[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1047015A - Generation and sea water desalting combined device - Google Patents

Generation and sea water desalting combined device

Info

Publication number
JPH1047015A
JPH1047015A JP8224402A JP22440296A JPH1047015A JP H1047015 A JPH1047015 A JP H1047015A JP 8224402 A JP8224402 A JP 8224402A JP 22440296 A JP22440296 A JP 22440296A JP H1047015 A JPH1047015 A JP H1047015A
Authority
JP
Japan
Prior art keywords
steam
seawater
boiler
pressure steam
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8224402A
Other languages
Japanese (ja)
Inventor
Takeji Yoshida
武治 吉田
Hiroshi Fujioka
弘 藤岡
Hiroshi Nishizawa
紘 西沢
Akira Oyamada
陽 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Tokyo Gas Engineering Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Tokyo Gas Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd, Tokyo Gas Engineering Co Ltd filed Critical Chiyoda Corp
Priority to JP8224402A priority Critical patent/JPH1047015A/en
Publication of JPH1047015A publication Critical patent/JPH1047015A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a generation and sea water desalting combined device to ensure a constant generating amount regardless of a fluctuation in a fresh water amount and provide high integral heat energy efficiency for generation and fresh water generation, and high economical efficiency. SOLUTION: A generation and sea water desalting combined device comprises a circulation fluidized bed boiler 16 to generate superheated steam by burning fuel, such as RDF; a back pressure bleed steam turbine 18 to introduce steam from a boiler and convert it into a power to drive a generator 17; a multiple effect vaporizing can device 34 to desalt sea water by means of back pressure steam of a turbine serving as a heat source; an auxiliary condenser 22 to condense surplus back pressure steam; and deaerator 28 to deaerate condensate from a vaporizing can device for a multiple effect and condensate from a condenser by middle pressure steam bled and feed it to a boiler. This constitution realizes a system having extremely high thermal efficiency. Further, thermal power generating equipment is provided with an auxiliary condenser to condense surplus back pressure steam flowing out from a back pressure steam turbine, whereby generation by a constant output is practicable regardless of a fluctuation in a fresh water amount of a sea water desalting device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発電・海水淡水化
コンバインド装置に関し、更に詳細には、発電・海水淡
水化の総括的な熱効率が高く、更には造水量の変動にか
かわらず一定電力量を発電でき、しかも可燃性廃棄物か
ら得た固形化燃料または固形産業廃棄物を燃料とする循
環流動層ボイラを使用して、ゴミ等の可燃性廃棄物処理
も組み合わせた発電・海水淡水化コンバインド装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined power generation and seawater desalination apparatus, and more particularly, to a high overall thermal efficiency of power generation and seawater desalination, and a constant electric power regardless of fluctuations in fresh water production. Combined power generation and seawater desalination using a circulating fluidized bed boiler using solid fuel or solid industrial waste obtained from combustible waste as fuel It concerns the device.

【0002】[0002]

【従来の技術】離島を始めとして、水資源が乏しく、し
かも他の地域から隔絶している地域では、飲料水を始め
とする淡水の確保が非常に重要であって、従来、そのよ
うな地域では、電力会社から電力の供給を受け、逆浸透
膜を用いて海水から淡水を得る海水淡水化が多用されて
いる。海水淡水化法は、原理的には、海水を蒸発させ淡
水を取り出すか、又は海水から溶解している塩分を除去
するかのいずれかであり、大別して、蒸発法と膜法の二
つがある。
2. Description of the Related Art In areas where water resources are scarce, such as remote islands, and are isolated from other areas, it is very important to secure fresh water such as drinking water. In recent years, seawater desalination, in which electric power is supplied from a power company and freshwater is obtained from seawater using a reverse osmosis membrane, is frequently used. In principle, seawater desalination involves either evaporating seawater to remove freshwater or removing dissolved salts from seawater, and there are two main types: evaporation and membrane. .

【0003】蒸発法は、海水を加熱して水蒸気を作り、
冷却して淡水を得る方法であって、大量の熱エネルギを
消費するので、経済的でないと言う問題があった。他方
の膜法には、逆浸透法と電気透析法の二つの方法があ
る。逆浸透法(RO法)は、水は通すが、塩分は殆ど通
さない性質を持つ半透膜を用い、海水側に浸透圧以上の
圧力を加えることにより、海水から淡水を得る方法であ
る。従って、RO法による海水淡水化では、25kg/cm2
以上に、実用的には50〜60kg/cm2の範囲の圧力に加
圧する必要があり、動力費が嵩むと言う問題があった。
また、電気透析法は、陽イオンを選択的に通す陽イオン
交換膜と陰イオンを選択的に通す陰イオン交換膜の間に
海水を通し、イオン交換膜の両端に直流電圧を加えて、
膜を通して海水中のイオンを移動させて脱塩する方法で
ある。この方法は、2種類のイオン交換膜を必要とし、
塩分濃度の高い海水の淡水化では、設備費が嵩むと言う
問題があった。
[0003] In the evaporation method, seawater is heated to produce steam,
This method is a method of obtaining fresh water by cooling, and consumes a large amount of heat energy, which is not economical. The other membrane method includes two methods, a reverse osmosis method and an electrodialysis method. The reverse osmosis method (RO method) is a method in which fresh water is obtained from seawater by applying a pressure higher than the osmotic pressure to the seawater side, using a semipermeable membrane having a property of allowing water to pass through, but hardly allowing salt to pass. Therefore, in seawater desalination by the RO method, 25 kg / cm 2
As described above, practically, it is necessary to increase the pressure to a pressure in the range of 50 to 60 kg / cm 2 , and there is a problem that the power cost increases.
In addition, in the electrodialysis method, seawater is passed between a cation exchange membrane selectively passing cations and an anion exchange membrane selectively passing anions, and a DC voltage is applied to both ends of the ion exchange membrane.
In this method, ions in seawater are moved through a membrane to desalinate. This method requires two types of ion exchange membranes,
Desalination of seawater with a high salt concentration has a problem that equipment costs increase.

【0004】そこで、火力発電設備を併設し、火力発電
設備から発生する排熱を利用して、蒸発法により海水を
淡水化する試みがなされており、また、火力発電設備か
ら発電される電力を利用して、逆浸透法により海水を淡
水化する試みがなされている。
[0004] Therefore, an attempt has been made to install a thermal power generation facility and desalinate seawater by an evaporation method using waste heat generated from the thermal power generation facility, and to reduce the power generated from the thermal power generation facility. Attempts have been made to desalinate seawater using the reverse osmosis method.

