起こるのが抑制され
たためと考えられる。Among such water-soluble compounds, particularly, A
It is known that a water-soluble magnesium compound mainly composed of MgO formed on the surface of a Mg-containing alloy such as a 1-Mg, Fe-Mg, Cu-Mg alloy has a high hygroscopicity and reactivity. Such an alloy-based material is dipped in a solution at a temperature of 70 ° C. with a sodium silicate-based degreasing agent to obtain 5 to 50 mg / m 2.
2 After removal, washing with water, immersion for 15 seconds in ion-exchanged water having a treated water temperature of 50 to 90 ° C. and a total impurity concentration of 50 to 100 ppm, by X-ray photoelectron spectroscopy,
As a result of measuring the atomic composition and chemical state of Mg in the outermost surface layer of about 5 nm, Mg contained in MgO, which is a water-soluble magnesium compound formed on the surface, was found in all alloy materials.
It was 10 at.% Or less, and only Al 2 O 3 , Fe 2 O 3 , and CuO were present on the surface of each alloy except MgO. When a time-dependent deterioration test was performed on these surface-treated alloys, the time-dependent deterioration phenomena such as moisture absorption and surface reaction did not progress. That is, all the compounds present on the surface after the treatment are poorly soluble compounds, and only the water-soluble magnesium compound causing various aging deterioration is eluted.
It is considered that, because of the removal, the occurrence of the temporal deterioration phenomenon was suppressed.
【0020】更に、Mgを含有する合金の内でも、特
に、Alを主成分とする合金(Al−Mg−X、ここ
で、X=Si,Cu,Zn、以下この様な合金をAl−
Mg合金と記す。)は工業的にも、自動車用車体等の構
造材料、缶材等に広範囲に利用されているが、表面は何
れもMgを主成分とする表面層に被覆されている。この
様な表面層中のMgOは、その吸湿性のため、経時劣化
以外にもその後の材料の使用目的によっては、接着性、
溶接性、化成性等の重要な表面機能を阻害する原因とな
ることが判明した。Alを主成分とする合金系に於て
は、これまでも、この様なMg酸化層を除去する方法と
して様々な方法が考案され、使用されてきたが、何れ
も、酸化層全体を無差別的に損壊、除去してしまうため
に、重要な保護層(例えばAl2 O3 )をも一緒に除去
してしまい、以下の理由によって、かえって経時劣化耐
性が低下する。即ち、通常、Al−Mg合金系では、熱
処理等の作製過程において、表面酸化層とバルク合金層
との界面に、金属マグネシウムの原子組成がバルク合金
組成よりも高くなった層が存在する場合が多い。酸洗等
によって、無差別的に酸化層を取り除いてしまうと、こ
の様な金属的なマグネシウムが濃縮された界面層が表面
に露出してしまう。この様な金属的マグネシウムの濃縮
量は合金の作製条件や雰囲気によって異なるが、最大で
表面酸化層中のマグネシウムと同程度に達することもあ
る。このような金属的なマグネシウムは極めて活性であ
るから、酸洗直後には金属的なマグネシウムも、酸洗し
た合金を大気中に放置しておくと、室温でも急速に酸化
し、酸化マグネシウムになり、再び表面経時劣化の原因
となる。従って、難溶性の保護層も損なう様な従来の表
面処理法は、経時劣化耐性をかえって損なうことになる
が、本発明の方法であれば、保護層を損なうことなく水
溶性のマグネシウムを除去することができるので、経時
劣化耐性に優れたAl−Mg合金を製造することができ
る。Further, among the alloys containing Mg, in particular, an alloy containing Al as a main component (Al—Mg—X, where X = Si, Cu, Zn;
Described as Mg alloy. ) Is widely used industrially as a structural material such as a car body, a can material, and the like, and all of the surfaces are covered with a surface layer mainly composed of Mg. MgO in such a surface layer has an adhesive property,
It has been found that it becomes a cause of inhibiting important surface functions such as weldability and chemical conversion. In the case of alloys containing Al as a main component, various methods have been devised and used as a method of removing such a Mg oxide layer, but in any case, the entire oxide layer is indiscriminately used. Since the protective layer is damaged and removed, an important protective layer (for example, Al 2 O 3 ) is also removed together, and the deterioration resistance with time is rather lowered for the following reason. That is, in the Al-Mg alloy system, usually, in a manufacturing process such as heat treatment, a layer in which the atomic composition of metallic magnesium is higher than the bulk alloy composition is present at the interface between the surface oxide layer and the bulk alloy layer. Many. If the oxide layer is indiscriminately removed by pickling or the like, such an interface layer in which metallic magnesium is concentrated is exposed on the surface. The concentration of such metallic magnesium differs depending on the alloy preparation conditions and atmosphere, but may reach the same level as the maximum of magnesium in the surface oxide layer. Since such metallic magnesium is extremely active, the metallic magnesium immediately oxidizes even at room temperature if the pickled alloy is left in the air immediately after pickling, forming magnesium oxide. This again causes deterioration with time of the surface. Therefore, the conventional surface treatment method that also impairs the poorly soluble protective layer will impair the deterioration resistance over time, but the method of the present invention removes water-soluble magnesium without impairing the protective layer. Therefore, it is possible to manufacture an Al—Mg alloy having excellent resistance to deterioration over time.