【0005】[0005]

【発明が解決しようとする課題】しかし、蒸発法により
電力と淡水を同時に得る二重目的の従来の発電・海水淡
水化コンバインド装置では、海水淡水化装置の加熱源と
して、発電機を駆動する蒸気タービンから出るエネルギ
ーレベルの高いタービン抽気蒸気を使用しているので、
火力発電設備の発電量がそれだけ低下し、しかもその発
電量と海水淡水化により造水される造水量は、常に一定
で、発電量を変えずに海水淡水化装置で造水する造水量
を自由に設定することはできなかった。また、抽気復水
蒸気タービンを用い、海水淡水化設備とは別個に、発電
設備の一部として復水タービン用コンデンサー(復水
器)を持つ発電・海水淡水化コンバインド装置では、海
水淡水化設備の造水量の調節は可能だが、造水量の変化
に伴い発電電力量も変わるという問題があった。また、
逆浸透法による海水淡水化装置を使用した従来の発電・
海水淡水化コンバインド装置では、設備費及び運転費が
嵩むという問題を解決することは難しかった。
However, in a conventional dual purpose power generation and seawater desalination combined apparatus for simultaneously obtaining electric power and freshwater by an evaporation method, a steam for driving a generator is used as a heating source of the seawater desalination apparatus. Because it uses high-level turbine bleed steam from the turbine,
The amount of power generated by the thermal power plant decreases accordingly, and the amount of generated power and the amount of fresh water produced by seawater desalination are always constant, and the amount of freshwater produced by the seawater desalination equipment without changing the amount of power generation is free. Could not be set to. In addition, the combined use of a condensate turbine condenser (condenser) as part of the power generation equipment using a bleed condensate steam turbine separately from the seawater desalination equipment, Although it is possible to adjust the amount of fresh water, there is a problem that the amount of generated power changes as the amount of fresh water changes. Also,
Conventional power generation using seawater desalination equipment by reverse osmosis
In the seawater desalination combined device, it has been difficult to solve the problem that the equipment cost and the operation cost increase.

【0006】そこで、本発明の目的は、造水量の変動に
かかわらず一定量の発電量を確保でき、しかも発電・造
水の総括的な熱エネルギ効率が高く、経済性の高い発電
・海水淡水化コンバインド装置を提供することである。
Accordingly, an object of the present invention is to provide a power generation and seawater freshwater which can secure a fixed amount of power generation irrespective of fluctuations in the amount of fresh water, have high overall thermal energy efficiency in power generation and fresh water, and have high economic efficiency. To provide a chemical combined device.

【0007】[0007]

【課題を解決するための手段】本発明者は、種々の面か
ら検討を重ねた末に、従来のように、火力発電設備から
供給される中圧蒸気、例えば3kg/cm2g 程度の中圧蒸気
を使用して、蒸発法により海水を淡水化している限り、
発電・造水の総括的な熱エネルギ効率を従来のレベルよ
り向上させることは難しいと結論した。そして、火力発
電設備のボイラで発生させた蒸気の熱エネルギを出来る
だけ発電に利用して、電気エネルギとして回収し、圧力
が低く経済的価値の極めて低い低圧蒸気の熱を利用して
多重効用蒸発式海水淡水化装置により海水淡水化を行う
ことに着眼し、多数回のプロセスシミュレーションを行
って、最も熱効率の高い低圧蒸気の圧力範囲を見い出
し、本発明を完成するに到った。
Means for Solving the Problems The present inventor has repeatedly studied from various aspects, and as in the prior art, has developed a medium pressure steam supplied from a thermal power plant, for example, about 3 kg / cm 2 g. As long as seawater is desalinated by evaporation using pressure steam,
It was concluded that it was difficult to improve the overall thermal energy efficiency of power generation and desalination from the conventional level. Then, the thermal energy of the steam generated by the boiler of the thermal power plant is used as much as possible for power generation, collected as electrical energy, and the multi-effect evaporation is performed using the heat of the low-pressure steam, which has a low pressure and economic value. Focusing on seawater desalination using a seawater desalination apparatus, a large number of process simulations were performed to find the pressure range of low-pressure steam with the highest thermal efficiency, and the present invention was completed.

【0008】上記目的を達成するために、本発明に係る
発電・海水淡水化コンバインド装置は、蒸気を発生させ
るボイラと、ボイラで発生させた蒸気により発電機を回
転して発電させ、かつ0.25〜0.5kg/cm2abs の背
圧蒸気を発生させる背圧蒸気タービンとを有する火力発
電設備と、蒸気室と、凝縮器及び凝縮器に海水を散水す
る海水散水器をそれぞれ蒸気室内に有する複数個の蒸発
缶を、一の蒸発缶の蒸気室と次段の蒸発缶の凝縮器とを
連通させるようにして、連結した多重効用蒸発缶装置か
らなる海水淡水化設備とを備え、背圧蒸気タービンから
出る背圧蒸気を海水淡水化設備の初段蒸発缶の凝縮器に
導入し、凝縮器で凝縮する蒸気の熱により海水散水器か
ら散水された海水を蒸気室内で蒸発させ、蒸発した蒸気
を次段の蒸発缶の凝縮器に導入し、順次、蒸気室で蒸気
を発生させて海水を蒸発させる熱源にすると共に海水か
ら蒸発した蒸気を凝縮器で凝縮させて得た凝縮水を回収
して淡水として送水し、一方、初段蒸発缶で凝縮した背
圧蒸気の凝縮水を回収してボイラ用水としてボイラに供
給するようにしたことを特徴としている。
In order to achieve the above object, a combined power generation and seawater desalination apparatus according to the present invention comprises a boiler for generating steam, a generator rotated by the steam generated by the boiler, and a generator for generating power. A thermal power plant having a back-pressure steam turbine for generating 25-0.5 kg / cm 2 abs of back-pressure steam, a steam room, a condenser and a seawater sprinkler for sprinkling seawater into the condenser are respectively provided in the steam room. A plurality of evaporators having a steam chamber of one evaporator and a condenser of the next-stage evaporator in communication with each other, and a seawater desalination facility comprising a connected multi-effect evaporator device, The back-pressure steam from the high-pressure steam turbine is introduced into the condenser of the first-stage evaporator of the seawater desalination facility, and the heat of the steam condensed in the condenser evaporates the seawater sprinkled from the seawater sprinkler in the steam chamber and evaporates. The steam is condensed in the next evaporator. Into the vessel, and sequentially generate steam in the steam chamber to serve as a heat source for evaporating the seawater and collect the condensed water obtained by condensing the steam evaporated from the seawater with the condenser and send it as fresh water, Condensed water of back-pressure steam condensed in the first-stage evaporator is recovered and supplied to the boiler as boiler water.