【0021】以上述べたように、最表層に存在する特定
の化学状態での元素の存在量が経時劣化耐性を左右して
いるわけであるが、合金中の最表層領域での元素の化学
状態と存在比の定量的な判定は、X線光電子分光法やオ
ージェ電子分光法等によって容易に行うことができる。
特に、X線光電子分光法では、同一の元素でもその化学
状態、例えば、金属的であるか、化合物を形成している
か、等が異なれば、電子の結合エネルギーが異なるの
で、色々な化学状態の物質が表面層中に混在する場合に
は、結合エネルギースペクトルは幾つかのピークに分か
れる。従って、目的とする化学状態のピーク位置とピー
クの形状(対称か非対称か等)が、予め標準物質の測定
や文献などから解っていれば、目的とする化合物の原子
分率を求めることができる。As described above, the abundance of an element in a specific chemical state existing in the outermost layer affects the aging resistance, but the chemical state of the element in the outermost layer region in the alloy is determined. And the abundance ratio can be easily determined by X-ray photoelectron spectroscopy, Auger electron spectroscopy, or the like.
In particular, in X-ray photoelectron spectroscopy, if the same element has a different chemical state, for example, whether it is metallic or forms a compound, etc., the binding energy of electrons is different. When the substance is mixed in the surface layer, the binding energy spectrum is divided into several peaks. Therefore, if the peak position and peak shape (symmetric or asymmetric, etc.) of the target chemical state are known in advance from the measurement of the reference material or the literature, the atomic fraction of the target compound can be obtained. .
【0022】以下に、Al−Mg合金の表面に生成した
Mg化合物を例として、X線光電子分光法によって測定
したMgに固有な内殻電子準位のスペクトルから、Mg
元素を含有する化合物毎の原子分率を求める定量法につ
いて具体的に説明する。図1は、X線光電子分光法によ
るAl−Mg合金の表面でのMg2p状態におけるスペ
クトルの模式図である。まず、図1に示した様な実測さ
れたスペクトル1から積分法等の適当な方法で、バック
グラウンド2を差し引いた後に、適当なフィッティング
曲線4を用いて、最小二乗法等を利用して、差し引かれ
たスペクトルを幾つかの単一な化学状態のスペクトル3
a〜3cに分解する。In the following, taking the Mg compound formed on the surface of the Al—Mg alloy as an example, the spectrum of the core electron level unique to Mg measured by X-ray photoelectron spectroscopy shows that Mg
A quantitative method for determining the atomic fraction of each compound containing an element will be specifically described. FIG. 1 is a schematic diagram of a spectrum in a Mg2p state on the surface of an Al-Mg alloy by X-ray photoelectron spectroscopy. First, a background 2 is subtracted from an actually measured spectrum 1 as shown in FIG. 1 by an appropriate method such as an integration method, and then, using an appropriate fitting curve 4, a least square method is used. The subtracted spectrum is converted to spectrum 3 of several single chemical states.
Decomposes into a to 3c.