【0009】多重効用蒸発缶装置の各蒸発缶に海水を導
入する態様は、特に制約はないが、好適には、一部蒸発
缶の蒸気室に予熱器を設け、蒸気室の熱により海水を予
熱するようにすると、熱効率が向上する。また、蒸発缶
内の圧力は、各々缶内の海水の蒸発温度に対応した飽和
圧力になり、初段蒸発缶から終段蒸発缶に向かって順次
段階的に低くなる。従って、蒸発缶内の海水の蒸発温度
は、各蒸気室の圧力に従って初段蒸発缶から終段蒸発缶
に向かって順次段階的に低くなる。各蒸発缶の底部は配
管により次段の蒸発缶の底部に連通しており、蒸発缶内
の濃縮海水は、圧力差により、順次、次段の蒸発缶に配
管を経由して流入し、終段蒸発缶より系外へ排出され
る。
The mode of introducing seawater into each evaporator of the multi-effect evaporator apparatus is not particularly limited, but preferably, a preheater is provided in a steam chamber of a part of the evaporator, and seawater is heated by the heat of the steam chamber. When preheating is performed, thermal efficiency is improved. Further, the pressure in the evaporator becomes a saturation pressure corresponding to the evaporating temperature of seawater in each can, and gradually decreases from the first-stage evaporator to the last-stage evaporator. Therefore, the evaporation temperature of the seawater in the evaporator gradually decreases from the first evaporator to the last evaporator according to the pressure of each steam chamber. The bottom of each evaporator communicates with the bottom of the next evaporator via piping, and the concentrated seawater in the evaporator sequentially flows into the next evaporator via the pipe due to the pressure difference, and ends. It is discharged out of the system from the stage evaporator.

【0010】本発明の好適な実施態様では、背圧蒸気タ
ービンから出る背圧蒸気のうち海水淡水化設備の造水量
低減時に余剰となる背圧蒸気を凝縮させる補助凝縮器を
火力発電設備に備え、海水淡水化設備に供給される背圧
蒸気以外の余剰の背圧蒸気を凝縮させることにより、海
水淡水化設備の造水量の多寡とは関係なく、所定の出力
で火力発電設備を稼働させることができる。また、多重
効用蒸発缶式海水淡水化装置の造水量が不足するときに
は、多重効用蒸発缶装置に加えて、逆浸透膜を使用して
塩分濃度の低い透過水と、塩分濃度の高い塩水とに分離
する逆浸透膜装置を海水淡水化設備に備え、逆浸透膜装
置の運転に要する電力を火力発電設備から供給するよう
にすることもできる。
In a preferred embodiment of the present invention, an auxiliary condenser for condensing surplus back-pressure steam from the back-pressure steam discharged from the back-pressure steam turbine when desalination of the seawater desalination equipment is reduced is provided in the thermal power generation equipment. By condensing excess backpressure steam other than the backpressure steam supplied to the seawater desalination facility, the thermal power generation facility can be operated at a predetermined output regardless of the amount of desalination of the seawater desalination facility. Can be. When the amount of fresh water produced by the multi-effect evaporator type seawater desalination device is insufficient, in addition to the multi-effect evaporator device, a reverse osmosis membrane is used to convert the permeated water with a low salt concentration and the salt water with a high salt concentration. The reverse osmosis membrane device to be separated may be provided in the seawater desalination facility, and the power required for operating the reverse osmosis membrane device may be supplied from the thermal power generation facility.

【0011】本発明の更に好適な実施態様は、火力発電
設備のボイラが、可燃性廃棄物を主要原料とした固形化
燃料または固形産業廃棄物を燃料とする循環流動層ボイ
ラであることを特徴としている。本実施態様では、固形
化燃料製造装置を併設し、可燃性廃棄物、例えば可燃性
ゴミを固形化燃料製造装置で加工して得た固形化燃料
(RDF)を循環流動層ボイラで燃焼させることによ
り、ゴミ処理と発電と造水とを同時に行うことができ
る。RDFとは、可燃性の廃棄物に選別、粉砕、粒度調
整、成型固化などの加工を施して、固形化燃料としたも
のの総称である。好適には、成型固化したペレット状の
RDFを使用する。循環流動層ボイラは、RDFを循環
流動床で燃焼させる方式のボイラで、通常、煤塵を補集
するサイクロン等の集塵機を備えている。また、本発明
の好適な実施態様では、背圧蒸気タービンとして、ボイ
ラ用給水の脱気用蒸気として使用する中圧蒸気を抽気す
る抽気背圧蒸気タービンを設ける。これにより、脱気用
蒸気を別途発生させる必要がなくなる。
A further preferred embodiment of the present invention is characterized in that the boiler of the thermal power plant is a circulating fluidized bed boiler using solid fuel or solid industrial waste as fuel for combustible waste. And In the present embodiment, a solidified fuel production device is provided, and combustible waste, for example, solidified fuel (RDF) obtained by processing combustible waste with the solidified fuel production device is burned in a circulating fluidized bed boiler. Thereby, garbage disposal, power generation, and fresh water generation can be performed simultaneously. RDF is a generic name for solidified fuels obtained by subjecting combustible wastes to processing such as sorting, pulverization, particle size adjustment, and solidification. Preferably, an RDF in the form of a pellet that has been molded and solidified is used. A circulating fluidized bed boiler is a boiler that burns RDF in a circulating fluidized bed, and usually includes a dust collector such as a cyclone that collects dust. In a preferred embodiment of the present invention, a back-pressure steam turbine for extracting medium-pressure steam used as deaeration steam for boiler feedwater is provided as the back-pressure steam turbine. This eliminates the need to separately generate degassing steam.

【0012】[0012]

【発明の実施の形態】以下に、添付図面を参照し、実施
例を挙げて本発明の実施の形態を具体的かつ詳細に説明
する。 実施例 本実施例は、本発明に係る発電・海水淡水化コンバイン
ド装置の実施例であって、固形化燃料を燃料とする火力
発電設備と、多重効用蒸発缶法及び逆浸透膜法による海
水淡水化設備とを組み合わせた例である。図1及び図2
は、それぞれ、本実施例の構成を示すフローシートであ
る。本実施例の発電・海水淡水化コンバインド装置10
(以下、装置10と言う)は、図1に示す火力発電設備
12と、図2に示す海水淡水化設備14とを組み合わせ
た装置である。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. This embodiment is an embodiment of the combined power generation and seawater desalination apparatus according to the present invention, and includes a thermal power plant using solidified fuel as fuel, and a seawater desalination by a multiple effect evaporator method and a reverse osmosis membrane method. This is an example of a combination with a chemical facility. 1 and 2
Are flow sheets each showing the configuration of the present example. Power generation / seawater desalination combined device 10 of the present embodiment
(Hereinafter referred to as the apparatus 10) is an apparatus combining the thermal power generation equipment 12 shown in FIG. 1 and the seawater desalination equipment 14 shown in FIG.

【0013】火力発電設備12は、固形化燃料(以下、
RDFと言う)焚き循環流動層ボイラ(Circulating Fl
uidized-Bed Combustor 、CFBボイラ)16(以下、
簡単にボイラ16と言う)と、ボイラ16から発生する
過熱蒸気により動力を得て、発電機17を回転させ、併
せて圧力レベルの異なる2種類の中圧蒸気、即ち10kg
/cm2g および3kg/cm2g の蒸気を抽気させ、0.3kg/c
m2abs の背圧蒸気を発生する背圧抽気蒸気タービン18
とを備えている。更に、火力発電設備12は、背圧蒸気
の全部または一部を海水淡水化設備14に送り、そこで
凝縮した凝縮水を受け入れる配管系20、21及び10
kg/cm2g抽気スチームを海水供給ラインの脱気用エジェ
クタに送る配管ライン51と、余剰背圧蒸気を凝縮させ
る補助復水器22と、配管系21を経由して海水淡水化
設備14で凝縮した凝縮水及び補助復水器22で凝縮し
た凝縮水を受け入れる凝縮水受槽24とを備えている。
また、火力発電設備12は、ボイラ給水系として、凝縮
水受槽24に集めた凝縮水を浄化するイオン交換式純水
装置26と、凝縮水中の気体成分を除去する脱気器28
と、凝縮水受槽24の凝縮水を純水装置26を経て脱気
器28に送水する凝縮水ポンプ30と、脱気器28から
ボイラ16に送水するボイラ水ポンプ32とを有する。
[0013] The thermal power generation equipment 12 is provided with
Circulating fluidized bed boiler (RDF)
uidized-Bed Combustor, CFB boiler) 16 (hereinafter,
The power is obtained by the superheated steam generated from the boiler 16, the generator 17 is rotated, and two types of medium-pressure steam having different pressure levels, namely, 10 kg
/ cm 2 g and 3 kg / cm 2 g of steam are extracted, and 0.3 kg / c
back-pressure bleeding steam turbine 18 that generates m 2 abs back-pressure steam
And Further, the thermal power generation equipment 12 sends all or a part of the back pressure steam to the seawater desalination equipment 14, and the piping systems 20, 21, and 10 receive the condensed water condensed there.
kg / cm 2 g extraction steam is supplied to a seawater supply line degassing ejector by a piping line 51, an auxiliary condenser 22 for condensing excess backpressure steam, and a seawater desalination facility 14 via a piping system 21. A condensed water receiving tank 24 is provided for receiving the condensed condensed water and the condensed water condensed by the auxiliary condenser 22.
The thermal power generation equipment 12 includes, as a boiler water supply system, an ion-exchange type pure water apparatus 26 for purifying condensed water collected in a condensed water receiving tank 24 and a deaerator 28 for removing gas components in the condensed water.
And a condensed water pump 30 for supplying condensed water in the condensed water receiving tank 24 to the deaerator 28 via the pure water device 26, and a boiler water pump 32 for supplying water from the deaerator 28 to the boiler 16.

【0014】海水淡水化設備14は、多重効用蒸発缶装
置34と、逆浸透膜装置36とから構成されている。多
重効用蒸発缶装置34は、複数個(図2では、N個の蒸
発缶を表示している)の蒸発缶38A〜Nと、海水淡水
化設備14に海水を供給する海水ポンプ40と、海水ポ
ンプ40により供給された海水供給系内のガス成分を排
除するスチームエジェクタ42とを備えている。各蒸発
缶38は、内部に蒸気室を持つ缶体で形成され、蒸気室
内に少なくとも凝縮器44と、凝縮器44に海水を散水
する海水散水器46とを備え、更に、一部蒸発缶は、海
水予熱器48を備えている。蒸発缶の蒸気室内温度およ
び圧力は、初段の蒸発缶から終段の蒸発缶に向け低くな
るように設定されており、本実施例の場合、初段の蒸発
缶が0.22kg/cm2abs に、また終段の蒸発缶が0.0
66kg/cm2abs に設定されている。各蒸発缶38の蒸気
室は、その次段の蒸発缶の凝縮器44に連通しており、
蒸気室で発生した蒸気は、次段の蒸発缶の凝縮器44に
流入し、そこで凝縮する。また、各蒸発缶の底部は、配
管を経由して次段の蒸発缶の底部に連通しており、各蒸
発缶で蒸発しなかった海水は、圧力差により次段の蒸発
缶に流入して一部フラッシュ蒸発し、最後に濃縮海水と
して設備外へ排出される。
The seawater desalination facility 14 comprises a multiple effect evaporator unit 34 and a reverse osmosis membrane unit 36. The multiple effect evaporator unit 34 includes a plurality of (in FIG. 2, N evaporators are shown) evaporators 38 </ b> A to 38 </ b> N, a seawater pump 40 that supplies seawater to the seawater desalination facility 14, and a seawater pump 40. A steam ejector for removing gas components in the seawater supply system supplied by the pump; Each evaporator 38 is formed of a can body having a steam chamber therein, and includes at least a condenser 44 and a seawater sprinkler 46 for sprinkling seawater into the condenser 44 in the steam chamber. , A seawater preheater 48. The temperature and pressure in the vapor chamber of the evaporator are set so as to decrease from the first-stage evaporator to the last-stage evaporator. In this embodiment, the first-stage evaporator has a pressure of 0.22 kg / cm 2 abs. , And the last stage evaporator is 0.0
It is set to 66 kg / cm 2 abs. The vapor chamber of each evaporator 38 communicates with the condenser 44 of the next evaporator,
The steam generated in the steam chamber flows into the condenser 44 of the next stage evaporator, where it is condensed. In addition, the bottom of each evaporator communicates with the bottom of the next evaporator via piping, and seawater that has not evaporated in each evaporator flows into the next evaporator due to the pressure difference. It flash evaporates partially and is finally discharged outside the facility as concentrated seawater.

【0015】更に説明すると、初段蒸発缶38Aでは、
火力発電設備12から供給された背圧蒸気が凝縮器44
Aで凝縮し、凝縮水は配管系21により凝縮水受槽24
に入る。一方、海水散水器46Aから散水された海水の
一部が、背圧蒸気の凝縮熱により蒸発し、2段目蒸発缶
38Bの凝縮器44Bに入る。また、初段蒸発缶38A
で蒸発しなかった海水は、初段蒸発缶38Aと2段目蒸
発缶38Bとの圧力差により2段目蒸発缶38Bの缶内
に入り、一部フラッシュ蒸発する。2段目蒸発缶38B
では、初段蒸発缶38Aで蒸発した蒸気が凝縮器44B
で凝縮し、凝縮水集水管50に入る。一方、海水散水器
46Bより散水された海水の一部が、凝縮器44Bで凝
縮した蒸気の凝縮熱により蒸発し、3段目蒸発缶38C
の凝縮器44Cに入る。また、2段蒸発缶38Bで蒸発
しなかった海水は、初段蒸発缶38Aからの海水と共に
3段目蒸発缶38Cとの圧力差により3段目蒸発缶38
Cに入り、一部フラッシュ蒸発する。
More specifically, in the first stage evaporator 38A,
The back pressure steam supplied from the thermal power plant 12 is
A, the condensed water is condensed in a condensed water receiving tank 24 by a piping system 21.
to go into. On the other hand, part of the seawater sprinkled from the seawater sprinkler 46A evaporates due to the heat of condensation of the back-pressure steam, and enters the condenser 44B of the second-stage evaporator 38B. Also, the first stage evaporator 38A
The seawater that did not evaporate in the second stage evaporator 38B enters the can of the second stage evaporator 38B due to the pressure difference between the first stage evaporator 38A and the second stage evaporator 38B, and partially flash evaporates. Second stage evaporator 38B
Then, the vapor evaporated in the first-stage evaporator 38A is transferred to the condenser 44B.
And enters the condensed water collecting pipe 50. On the other hand, part of the seawater sprinkled from the seawater sprinkler 46B evaporates due to the heat of condensation of the steam condensed in the condenser 44B, and the third-stage evaporator 38C
Into the condenser 44C. Further, the seawater not evaporated in the second-stage evaporator 38B is mixed with seawater from the first-stage evaporator 38A due to a pressure difference from the third-stage evaporator 38C.
Enter C and flash evaporate partially.