【0023】次に、文献や、標準物質の測定によって、
分解したスペクトルの結合エネルギーがこれまで知られ
ているどの化合物のものと最も近いかを判断し、スペク
トルの同定を行う。例えば、3aがMgOのスペクトル
とすると、分析領域におけるMgOのMg全体に対する
原子分率は、(3aのピークでの面積1)/(Mg全体
のスペクトルの面積1)として、容易に求められる。Next, according to the literature and the measurement of the standard substance,
A determination is made as to which binding energy of the decomposed spectrum is closest to that of any of the compounds known so far, and the spectrum is identified. For example, if 3a is a spectrum of MgO, the atomic fraction of MgO to the whole Mg in the analysis region can be easily obtained as (area 1 at peak of 3a) / (area 1 of whole spectrum of Mg).
【0024】更に、他の元素との原子分率を求めるに
は、装置関数や、感度係数などが必要であるが、いずれ
もX線光電子分光法に於ては、既にH以外の表面原子組
成の定量法として広く行なわれている方法を容易に適用
できる。また本発明の方法によって表面処理された材料
表面に残存する表面酸化膜厚はグロー放電発光分光法
(Glow Discharge Optical Emission Spectroscopy:G
D−OES)(以下、GD−OESと略称)によるデプ
スプロファイル (depth profile ) の測定によって、比
較的容易に確認することが可能である。Further, in order to determine the atomic fraction with other elements, an apparatus function, a sensitivity coefficient, and the like are required. In any case, in the X-ray photoelectron spectroscopy, the surface atomic composition other than H is already used. A widely used method can be easily applied as a method for determining the amount of glycerol. The surface oxide film thickness remaining on the material surface treated by the method of the present invention is determined by glow discharge emission spectroscopy.
(Glow Discharge Optical Emission Spectroscopy: G
It can be confirmed relatively easily by measuring a depth profile by D-OES (hereinafter abbreviated as GD-OES).
【0025】[0025]
【実施例】厚さ1mmのMg含有Al合金薄板(4.5 w
t.%−Mg含有合金(5182(JIS規格)))の表
面に形成された水溶性酸化物を除去する目的で、該合金
薄板を、前処理として、珪酸ソーダー系の脱脂剤(FC
−315(日本パーカー製))2%で温度70℃の溶液
に浸漬して5〜50mg/m2 除去した後、水洗し、本処
理として、処理水温度50〜90℃、不純物総含有濃度
が50〜120ppmのイオン交換水中で、15sec 浸漬
した後、乾燥処理して試験片とした。アルカリ脱脂での
除去量測定は処理前後の重量差より求めた。また、各試
験片の表面酸化膜厚はGD−OESによるデプスプロフ
ァイルの結果より求めた。(尚、GD−OESによって
決定された膜厚は、直径数mm程度の表面領域の平均値で
ある。)処理前後の材料の表面から5nmの深さ迄のMg
の化学状態別での原子組成の変化をX線光電子分光法
(以下、XPSと略称)によって測定し、更に処理した
試料を表1に示す様な条件で暴露試験を行った。結果を
表2に示す。尚、同様な条件で噴霧処理も行ったが、ほ
ぼ同様の結果を得た。DESCRIPTION OF THE PREFERRED EMBODIMENTS 1 mm thick Mg-containing Al alloy sheet (4.5 watts)
In order to remove the water-soluble oxide formed on the surface of the t.%-Mg-containing alloy (5182 (JIS standard)), the alloy thin plate was treated as a pretreatment with a sodium silicate-based degreasing agent (FC).
-315 (manufactured by Nippon Parker)) is immersed in a solution at a temperature of 70 ° C. at 2% to remove 5 to 50 mg / m 2 , and then washed with water. After immersing in 50 to 120 ppm of ion exchange water for 15 seconds, it was dried to obtain a test piece. The measurement of the removal amount in the alkaline degreasing was obtained from the weight difference before and after the treatment. Further, the surface oxide film thickness of each test piece was determined from the result of the depth profile by GD-OES. (The film thickness determined by GD-OES is the average value of the surface area having a diameter of about several millimeters.) Mg from the surface of the material before and after the treatment to a depth of 5 nm
The change in the atomic composition for each chemical state was measured by X-ray photoelectron spectroscopy (hereinafter abbreviated as XPS), and the further processed samples were subjected to an exposure test under the conditions shown in Table 1. Table 2 shows the results. In addition, spraying was performed under the same conditions, but almost the same results were obtained.