【0016】N−1段目蒸発缶38N−1及び終段蒸発
缶38Nでも、上述と同様に、蒸気の流入、海水の散
水、蒸気の凝縮、海水の蒸発、海水の圧力差による移動
が起こる。また、終段蒸発缶38Nでは、予熱器48で
の海水の予熱により生じた蒸気の凝縮水を受ける受板5
2を備えており、受板52で受けた凝縮水を凝縮水集水
管50に集めるようになっている。
In the N-1st stage evaporator 38N-1 and the last stage evaporator 38N, as described above, inflow of steam, sprinkling of seawater, condensation of steam, evaporation of seawater, and movement due to seawater pressure difference occur. . In the final stage evaporator 38N, the receiving plate 5 receives the condensed water of the steam generated by the preheating of the seawater in the preheater 48.
The condensed water received by the receiving plate 52 is collected in the condensed water collecting pipe 50.

【0017】逆浸透膜装置36は、異物を捕捉する海水
濾過装置54、逆浸透膜56、及び、その他、逆浸透膜
56に海水を加圧して送水する加圧ポンプ(図示せず)
等の必要な設備を備えている。
The reverse osmosis membrane device 36 includes a seawater filtration device 54 for capturing foreign substances, a reverse osmosis membrane 56, and a pressurizing pump (not shown) for pressurizing and supplying seawater to the reverse osmosis membrane 56.
It is equipped with necessary facilities such as.

【0018】ボイラ16は、図3に示すように、RDF
を収容したホッパ60、ホッパ60から供給されたRD
Fを流動床で循環、燃焼させて、水管(図示せず)内で
蒸気を発生させる火炉62、水管に連結して蒸気混相水
を流入させ、気液分離する蒸気ドラム64、蒸気ドラム
64と水ドラム80のと間で水を循環させて水蒸気とし
て蒸発させる蒸発管群66とを備えている。更に、ボイ
ラ16は、RDFの燃焼により発生する大量の煤塵を煙
道ガスから補集、回収するサイクロン68、煙道ガスが
流れる煙道70、それぞれ、煙道70内に設けられ、蒸
気ドラム64から出る蒸気を煙道ガスで過熱するスーパ
ーヒータ72、及び、燃焼用空気を煙道ガスで予熱する
空気予熱器76、並びに、燃焼用空気を送風する送風機
78等を備えている。必要に応じて、蒸気ドラム64に
給水するボイラ用水を煙道ガスで予熱するエコノマイザ
を設けても良い。また、煙道70及び火炉62の底部か
らアッシュを回収するようになっている。なお、装置1
0には、凝縮水ポンプ30、ボイラ水ポンプ32、海水
ポンプ40等に加えて、図1及び図2のフローシートに
示すように、必要に応じてポンプを備えている。
The boiler 16 has an RDF as shown in FIG.
Hopper 60 containing RP, RD supplied from hopper 60
A furnace 62 for circulating and burning F in a fluidized bed to generate steam in a water pipe (not shown); a steam drum 64 connected to the water pipe to allow steam multi-phase water to flow therein to separate gas and liquid; An evaporating tube group 66 for circulating water between the water drum 80 and evaporating it as water vapor is provided. Further, the boiler 16 is provided in the flue 70 for collecting and collecting a large amount of dust generated by the combustion of the RDF from the flue gas, and the flue 70 for flowing the flue gas. A superheater 72 that superheats the steam emitted by the flue gas, an air preheater 76 that preheats the combustion air with the flue gas, and a blower 78 that blows the combustion air are provided. If necessary, an economizer for preheating boiler water supplied to the steam drum 64 with flue gas may be provided. The ash is collected from the flue 70 and the bottom of the furnace 62. In addition, the device 1
0 includes a condensed water pump 30, a boiler water pump 32, a seawater pump 40, and the like, as well as a pump as necessary as shown in the flow sheets of FIGS.

【0019】装置10では、図4に示すように、火力発
電設備12のボイラ16で過熱蒸気を発生させ、その過
熱蒸気を背圧抽気蒸気タービン18に送り、発電機17
を回転させて発電させると共に中圧蒸気を抽気して脱気
用蒸気として脱気器28に供給する。0.3kg/cm2abs
の背圧蒸気の全部または一部を配管系20により海水淡
水化設備14の多重効用蒸発缶装置34に送り海水から
蒸発法により淡水を採取すると共に背圧蒸気を凝縮させ
て得た凝縮水を配管系21により脱気器28を経由して
火力発電設備12に戻す。よって、多重効用蒸発缶装置
34は、背圧抽気蒸気タービン18の凝縮器の一部を構
成している。多重効用蒸発缶34の造水量で不足する場
合には、火力発電設備12で発電した電力を使用して逆
浸透膜装置36を運転し、逆浸透法により海水から透過
水、即ち淡水を得ることができる。本実施例の装置10
では、補助復水器22を設けているので、多重効用蒸発
缶装置34の造水量の変動に関係なく、所定出力で火力
発電設備12を稼働することができる。
In the apparatus 10, as shown in FIG. 4, superheated steam is generated by the boiler 16 of the thermal power generation equipment 12, and the superheated steam is sent to the back pressure extraction steam turbine 18, and the generator 17
Is rotated to generate electric power, and the medium-pressure steam is extracted and supplied to the deaerator 28 as deaeration steam. 0.3kg / cm 2 abs
All or part of the back pressure steam is sent to the multiple effect evaporator unit 34 of the seawater desalination facility 14 by the piping system 20 to collect the fresh water from the sea water by the evaporation method and to condense the water obtained by condensing the back pressure steam. The gas is returned to the thermal power generation facility 12 via the deaerator 28 by the piping system 21. Therefore, the multiple effect evaporator unit 34 constitutes a part of the condenser of the back pressure bleed steam turbine 18. When the amount of fresh water produced by the multi-effect evaporator 34 is insufficient, the reverse osmosis membrane device 36 is operated using the electric power generated by the thermal power plant 12, and the permeated water, that is, fresh water, is obtained from seawater by the reverse osmosis method. Can be. Apparatus 10 of the present embodiment
Since the auxiliary condenser 22 is provided, the thermal power generation equipment 12 can be operated at a predetermined output regardless of a change in the amount of fresh water of the multiple effect evaporator unit 34.