【0026】各試料について、XPSによって測定した
材料の表面から5nmの深さ迄のMg2p準位のスペクト
ルデータのピーク分離を行ったところ、いずれの試料に
おいても、金属MgまたはMgOのピークのみが観測さ
れた。本発明の処理方法で処理したものは、前処理によ
って、表面の油脂成分は完全に除去されているので、色
調むらが発生することはなく、また本処理によって、材
料表面の水溶性化合物が選択的に除去されるので、本発
明の処理を行った試料は、無処理材に較べて、表面のM
gO中のMg濃度が大幅に減少していることがXPSの
解析結果から解った。以上の結果から、表面のMgOを
形成しているMgの原子分率が、同領域のHを除く全元
素の10 at.%以下であれば、何れも良好な経時劣化耐
性を示すことが明らかである。For each sample, the peak separation of the spectrum data of the Mg2p level from the surface of the material measured by XPS to a depth of 5 nm was performed. In each sample, only the peak of metallic Mg or MgO was observed. Was done. Since the oil and fat component on the surface of the material treated by the treatment method of the present invention has been completely removed by the pretreatment, color tone unevenness does not occur, and the water-soluble compound on the material surface is selected by this treatment. The sample treated with the method of the present invention has a lower surface M than the untreated material.
It was found from the XPS analysis that the Mg concentration in gO was significantly reduced. From the above results, it is clear that all of the elements exhibit good aging resistance when the atomic fraction of Mg forming MgO on the surface is 10 at.% Or less of all elements except H in the same area. It is.
【0027】次に、本発明の条件より外れた条件で、処
理された材料に関して比較例として説明する。前処理と
して、アルカリ脱脂での除去量が50mg/m2 以上にな
った材料(比較例1)はその後の本処理で、本発明の条
件内で処理しても、色調むらは発生しないものの、経時
劣化度は良くないことが分かる。これは酸化膜厚が、1
nmと極薄になっていることからも容易に分かるように、
前処理の段階で殆どの酸化膜が溶出してしまい、合金表
面の金属マグネシウムが濃縮した層(Mg総量:20 a
t.%)が露出してしまい、処理後に金属マグネシウムが
酸化されて、再び殆どがMgO(20 at.%)となって
しまったためであることがXPSの結果から判る。Next, a description will be given as a comparative example of a material processed under conditions deviating from the conditions of the present invention. As a pre-treatment, a material whose removal amount by alkali degreasing was 50 mg / m 2 or more (Comparative Example 1) was not subjected to coloration unevenness even if treated in the subsequent main treatment under the conditions of the present invention. It can be seen that the degree of deterioration with time is not good. This means that the oxide film thickness is 1
As can be easily understood from the fact that it is as thin as nm,
Most of the oxide film was eluted in the pretreatment stage, and a layer of concentrated magnesium on the surface of the alloy (total Mg: 20 a)
%) was exposed, and after the treatment, the metallic magnesium was oxidized to become almost MgO (20 at.%) again from the XPS results.
【0028】また前処理は適切(除去量:36mg/
m2 )でも、本処理の処理水がpH4(比較例2)、pH9
(比較例3)と本発明の条件を外れた処理板では比較例
1と同様に、色調むらは発生しないものの、経時劣化度
は良くないことがわかる。これは酸化被膜の膜厚が1nm
と極薄になっていることからも容易に分かるように、前
処理では油脂成分が適切に除去されたものの、その後の
本処理で、前処理の時には残存していた酸化膜がすべて
無差別に溶出・除去されてしまい、比較例1の場合と同
様に、表面に合金層が露出した部分が多くなり、合金層
中のMgが処理後に、再び急速に酸化マグネシウムを形
成するためと考えられる。Pretreatment is appropriate (removal amount: 36 mg /
m 2 ), the treated water of this treatment is pH 4 (Comparative Example 2), pH 9
It can be seen that, similarly to Comparative Example 1, in the case of (Comparative Example 3) and the processing plate out of the conditions of the present invention, color tone unevenness does not occur, but the degree of deterioration with time is not good. This is because the oxide film thickness is 1 nm
As can be easily understood from the fact that the oil and fat components were appropriately removed in the pretreatment, all the remaining oxide films in the pretreatment were indiscriminately in the main treatment. It is considered that the alloy layer was eluted and removed, and as in Comparative Example 1, the portion where the alloy layer was exposed on the surface increased, and Mg in the alloy layer rapidly formed magnesium oxide again after the treatment.