【0020】装置10の評価を行うために、造水量が5
00Ton/Day で造水比が10の場合を想定して、プロセ
スシミュレーションを行い、以下の結果を得た。プロセ
スシミュレーションを行った際の装置10の主要運転条
件は、以下の通りである。 過熱蒸気の圧力 :32kg/cm2g 過熱蒸気の温度 :420°C 抽気背圧蒸気タービンの背圧 :0.3kg/cm2abs 脱気器用抽気蒸気の圧力 :3kg/cm2g 海水脱気用抽気蒸気の圧力 :10kg/cm2g ボイラ用水の給水温度 :100°C RDF低位発熱量(LHV) :4,300Kcal/Kg ボイラ効率 :80% 初段蒸発缶の蒸気室圧力 :0.22kg/cm2abs 終段蒸発缶の蒸気室圧力 :0.066kg/cm2abs 海水温度 :30℃
In order to evaluate the apparatus 10, the amount of fresh water is 5
The process simulation was performed on the assumption that the fresh water ratio was 10 at 00 Ton / Day, and the following results were obtained. The main operating conditions of the apparatus 10 when performing the process simulation are as follows. The pressure of the superheated steam: 32kg / cm 2 g superheated steam temperature: 420 ° C extraction backpressure steam turbine back pressure: 0.3kg / cm 2 abs degassed dexterity extraction steam pressure: 3kg / cm 2 g seawater deaerator Pressure of extracted steam for use: 10 kg / cm 2 g Supply temperature of boiler water: 100 ° C RDF lower heating value (LHV): 4,300 Kcal / Kg Boiler efficiency: 80% Steam chamber pressure of first stage evaporator: 0.22 kg / cm 2 abs Steam chamber pressure of final stage evaporator: 0.066 kg / cm 2 abs Seawater temperature: 30 ° C

【0021】以上のプロセスシミュレーションの結果
は、表1に示す通りである。
The results of the above process simulation are as shown in Table 1.

【表1】 表1から明らかなとおり、発電・海水淡水化コンバイン
ド装置の総括的な熱効率は、図4のフローシートでは約
26%であって、従来の廃棄物燃焼型発電装置に比べ
て、装置10の熱効率は極めて高いことが判る。この差
は経済的価値の低い水蒸気を使った海水淡水化によるも
のである。尚、表1のストリーム番号は、図1及び図2
の適所に付された符号と一致している。
[Table 1] As is clear from Table 1, the overall thermal efficiency of the combined power generation and seawater desalination apparatus is about 26% in the flow sheet of FIG. 4, and the thermal efficiency of the apparatus 10 is lower than that of the conventional waste combustion type power generation apparatus. Is extremely high. This difference is due to seawater desalination using steam of low economic value. It should be noted that the stream numbers in Table 1 are shown in FIGS.
In the right place.

【0022】[0022]

【発明の効果】本発明の構成によれば、火力発電設備で
蒸気タービンを駆動して発電を行うと同時に、発電の仕
事を終えた経済的価値の低い超低温低圧の廃蒸気(0.
3kg/cm2abs の蒸気)を熱源として多重効用蒸発缶式海
水淡水化装置により淡水を得ている。また、海水を加熱
した超低温低圧蒸気を復水として回収した後に、ボイラ
給水として循環使用することにより、海水淡水化装置は
復水器の役割を果たしているので、極めて熱効率の高い
システムを実現している。また、火力発電設備に背圧蒸
気タービンから出る過剰背圧蒸気の凝縮器を設けている
ので、海水淡水化装置の造水量の変動に関係なく一定の
出力で発電することができる。換言すれば、造水量と発
電量とを自由に組み合わせることができる。更には、海
水淡水化装置の海水の蒸発温度が62℃以下の低い温度
であるから、機器、配管の腐食やスケーリングの問題が
少ない。更に、可燃性廃棄物、例えばゴミを加工して得
た固形化燃料(RDF)を循環流動層ボイラで燃焼させ
ることにより、ゴミ処理と発電と海水淡水化とを同時に
効率良く行うことができる。
According to the configuration of the present invention, the steam turbine is driven by the thermal power generation equipment to generate electric power, and at the same time, the ultra low temperature and low pressure waste steam (0.
Fresh water is obtained using a multi-effect evaporator-type seawater desalination apparatus using 3 kg / cm 2 abs of steam as a heat source. In addition, seawater desalination equipment plays the role of a condenser by recovering ultra-low-temperature, low-pressure steam that has heated seawater as condensate and then circulating it as boiler feedwater, realizing a system with extremely high thermal efficiency. I have. Further, since the thermal power generation equipment is provided with a condenser for excess back pressure steam from the back pressure steam turbine, it is possible to generate power at a constant output regardless of a change in the amount of fresh water generated by the seawater desalination apparatus. In other words, the amount of fresh water and the amount of power generation can be freely combined. Furthermore, since the evaporation temperature of the seawater of the seawater desalination apparatus is as low as 62 ° C. or less, there is little problem of corrosion and scaling of equipment and piping. Further, by combusting combustible waste, for example, solidified fuel (RDF) obtained by processing waste in a circulating fluidized-bed boiler, waste treatment, power generation, and seawater desalination can be efficiently performed simultaneously.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る発電・海水淡水化コンバインド装
置の火力発電設備の構成を示すフローシートである。
FIG. 1 is a flow sheet showing a configuration of a thermal power generation facility of a combined power generation / seawater desalination apparatus according to the present invention.

【図2】本発明に係る発電・海水淡水化コンバインド装
置の海水淡水化設備の構成を示すフローシートである。
FIG. 2 is a flow sheet showing a configuration of a seawater desalination facility of the combined power generation / seawater desalination apparatus according to the present invention.

【図3】ボイラの構成を示す模式図である。FIG. 3 is a schematic diagram showing a configuration of a boiler.

【図4】蒸気と、蒸気を凝縮して得た凝縮水の循環経路
を示したブロック図である。
FIG. 4 is a block diagram showing a circulation path of steam and condensed water obtained by condensing the steam.