【0029】また前処理のアルカリ脱脂による除去量
が、5mg/m2 以下のもの(比較例4)はその後の本処
理で、本発明の条件内で適切な処理をしても、色調むら
が発生し、経時劣化耐性も劣る。これは酸化被膜の膜厚
が10nmと比較的厚いことからも判るように、前処理で
十分に油脂成分が除去できなかったために、その後の本
処理でも、油脂成分が付着したままの部分のMgOは撥
水のために十分除去できず、MgO中に含まれるMgが
16 at.%も残っているためであると考えられる。In the case where the amount of removal by alkali degreasing in the pretreatment was 5 mg / m 2 or less (Comparative Example 4), the color tone unevenness was observed even after the proper treatment under the conditions of the present invention. Occurs, and the deterioration resistance with time is poor. This is because, as can be seen from the relatively thick oxide film having a thickness of 10 nm, the grease was not sufficiently removed in the pre-treatment, so that even in this main treatment, the MgO in the portion where the grease remained adhered was also used. Is considered to be because water cannot be sufficiently removed due to water repellency, and 16 at.% Of Mg contained in MgO remains.
【0030】さらに比較例5に示すように、比較例4と
同様な前処理(アルカリ脱脂による除去量:5mg/m2
以下)を施し、本処理の条件が、pH4と本発明の条件外
の場合でも、色調むらが発生しない場合もある。これは
酸化膜厚が1nmであることからも解るように、前処理に
よっては十分に油脂成分が除去されなかったものの、そ
の後の本処理の条件が、酸洗の場合に近く、水溶性のM
gOだけでなく、前処理で十分除去できなかった油脂成
分も含めて、すべての酸化膜成分が除去されてしまった
ためである。しかしながら、この様な条件では、比較例
1〜3の場合と同様に合金層が露出してしまい、経時劣
化耐性は劣る結果になることが判る。Further, as shown in Comparative Example 5, the same pretreatment as in Comparative Example 4 (amount removed by alkaline degreasing: 5 mg / m 2)
The following treatment is performed, and even when the conditions of this treatment are pH4 and out of the conditions of the present invention, color tone unevenness may not occur. As can be seen from the fact that the oxide film thickness is 1 nm, although the fat and oil components were not sufficiently removed by the pretreatment, the conditions of the subsequent main treatment were similar to those of the pickling, and the water-soluble M
This is because not only gO but also all oxide film components including fats and oils components that could not be sufficiently removed by the pretreatment were removed. However, under such conditions, the alloy layer is exposed as in the case of Comparative Examples 1 to 3, and it can be seen that the deterioration resistance with time is inferior.
【0031】また比較例6に示す様に、適切な条件で前
処理を行っても、本処理の処理水に含まれる不純物総量
が100ppm を越える場合には、表面の油脂成分は除去
されるために、色調むらは発生しないが、その後の本処
理では、不純物が表面に急速に付着して、水溶性化合物
の溶出が殆ど進まないために、酸化膜厚も厚く(6n
m)、また表面のMgO中に含まれるMgも11 at.%
と本発明の範囲外となるために、経時劣化耐性が劣って
いる。Further, as shown in Comparative Example 6, even if the pretreatment is carried out under appropriate conditions, if the total amount of impurities contained in the treated water of this treatment exceeds 100 ppm, the oil and fat components on the surface are removed. Although no color tone unevenness occurs, in the subsequent treatment, impurities rapidly adhere to the surface and the elution of the water-soluble compound hardly proceeds, so that the oxide film thickness is large (6n).
m), and Mg contained in MgO on the surface is also 11 at.%.
, Is out of the range of the present invention, so that the aging resistance is inferior.
【0032】さらに比較例7に示す様に、前処理におい
ても、除去量が少なく、また本処理においても処理水に
含まれる不純物総量が100ppm を越える場合には、前
処理で、油脂成分も除去されず、また本処理において
も、MgOが十分除去できないために、色調むらが発生
し、経時劣化耐性も劣る結果となる。また比較例8に示
した様に、無処理材に関しては、表面のMgOを構成す
るMgが20 at.%存在するので、経時劣化耐性は劣る
が、色調むらに関しては、むらがあるものとないものが
ある。これは材料によって、油脂成分の付着の不均一性
が異なるために発生する現象で、本発明の方法とは直接
関係がない。Further, as shown in Comparative Example 7, if the amount of impurities contained in the treated water is less than 100 ppm even in the pretreatment, and if the total amount of impurities contained in the treated water exceeds 100 ppm, the pretreatment also removes oil and fat components. However, even in this treatment, MgO cannot be sufficiently removed, so that color tone unevenness occurs and the deterioration resistance with time deteriorates. Further, as shown in Comparative Example 8, the untreated material is inferior in aging deterioration resistance because Mg constituting MgO on the surface is present at 20 at.%, But there is no unevenness in color tone. There is something. This is a phenomenon that occurs because the unevenness of the adhesion of the fat component differs depending on the material, and is not directly related to the method of the present invention.
【0033】[0033]
【発明の効果】本発明によれば、材料表面に形成されて
いる表面層中に存在する各種の化合物の内で、表面保護
などの為に有用な難水溶性化合物層を損なうことなく、
吸湿性等の性質を有し、材料の表面経時劣化の上で問題
となる水溶性化合物のみを選択的に除去し、より安定且
つ高機能性表面を有する材料を簡便且つ安価に製造する
ことが可能である。また、本発明の方法によって製造さ
れた合金は、経時劣化耐性に優れている。According to the present invention, among various compounds present in the surface layer formed on the surface of the material, without impairing the poorly water-soluble compound layer useful for surface protection and the like,
It is possible to easily and inexpensively produce a material having a more stable and high-functional surface by selectively removing only a water-soluble compound having properties such as hygroscopicity and causing a problem with the surface aging of the material. It is possible. Further, the alloy produced by the method of the present invention has excellent resistance to deterioration over time.
【図1】X線光電子分光法によるMgを含有したAl合
金表面のMg2p状態でのスペクトルの模式図である。FIG. 1 is a schematic diagram of a spectrum in the Mg2p state of the surface of an Al alloy containing Mg by X-ray photoelectron spectroscopy.
1…測定された光電子スペクトル 2…バックグラウンド(非弾性散乱光電子成分等) 3…ピーク分離フィッティングによる存在状態毎に分離
されたスペクトル 3a…MgO成分(水溶性化合物成分) 3b…MgAl2 O4 (スピネル)成分(難溶性化合物
成分) 3c…金属的Mg(合金成分)(難溶性化合物成分) 4…3のそれぞれの成分に対応するフィッティング曲線1 ... measured photoelectron spectrum 2 ... background (inelastically scattered photoelectron component, etc.) 3 ... spectrum 3a ... MgO components separated for each occurrence state by peak separation fitting (water-soluble compound component) 3b ... MgAl 2 O 4 ( Spinel) component (poorly soluble compound component) 3c ... Metallic Mg (alloy component) (poorly soluble compound component) 4 ... fitting curve corresponding to each component of 3
【表1】 [Table 1]
【表2】 [Table 2]
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高木 康夫 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 加田 好実 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuo Takagi 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Yoshimi Kada 20-1 Shintomi, Futtsu-shi, Chiba New Japan Steel Technology Co., Ltd.
Claims (9)
する合金の作製過程、あるいは作製後の使用環境下で、
合金表面に形成された水溶性化合物を除去する方法であ
って、アルカリ系脱脂剤を用いて該合金の表面層を5〜
50mg/m2除去した後、pHが5から8であり且つ不純
物元素の総含有量濃度が100ppm 以下である水に浸漬
するか、または、該水を該合金に噴霧して、合金表面に
形成された水溶性化合物のみを選択的に溶出・除去する
ことを特徴とする合金表面の処理方法。1. In a manufacturing process of an alloy containing a metal element forming a water-soluble compound, or in a use environment after the manufacturing,
A method for removing a water-soluble compound formed on an alloy surface, wherein the surface layer of the alloy is removed using an alkaline degreasing agent.
After the removal of 50 mg / m 2 , the alloy is immersed in water having a pH of 5 to 8 and a total concentration of impurity elements of 100 ppm or less, or the water is sprayed on the alloy to form on the alloy surface A method for treating the surface of an alloy, comprising selectively eluting and removing only the water-soluble compound thus obtained.