【符号の説明】[Explanation of symbols]

10 本発明に係る発電・海水淡水化コンバインド装置
の実施例 12 火力発電設備 14 海水淡水化設備 16 ボイラ 17 発電機 18 背圧抽気蒸気タービン 20、21 配管系 22 補助復水器 24 凝縮水受槽 26 純水装置 28 脱気器 30 凝縮水ポンプ 32 ボイラ水ポンプ 34 多重効用蒸発缶装置 36 逆浸透膜装置 38 蒸発缶 40 海水ポンプ 42 スチームエジェクタ 44 凝縮器 46 海水散水器 48 海水予熱器 50 凝縮水集水管 51 スチームエジェクタ用駆動蒸気の供給配管 52 受板 54 海水濾過装置 56 逆浸透膜 60 ホッパ 62 火炉 64 蒸気ドラム 66 蒸発管群 68 サイクロン 70 煙道 72 スーパーヒータ 76 空気予熱器 78 送風機 80 水ドラム
10 Example of combined power generation / seawater desalination apparatus according to the present invention 12 Thermal power generation equipment 14 Seawater desalination equipment 16 Boiler 17 Generator 18 Back pressure bleeding steam turbine 20, 21 Piping system 22 Auxiliary condenser 24 Condensed water receiving tank 26 Pure water device 28 Deaerator 30 Condensed water pump 32 Boiler water pump 34 Multi-effect evaporator device 36 Reverse osmosis membrane device 38 Evaporator 40 Seawater pump 42 Steam ejector 44 Condenser 46 Seawater sprinkler 48 Seawater preheater 50 Condensed water collection Water pipe 51 Supply pipe for driving steam for steam ejector 52 Receiving plate 54 Seawater filtration device 56 Reverse osmosis membrane 60 Hopper 62 Furnace 64 Steam drum 66 Evaporation tube group 68 Cyclone 70 Chimney 72 Superheater 76 Air preheater 78 Blower 80 Water drum

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤岡 弘 東京都新宿区西新宿三丁目七番一号 東京 ガス・エンジニアリング株式会社内 (72)発明者 西沢 紘 横浜市鶴見区鶴見中央二丁目12番1号 千 代田化工建設株式会社内 (72)発明者 小山田 陽 横浜市鶴見区鶴見中央二丁目12番1号 千 代田化工建設株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hiroshi Fujioka 3-7-1, Nishishinjuku, Shinjuku-ku, Tokyo Inside Tokyo Gas Engineering Co., Ltd. (72) Inventor Hiroshi Nishizawa 2--12, Tsurumichuo, Tsurumi-ku, Yokohama-shi No. 1 Chiyoda Chemical Construction Co., Ltd. (72) Inventor Yo Yoyamada 2-1-1, Tsurumi Chuo, Tsurumi-ku, Yokohama

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 蒸気を発生させるボイラと、ボイラで発
生させた蒸気により発電機を回転して発電させ、かつ
0.25〜0.5kg/cm2abs の背圧蒸気を発生させる背
圧蒸気タービンとを有する火力発電設備と、 蒸気室と、凝縮器及び凝縮器に海水を散水する海水散水
器をそれぞれ蒸気室内に有する複数個の蒸発缶を、一の
蒸発缶の蒸気室と次段の蒸発缶の凝縮器とを連通させる
ようにして、連結した多重効用蒸発缶装置からなる海水
淡水化設備とを備え、 背圧蒸気タービンから出る背圧蒸気を海水淡水化設備の
初段蒸発缶の凝縮器に導入し、凝縮器で凝縮する蒸気の
熱により海水散水器から散水された海水を蒸気室内で蒸
発させ、蒸発した蒸気を次段の蒸発缶の凝縮器に導入
し、順次、蒸気室で蒸気を発生させて海水を蒸発させる
熱源にすると共に海水から蒸発した蒸気を凝縮器で凝縮
させて得た凝縮水を回収して淡水として送水し、一方、
初段蒸発缶で凝縮した背圧蒸気の凝縮水を回収してボイ
ラ用水としてボイラに供給するようにしたことを特徴と
する発電・海水淡水化コンバインド装置。
1. A boiler for generating steam, and a back-pressure steam for generating electricity by rotating a generator by the steam generated by the boiler and generating a back-pressure steam of 0.25 to 0.5 kg / cm 2 abs. A thermal power plant having a turbine, a steam chamber, a condenser and a plurality of evaporators having a seawater sprinkler for sprinkling seawater in the condenser in the steam chamber, respectively, A seawater desalination facility consisting of a multi-effect evaporator unit connected to the condenser of the evaporator in communication with the condenser of the evaporator, and the backpressure steam from the backpressure steam turbine is condensed in the first stage evaporator of the seawater desalination facility The seawater sprinkled from the seawater sprinkler is evaporated in the steam chamber by the heat of the steam condensed in the condenser, and the evaporated steam is introduced into the condenser of the next-stage evaporator. If you use steam as a heat source to evaporate seawater The condensed water evaporated vapor from seawater obtained by condensing in the condenser recovered by water as fresh water, whereas,
A combined power generation / seawater desalination apparatus characterized in that condensed water of back-pressure steam condensed in the first-stage evaporator is recovered and supplied to the boiler as boiler water.
【請求項2】 背圧蒸気タービンから出る背圧蒸気のう
ち海水淡水化設備の造水量低減に伴い余剰となる背圧蒸
気を凝縮させる補助凝縮器を火力発電設備に備えること
を特徴とする請求項1に記載の発電・海水淡水化コンバ
インド装置。
2. A thermal power generation facility is provided with an auxiliary condenser for condensing surplus back-pressure steam from the back-pressure steam discharged from the back-pressure steam turbine as the amount of desalination of the seawater desalination facility is reduced. Item 2. A power generation / seawater desalination combined device according to Item 1.
【請求項3】 海水淡水化設備は、多重効用蒸発缶装置
に加えて、逆浸透膜を使用して塩分濃度の低い透過水
と、塩分濃度の高い塩水とに分離する逆浸透膜装置を備
え、 逆浸透膜装置の運転に要する電力を火力発電設備から供
給することを特徴とする請求項1又は2に記載の発電・
海水淡水化コンバインド装置。
3. The seawater desalination facility has a reverse osmosis membrane device for separating into permeate having a low salt concentration and salt water having a high salt concentration by using a reverse osmosis membrane in addition to a multiple effect evaporator device. The power generation system according to claim 1 or 2, wherein power required for operation of the reverse osmosis membrane device is supplied from a thermal power generation facility.
Seawater desalination combined equipment.
【請求項4】 火力発電設備のボイラが、可燃性廃棄物
を主要原料とした固形化燃料または固形産業廃棄物を燃
料とする循環流動層ボイラであることを特徴とする請求
項1から3のうちのいずれか1項に記載の発電・海水淡
水化コンバインド装置。
4. The boiler of a thermal power plant is a circulating fluidized-bed boiler using solid fuel or solid industrial waste as fuel for combustible waste as a main raw material. The combined power generation / seawater desalination apparatus according to any one of the preceding claims.
【請求項5】 背圧蒸気タービンが、海水淡水化設備の
海水供給系を脱気するエジェクタの駆動用蒸気及びボイ
ラ用給水の脱気用蒸気として使用する中圧蒸気を相互に
異なる圧力でそれぞれ抽気する抽気背圧蒸気タービンで
あることを特徴とする請求項1から4のうちのいずれか
1項に記載の発電・海水淡水化コンバインド装置。
5. A back-pressure steam turbine, wherein different-pressure steam is used for driving steam for an ejector for degassing the seawater supply system of a seawater desalination facility and medium-pressure steam used as degassing steam for boiler feedwater. The combined power generation / seawater desalination apparatus according to any one of claims 1 to 4, wherein the apparatus is a bleed back pressure steam turbine for bleeding.
JP8224402A 1996-08-07 1996-08-07 Generation and sea water desalting combined device Pending JPH1047015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8224402A JPH1047015A (en) 1996-08-07 1996-08-07 Generation and sea water desalting combined device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8224402A JPH1047015A (en) 1996-08-07 1996-08-07 Generation and sea water desalting combined device

Publications (1)

Publication Number Publication Date
JPH1047015A true JPH1047015A (en) 1998-02-17

Family

ID=16813202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8224402A Pending JPH1047015A (en) 1996-08-07 1996-08-07 Generation and sea water desalting combined device

Country Status (1)

Country Link
JP (1) JPH1047015A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833056B1 (en) 1997-12-25 2004-12-21 Ebara Corporation Desalination method and desalination apparatus
WO2006095397A1 (en) * 2005-03-07 2006-09-14 Hitachi Zosen Corporation Multi-stage flush type desalination system
JP2006266258A (en) * 2005-02-22 2006-10-05 Toshiba Corp Power generation/desalination-combined plant and its operation method
CN102267777A (en) * 2011-06-24 2011-12-07 哈尔滨汽轮机厂辅机工程有限公司 Condensing-type back pressure machine seawater desalination combined system
JP2013545915A (en) * 2010-10-19 2013-12-26 アルストム テクノロジー リミテッド Method for operating a combined cycle power plant for cogeneration and a combined cycle power plant for implementing the method
JP2013545916A (en) * 2010-10-19 2013-12-26 アルストム テクノロジー リミテッド Method for operating a combined cycle power plant for cogeneration and a combined cycle power plant for implementing the method
US8850787B2 (en) 2010-05-27 2014-10-07 Sumitomo Corporation Hybrid thermal power generation system and method of constructing same
CN111219219A (en) * 2020-02-27 2020-06-02 西安西热节能技术有限公司 Water and electricity co-production system for realizing gradient utilization of heat source steam energy
CN111908542A (en) * 2019-05-10 2020-11-10 赫普能源环境科技有限公司 Seawater desalination system and method utilizing waste heat of gas turbine
CN112761747A (en) * 2021-01-19 2021-05-07 山东电力工程咨询院有限公司 Water-heat-power cogeneration system and method based on seawater desalination and cascade energy utilization
CN115405390A (en) * 2022-08-24 2022-11-29 西安热工研究院有限公司 Pressurized water reactor power generation, energy storage, seawater desalination and refrigeration coupled operation system and method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833056B1 (en) 1997-12-25 2004-12-21 Ebara Corporation Desalination method and desalination apparatus
JP2006266258A (en) * 2005-02-22 2006-10-05 Toshiba Corp Power generation/desalination-combined plant and its operation method
WO2006095397A1 (en) * 2005-03-07 2006-09-14 Hitachi Zosen Corporation Multi-stage flush type desalination system
US8850787B2 (en) 2010-05-27 2014-10-07 Sumitomo Corporation Hybrid thermal power generation system and method of constructing same
US10066513B2 (en) 2010-10-19 2018-09-04 General Electric Technology Gmbh Method for operating a combined-cycle power plant with cogeneration, and a combined-cycle power plant for carrying out the method
JP2013545915A (en) * 2010-10-19 2013-12-26 アルストム テクノロジー リミテッド Method for operating a combined cycle power plant for cogeneration and a combined cycle power plant for implementing the method
JP2013545916A (en) * 2010-10-19 2013-12-26 アルストム テクノロジー リミテッド Method for operating a combined cycle power plant for cogeneration and a combined cycle power plant for implementing the method
CN102267777A (en) * 2011-06-24 2011-12-07 哈尔滨汽轮机厂辅机工程有限公司 Condensing-type back pressure machine seawater desalination combined system
CN111908542A (en) * 2019-05-10 2020-11-10 赫普能源环境科技有限公司 Seawater desalination system and method utilizing waste heat of gas turbine
CN111219219A (en) * 2020-02-27 2020-06-02 西安西热节能技术有限公司 Water and electricity co-production system for realizing gradient utilization of heat source steam energy
CN112761747A (en) * 2021-01-19 2021-05-07 山东电力工程咨询院有限公司 Water-heat-power cogeneration system and method based on seawater desalination and cascade energy utilization
CN115405390A (en) * 2022-08-24 2022-11-29 西安热工研究院有限公司 Pressurized water reactor power generation, energy storage, seawater desalination and refrigeration coupled operation system and method
CN115405390B (en) * 2022-08-24 2024-05-07 西安热工研究院有限公司 Pressurized water reactor power generation, energy storage, sea water desalination and refrigeration coupling operation system and method

Similar Documents

Publication Publication Date Title
US7037430B2 (en) System and method for desalination of brackish water from an underground water supply
US5925223A (en) Process for improving thermal efficiency while producing power and desalinating water
US5346592A (en) Combined water purification and power of generating plant
US4347704A (en) Thermal power plant water treatment process
CA2785533C (en) Waste heat driven desalination process
EP2246531A1 (en) Power plant with CO2 capture and water treatment plant
WO2013065293A1 (en) Method and device for preparing fresh water
CA2502643A1 (en) Method and apparatus for high efficiency evaporation operation
GB2092912A (en) Method for the multi stage purification of fresh water brackish water sea water and waste water including energy and operating medium recovery as well as disposal
JPH1047015A (en) Generation and sea water desalting combined device
US9962664B2 (en) Method for recovering process wastewater from a steam power plant
US3476653A (en) Multistage distillation unit for water and power plant system
JP6974140B2 (en) Ammonia treatment method and equipment
US11465924B2 (en) Hybrid process and system for recovering water
CN205133326U (en) Salt -containing wastewater treatment system
CN106698564A (en) Sea water desalinization method by waste heat recovery
WO2017066534A1 (en) Hybrid cooling and desalination system
WO2012066579A2 (en) Process for utilization of low pressure, low temperature steam from steam turbine for desalination of sea water
JPH0985059A (en) Seawater desalting apparatus by reverse osmosis membrane
JPH10169907A (en) Boiler plant
Sharshir et al. An entirely solar-powered hybrid thermal-membrane desalination system integrated with Solar heaters and preheating technique
US11944922B1 (en) Water treatment system
JPS61141985A (en) Seawater desalting system
DE3427302A1 (en) Steam power plant for generating steam from salt-containing raw water
CN205133325U (en) Salt -containing wastewater treatment system