する合金が、Mgを含有する合金であって、該合金の表
面に形成される水溶性化合物が水溶性マグネシウム化合
物であることを特徴とする請求項1記載の合金表面の処
理方法。2. An alloy containing a metal element forming a water-soluble compound is an alloy containing Mg, and the water-soluble compound formed on the surface of the alloy is a water-soluble magnesium compound. The method for treating an alloy surface according to claim 1.
する合金であることを特徴とする請求項2記載の合金表
面の処理方法。3. The method according to claim 2, wherein the alloy containing Mg is an alloy containing Al as a main component.
する合金であって、該合金の表面から5nm迄の深さ領域
に存在する水溶性化合物中に含有される該金属元素の原
子分率が、該深さ領域に存在するHを除く全元素に対し
て10 at.%以下であることを特徴とする表面経時劣化
耐性に優れた合金。4. An alloy containing a metal element forming a water-soluble compound, wherein the atomic fraction of the metal element contained in the water-soluble compound existing in a depth region up to 5 nm from the surface of the alloy. Is not more than 10 at.% With respect to all elements except H present in the depth region, and the alloy has excellent surface aging resistance.
する合金が、Mgを含有する合金であって、該合金の表
面に形成される水溶性化合物が水溶性マグネシウム化合
物であることを特徴とする請求項4記載の表面経時劣化
耐性に優れた合金。5. An alloy containing a metal element forming a water-soluble compound is an alloy containing Mg, and the water-soluble compound formed on the surface of the alloy is a water-soluble magnesium compound. 5. The alloy according to claim 4, wherein the alloy has excellent surface aging resistance.
する合金であることを特徴とする請求項5記載の表面経
時劣化耐性に優れた合金。6. The alloy according to claim 5, wherein the alloy containing Mg is an alloy containing Al as a main component.
する合金を、アルカリ系脱脂剤を用いて表面層を5〜5
0mg/m2 除去した後、pHが5から8であり且つ不純物
元素の総含有量濃度が100ppm 以下である水に浸漬す
るか、または、その水を該合金に噴霧して、該合金の表
面から5nm迄の深さ領域に存在する水溶性化合物を溶出
・除去し、該深さ領域に存在する水溶性化合物中に含有
される該金属元素の原子分率が、Hを除く全元素に対し
て10 at.%以下にしたことを特徴とする表面経時劣化
耐性に優れた合金。7. An alloy containing a metal element forming a water-soluble compound is coated with an alkaline degreasing agent to form a surface layer of 5 to 5%.
After removing 0 mg / m 2 , the alloy is immersed in water having a pH of 5 to 8 and the total content of impurity elements is 100 ppm or less, or the water is sprayed on the alloy to form a surface of the alloy. Elutes and removes water-soluble compounds present in a depth region from 5 to 5 nm, and the atomic fraction of the metal element contained in the water-soluble compounds present in the depth region is An alloy having excellent surface aging resistance, characterized in that the content is not more than 10 at.
する合金が、Mgを含有する合金であって、該合金の表
面に形成される水溶性化合物が水溶性マグネシウム化合
物であることを特徴とする請求項7記載の表面経時劣化
耐性に優れた合金。8. An alloy containing a metal element forming a water-soluble compound is an alloy containing Mg, and the water-soluble compound formed on the surface of the alloy is a water-soluble magnesium compound. 8. The alloy according to claim 7, which is excellent in surface aging resistance.
する合金であることを特徴とする請求項8記載の表面経
時劣化耐性に優れた合金。9. The alloy according to claim 8, wherein the alloy containing Mg is an alloy containing Al as a main component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12785598A JP4375827B2 (en) | 1998-05-11 | 1998-05-11 | Alloy surface treatment method and alloy with excellent surface aging resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12785598A JP4375827B2 (en) | 1998-05-11 | 1998-05-11 | Alloy surface treatment method and alloy with excellent surface aging resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11323577A true JPH11323577A (en) | 1999-11-26 |
JP4375827B2 JP4375827B2 (en) | 2009-12-02 |
Family
ID=14970344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12785598A Expired - Lifetime JP4375827B2 (en) | 1998-05-11 | 1998-05-11 | Alloy surface treatment method and alloy with excellent surface aging resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4375827B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006200007A (en) * | 2005-01-21 | 2006-08-03 | Furukawa Sky Kk | Aluminum alloy sheet for automobile body sheet having excellent water wettability after degreasing and adhesive property |
JP2008208449A (en) * | 2007-01-29 | 2008-09-11 | Kobe Steel Ltd | Surface treatment agent for aluminum alloy, and surface treatment method for aluminum alloy |
JP2017128810A (en) * | 2012-04-25 | 2017-07-27 | アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ | METHOD FOR MANUFACTURING A METAL SHEET HAVING Zn-Al-Mg COATING, AND CORRESPONDING METAL SHEET |
-
1998
- 1998-05-11 JP JP12785598A patent/JP4375827B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006200007A (en) * | 2005-01-21 | 2006-08-03 | Furukawa Sky Kk | Aluminum alloy sheet for automobile body sheet having excellent water wettability after degreasing and adhesive property |
JP2008208449A (en) * | 2007-01-29 | 2008-09-11 | Kobe Steel Ltd | Surface treatment agent for aluminum alloy, and surface treatment method for aluminum alloy |
JP2017128810A (en) * | 2012-04-25 | 2017-07-27 | アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ | METHOD FOR MANUFACTURING A METAL SHEET HAVING Zn-Al-Mg COATING, AND CORRESPONDING METAL SHEET |
US10865483B2 (en) | 2012-04-25 | 2020-12-15 | Arcelormittal | Metal sheet having oiled Zn—Al—Mg coatings |
Also Published As
Publication number | Publication date |
---|---|
JP4375827B2 (en) | 2009-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2507311C2 (en) | Method for decoating articles and decoating solution | |
US5683522A (en) | Process for applying a coating to a magnesium alloy product | |
US20230002877A1 (en) | Method for Producing a Flat Steel Product Having a Protective Zinc-Based Metal Layer and a Phosphating Layer Produced on a Surface of the Protective Metal Layer and Flat Steel Product of This Type | |
JP7216097B2 (en) | Pickling method for profiles, rolled strips and sheets made of aluminum alloys | |
US20090162678A1 (en) | Magnesium alloy article and method for fabricating the same | |
US4888218A (en) | Process for applying a zinc coating to an aluminum article | |
JP4375827B2 (en) | Alloy surface treatment method and alloy with excellent surface aging resistance | |
WO2011010472A1 (en) | Metal surface treatment liquid and surface treatment method for metal material | |
RU2729669C1 (en) | Coated metal substrate and method of making | |
JP7329472B2 (en) | Method for removing scale and/or carbon, and method for producing metal material | |
JP5114850B2 (en) | Cold rolled steel sheet and method for producing the same | |
JPS6256579A (en) | Acidic aqueous solution and method for passivating surface of zinc or zinc/aluminum alloy | |
JP5451965B2 (en) | Surface treatment agent for aluminum alloy | |
JPH10195683A (en) | Alloy surface treatment method and alloy with excellent surface aging resistance | |
KR20060033811A (en) | Hot-dip galvanized steel sheet and its manufacturing method | |
US20110155287A1 (en) | Method for conversion treating surface of magnesium alloy workpiece | |
JP5114834B2 (en) | Cold rolled steel sheet and method for producing the same | |
JP2010090401A (en) | Zn-Al-BASED PLATED STEEL SHEET, AND METHOD FOR MANUFACTURING THE SAME | |
JP2001098392A (en) | Rust-prevention treated metal, composition for rust preventive film deposition and rust preventive film deposition method using same | |
EP3219826A1 (en) | Method for manufacturing galvanized steel sheet | |
KR20210077190A (en) | Steel sheet having excellent yellowing resistance and phosphating property and method for preparing the same | |
JP2021147661A (en) | Slag removal agent, slag removal method, and method for producing metal material | |
US6482273B1 (en) | Preparation of workpieces for cold forming | |
CN119265501B (en) | A galvanizing process for aviation anti-loosening nuts | |
EP0064295B1 (en) | Method of improving the corrosion resistance of chemical conversion coated aluminum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070305 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070731 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071001 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070911 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20071029 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20071214 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090908 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120918 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120918 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130918 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130918 Year of fee payment: 4 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |