JPH1026582A - Capillary-type viscosimeter - Google Patents
Capillary-type viscosimeterInfo
- Publication number
- JPH1026582A JPH1026582A JP18287696A JP18287696A JPH1026582A JP H1026582 A JPH1026582 A JP H1026582A JP 18287696 A JP18287696 A JP 18287696A JP 18287696 A JP18287696 A JP 18287696A JP H1026582 A JPH1026582 A JP H1026582A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- liquid temperature
- temperature
- viscosity
- capillary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、細管式粘度計に関
し、より詳細には液体の主流路から、粘度を計測する液
体のサンプル液を導入し排出するサンプル液流路に、サ
ンプル液の絶対粘度を異なる2点の温度において計測す
る複数の細管式粘度計測手段を有する細管式粘度計に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capillary viscometer and, more particularly, to a capillary viscometer, in which a sample liquid of a viscosity measuring liquid is introduced and discharged from a liquid main flow path. The present invention relates to a capillary viscometer having a plurality of capillary viscosity measuring means for measuring viscosity at two different temperatures.
【0002】[0002]
【従来の技術】細管式粘度計は、断面一定な所定長さの
細管に、一定温度、一定流量の被測定液体を層流で流し
たとき、細管両端間の差圧が絶対粘度に比例することを
利用した高精度な粘度計であり、例えば、石油製品や合
成樹脂等の製品ラインの液体の品質を粘度により管理す
る品質管理計測装置として使用されている。また、成分
の異なる油を混合する場合、混合油の異なる2点の温度
での絶対粘度を計測し、更に、密度計測手段により当該
温度における密度を求めて各々の温度における前記絶対
粘度を前記密度で除して動粘度を算出し、予め定れられ
た温度−動粘度線図に基づいて基準温度における動粘度
を算出することや、予め混合比の定められた混合油を前
記線図で比較し混合比を確認するなどに利用されてい
る。2. Description of the Related Art In a capillary viscometer, when a liquid to be measured having a constant temperature and a constant flow rate is flowed in a laminar flow through a capillary having a constant cross section and a predetermined length, the differential pressure between both ends of the capillary is proportional to the absolute viscosity. It is a high-precision viscometer utilizing this fact, and is used, for example, as a quality control measuring device for controlling the quality of liquid in a product line such as a petroleum product or a synthetic resin by viscosity. When mixing oils of different components, the absolute viscosity of the mixed oil at two different temperatures is measured, and the density at the temperature is determined by density measuring means, and the absolute viscosity at each temperature is calculated as the density. To calculate the kinematic viscosity at a reference temperature based on a predetermined temperature-kinematic viscosity diagram, or compare a mixed oil having a predetermined mixing ratio with the diagram. It is used to check the mixing ratio.
【0003】ところで、サンプル液を異なる第1液温お
よび第2液温に制御し、異なる液温での絶対粘度を計測
する従来の細管式粘度計としては、2つの恒温槽の上流
側の恒温槽の熱媒体内に一定流量のサンプル液が流れる
一本のサンプル液流路を浸積し、上流側の恒温槽では熱
媒体を加熱する第1温度制御手段を有し、前記サンプル
液流路に介装された第1の細管の両端差圧に比例した第
1液温における粘度を計測し、下流側の恒温槽内でも熱
媒体を加熱手段により第2液温に加熱して、前記サンプ
ル液流路に接続された第2の細管の両端差圧に比例した
第2液温における粘度を計測している。[0003] By the way, a conventional capillary viscometer for controlling the sample liquid to different first liquid temperature and second liquid temperature and measuring the absolute viscosity at different liquid temperatures is a constant temperature upstream of two constant temperature baths. A first temperature control means for immersing a single sample liquid flow path in which a fixed flow rate of the sample liquid flows in the heat medium of the tank, and heating the heat medium in an upstream constant temperature bath; The viscosity at the first liquid temperature is measured in proportion to the pressure difference between both ends of the first thin tube interposed in the sample, and the heating medium is heated to the second liquid temperature by the heating means even in the downstream constant temperature bath, thereby obtaining the sample. The viscosity at the second liquid temperature, which is proportional to the pressure difference between both ends of the second thin tube connected to the liquid flow path, is measured.
【0004】また、下流側の恒温槽内では、サンプル液
流路をコイル状に巻回した伝熱管を有し、第1液温のサ
ンプル液を第2液温に熱交換することが試みられてい
る。このように、従来の2点温度の細管式粘度計は、恒
温槽を有し、熱交換手段として伝熱管を用いている。[0004] In the downstream thermostat, there is a heat transfer tube in which the sample liquid flow path is wound in a coil shape, and it is attempted to exchange heat of the sample liquid of the first liquid temperature with the second liquid temperature. ing. As described above, the conventional two-point temperature capillary viscometer has a constant temperature bath and uses a heat transfer tube as heat exchange means.
【0005】[0005]
【発明が解決しようとする課題】サンプル液の絶対粘度
を、異なる2点の温度で計測する従来の細管式粘度計
は、低、高液温用の2つの恒温槽と各々の恒温槽内に細
管式粘度計測手段を有しているので全体が大形になり大
きい設置面積を要する。更に、サンプル液流路は各々恒
温槽内の熱媒体を介して加熱しているものであるから、
熱変換効率が悪く、熱応答時間が長いので、2点温度に
おける絶対粘度の計測時間が長くなり、非能率であると
いう問題があった。更に、絶対粘度を精度よく測定する
ためには、一定流量で流れた液体の温度を恒温槽内で精
密に一定に制御することが必要であり、そのための制御
装置が繁雑となり、装置全体が高価となる問題があっ
た。The conventional capillary viscometer for measuring the absolute viscosity of a sample liquid at two different temperatures is composed of two low-temperature and high-temperature thermostats and two thermostats in each thermostat. Since it has a capillary viscosity measuring means, the whole becomes large and requires a large installation area. Furthermore, since the sample liquid flow paths are each heated via the heat medium in the thermostat,
Since the heat conversion efficiency is poor and the heat response time is long, the measurement time of the absolute viscosity at the two-point temperature is long, and there is a problem that the efficiency is inefficient. Furthermore, in order to measure the absolute viscosity with high accuracy, it is necessary to precisely control the temperature of the liquid flowing at a constant flow rate in the constant temperature bath, which makes the control device complicated and expensive. There was a problem.
【0006】本発明は、異なる2点温度での絶対粘度を
計測する第1液温用粘度計測手段と、第2液温用粘度計
測手段を別体で構成し、別体構成された第1液温用粘度
計測手段と第2液温用粘度計測手段との間に、第1液温
のサンプル液を第2液温のサンプル液に温度変換する熱
交換器を設けて、応答よく加熱又は冷却して作業効率を
高め、小形で安価な細管式粘度計を提供することを目的
とする。According to the present invention, a first liquid temperature viscosity measuring means for measuring absolute viscosities at two different temperatures and a second liquid temperature viscosity measuring means are provided separately, and the first liquid temperature measuring means is provided separately. A heat exchanger is provided between the liquid temperature viscosity measuring means and the second liquid temperature viscosity measuring means for converting the temperature of the sample liquid at the first liquid temperature into the liquid sample at the second liquid temperature. An object of the present invention is to provide a small-sized and inexpensive capillary viscometer by cooling to enhance work efficiency.
【0007】[0007]
【課題を解決するための手段】請求項1の発明は、略一
定な第1液温の液体が流れる容器内に、一端が前記容器
内で開口する流管と、該流管に前記液体を定流量で圧送
するポンプおよび第1の細管を設け、該第1の細管の両
端差圧から前記液体の第1液温における絶対粘度を計測
する第1液温用粘度計測部と、前記流管を該第1液温用
粘度計測部の下流側から前記容器外に導出し、該流管を
流れる前記第1液温の液体を該第1液温と異なる第2液
温に変換する熱交換器と、該第2液温を測定するための
チャンバと、該チャンバに近接して接続された第2の細
管と、該チャンバ内の第2液温と該第2の細管内の液温
との温度差を生じさせないための保温器とを設け、前記
第2の細管の両端差圧から液体の前記第2液温における
絶対粘度を計測する第2液温用粘度計測部とからなり、
該第2液温用粘度計測部の下流側に接続された前記流管
を前記容器内に開口し、前記液体を前記容器内に戻すよ
うにしたものである。According to a first aspect of the present invention, there is provided a container in which a liquid having a substantially constant first liquid temperature flows, a flow tube having one end opened in the container, and the liquid being supplied to the flow tube. A pump for pumping at a constant flow rate and a first thin tube, a first liquid temperature viscosity measuring unit for measuring an absolute viscosity of the liquid at a first liquid temperature from a pressure difference between both ends of the first thin tube; From the downstream side of the first liquid temperature viscosity measurement unit to the outside of the vessel, and convert the liquid of the first liquid temperature flowing through the flow tube into a second liquid temperature different from the first liquid temperature. A chamber for measuring the second liquid temperature, a second capillary connected in close proximity to the chamber, a second liquid temperature in the chamber and a liquid temperature in the second capillary. And a warmer for preventing the temperature difference from occurring, and measuring the absolute viscosity of the liquid at the second liquid temperature from the differential pressure across the second thin tube. Consists of a second liquid temperature for the viscosity measurement unit,
The flow tube connected to the downstream side of the second liquid temperature viscosity measurement unit is opened in the container, and the liquid is returned into the container.
【0008】請求項2の発明は、主流路から分岐した温
度不安定な液体が流れる流管に接続され、前記液体を定
流量で圧送するポンプと、熱交換を促進させる伝熱管
と、第1液温を測定するための第1チャンバおよび第1
の細管を、一定な前記第1液温に制御された恒温槽内に
設け、前記流管内の液体の液温を第1液温に変換させ、
前記第1の細管の両端差圧から液体の前記第1液温にお
ける絶対粘度を計測する第1液温用粘度計測部と、前記
流管を該第1液温用粘度計測部の下流側から前記恒温槽
外に導出し、該流管を流れる前記第1液温の液体を該第
1液温と異なる第2液温に変換する熱交換器と、該第2
液温を測定するための第2チャンバと、該第2チャンバ
に近接して接続された第2の細管と、該第2チャンバ内
の第2液温と該第2の細管内の液温との温度差を生じさ
せないための保温器とを設け、前記第2の細管の両端差
圧から液体の前記第2液温における絶対粘度を計測する
第2液温用粘度計測部とからなり、該第2液温用粘度計
測部の下流側に接続された前記流管を前記主流路内に開
口し、前記液体を主流路内に戻すようにしたものであ
る。According to a second aspect of the present invention, there is provided a pump, which is connected to a flow pipe through which a temperature-unstable liquid branched from the main flow path flows, for pumping the liquid at a constant flow rate, a heat transfer pipe for promoting heat exchange, and a first heat transfer pipe. A first chamber and a first chamber for measuring a liquid temperature;
Is provided in a constant temperature bath controlled at a constant first liquid temperature, and the liquid temperature of the liquid in the flow tube is converted to the first liquid temperature,
A first liquid temperature viscosity measuring unit for measuring the absolute viscosity of the liquid at the first liquid temperature from a pressure difference between both ends of the first thin tube, and a flow tube from a downstream side of the first liquid temperature viscosity measuring unit. A heat exchanger which is led out of the constant temperature bath and converts the liquid having the first liquid temperature flowing through the flow tube into a second liquid temperature different from the first liquid temperature;
A second chamber for measuring the liquid temperature, a second capillary connected in close proximity to the second chamber, a second liquid temperature in the second chamber, and a liquid temperature in the second capillary. And a second liquid temperature viscosity measuring unit for measuring the absolute viscosity of the liquid at the second liquid temperature from the differential pressure across the second thin tube, The flow tube connected to the downstream side of the second liquid temperature viscosity measurement unit is opened in the main flow path, and the liquid is returned to the main flow path.
【0009】請求項3の発明は、請求項1または請求項
2の細管式粘度計において、前記第2液温用粘度計測部
は、前記第1液温用粘度計測部と着脱自在に接続できる
ようにしたものである。According to a third aspect of the present invention, in the capillary viscometer of the first or second aspect, the second liquid temperature viscosity measuring section can be detachably connected to the first liquid temperature viscosity measuring section. It is like that.
【0010】[0010]
(請求項1の発明)図1は、請求項1の発明による細管
式粘度計の実施形態例を説明するための構成図であり、
図中、1はサンプル液容器、2はサンプル液流路、2a
〜2cは弁、3は定量ポンプ、4は同期電動機、5はス
タータBOX、6は第1の測温抵抗体、7は第1の細
管、8は第1の差圧検出器、9は第2の細管、10は第
2の差圧検出器、11は第2の測温抵抗体、12はチャ
ンバ、13は保温BOX、14は熱交換器、15a,1
5bは熱交換液流路、16は調整弁、17は演算用BO
X、18は第1の液温信号、19は第1の差圧信号、2
0は第2の液温信号、21は第2の差圧信号、22は密
度測定時の温度信号、23は密度信号、30は第1液温
用粘度測定部、31は第2液温用粘度測定部である。(Invention of Claim 1) FIG. 1 is a configuration diagram for explaining an embodiment of a capillary viscometer according to the invention of Claim 1.
In the figure, 1 is a sample liquid container, 2 is a sample liquid flow path, 2a
2c is a valve, 3 is a metering pump, 4 is a synchronous motor, 5 is a starter BOX, 6 is a first resistance temperature detector, 7 is a first thin tube, 8 is a first differential pressure detector, and 9 is a 2, a thin tube, 10 a second differential pressure detector, 11 a second resistance temperature detector, 12 a chamber, 13 a warm box, 14 a heat exchanger, 15a, 1
5b is a heat exchange liquid flow path, 16 is a regulating valve, 17 is a calculation BO
X, 18 are the first liquid temperature signal, 19 is the first differential pressure signal, 2
0 is the second liquid temperature signal, 21 is the second differential pressure signal, 22 is the temperature signal at the time of density measurement, 23 is the density signal, 30 is the first liquid temperature viscosity measurement unit, and 31 is the second liquid temperature. It is a viscosity measuring unit.
【0011】図1に示す細管式粘度計は略一定な第1液
温のサンプル液が一定流量で流入する液入口1a、流出
口1bを有し、前記サンプル液の絶対粘度を測定する第
1液温用粘度測定部30を備えたサンプル液容器1(以
後、容器1と記す)の外部に、前記第1液温用粘度測定
部30で測定したサンプル液を導出して、定められた一
定な第2液温に加熱又は冷却する熱交換器14が設けら
れ、更に、熱交換器14の流出測に、保温BOX13内
に納めた第2液温に達したサンプル液の絶対粘度を計測
する第2液温用粘度測定部31を設置し、絶対粘度を異
なる2点の温度で計測後、サンプル液を再び容器1内に
戻している。The capillary viscometer shown in FIG. 1 has a liquid inlet 1a and an outlet 1b into which a sample liquid having a substantially constant first liquid temperature flows at a constant flow rate, and a first viscometer for measuring the absolute viscosity of the sample liquid. The sample liquid measured by the first liquid temperature viscosity measurement unit 30 is led out of the sample liquid container 1 (hereinafter, referred to as container 1) provided with the liquid temperature viscosity measurement unit 30, and a predetermined constant A heat exchanger 14 for heating or cooling to a second liquid temperature is provided, and further, the absolute viscosity of the sample liquid that has reached the second liquid temperature and stored in the heat-retaining BOX 13 is measured in the outflow measurement of the heat exchanger 14. The second liquid temperature viscosity measuring unit 31 is installed, and after measuring the absolute viscosity at two different temperatures, the sample liquid is returned into the container 1 again.
【0012】このようにサンプル液は、主流路から第1
液温粘度測定部30の流入口1aを介して容器1に流入
し、サンプル液流路2内を流れ容器1の外部に導出さ
れ、再び容器1内に戻され流出口1bより主流路に流出
される。サンプル液流路2には、まず、容器1内の流入
口2-1近傍に設けられた定量ポンプ3により一定流量
のサンプル液が圧送され第1の細管7を通り容器1の外
部に導出される。第1の細管7両端の差圧△P1は、導
管2-2,2-3により容器の外部に導びかれ、第1の差
圧検出器8に接続される。定量ポンプ3は同期電動機4
により定回転駆動され、同期電動機4はスタータBOX
5により駆動制御される。また容器1内の第1液温は第
1の測温抵抗体6で検出される。As described above, the sample liquid flows from the main flow path to the first
The liquid flows into the container 1 via the inlet 1a of the liquid temperature viscosity measuring unit 30, flows through the sample liquid flow path 2 to the outside of the container 1, is returned to the container 1 again, and flows out of the outlet 1b into the main flow path. Is done. First, a fixed amount of the sample liquid is pumped into the sample liquid flow path 2 by the metering pump 3 provided near the inflow port 2-1 in the container 1 and is led out of the container 1 through the first thin tube 7. You. The differential pressure ΔP 1 at both ends of the first thin tube 7 is led to the outside of the container by conduits 2-2 and 2-3 and connected to the first differential pressure detector 8. The metering pump 3 is a synchronous motor 4
, And the synchronous motor 4 is driven by a starter box.
5 is driven and controlled. Further, the first liquid temperature in the container 1 is detected by the first temperature measuring resistor 6.
【0013】次に、サンプル液流路2は、第2液温用粘
度測定部31に弁2aを介して導入され熱交換器14を
通り、保温BOX13内に到る。熱交換器14は内部に
サンプル液流路2を挿通し、外部に調整弁16により一
定温度の熱媒体を流入、流出する熱交液流路15a,1
5bが設けてあり、サンプル液は目的に応じた温度に加
熱又は冷却される。このときのサンプル液の流量は、例
えば、数(リットル/時)程度の微少流であるから応答
よく加熱、又は冷却される。Next, the sample liquid flow path 2 is introduced into the second liquid temperature viscosity measuring section 31 via the valve 2a, passes through the heat exchanger 14, and reaches the heat retaining BOX 13. The heat exchanger 14 has the sample liquid flow path 2 inserted therein, and the heat exchange liquid flow paths 15a, 1 into and out of which a heat medium having a constant temperature flows in and out of the control valve 16 through an adjustment valve 16.
5b is provided, and the sample liquid is heated or cooled to a temperature according to the purpose. The flow rate of the sample liquid at this time is, for example, a very small flow of about several (liter / hour), so that the sample liquid is heated or cooled in a responsive manner.
【0014】次いで、サンプル液流路2は、保温BOX
13内に導入された後、チャンバ12内で第2の測温抵
抗体11によりサンプル液の温度が検出されてから第2
の細管9を通り、保温BOX13外に導出され、弁2b
を介して容器1内を通り、該容器1内の排出口1bから
主流路に排出される。なお、第2の細管9の両端の差圧
△P2は導管2-4、2-5を介し、保温BOX13の外
部に導出され、第2の差圧検出器10により計測され
る。Next, the sample liquid flow path 2 is provided with a heat insulating BOX.
After the temperature of the sample solution is detected by the second resistance temperature detector 11 in the chamber 12 after the
Through the thin tube 9 of the valve, and is led out of the heat-retaining BOX 13 and the valve 2b
, And is discharged to the main flow path from the discharge port 1b in the container 1. The differential pressure ΔP 2 at both ends of the second thin tube 9 is led out of the heat-retaining BOX 13 via the conduits 2-4 and 2-5 and is measured by the second differential pressure detector 10.
【0015】第1液温用粘度計測部30による絶対粘度
μ1は、第1の差圧検出器8からの差圧信号19を演算
用BOX17に導入し、ハーゲン・ポアズイユ(Hagen
Poeseuille)の法則を利用することにより第1液温時に
おける粘度を求めることができる。同様に第2液温用粘
度計測部31による絶対粘度μ2は、第2の差圧検出器
10からの差圧信号21を演算用BOX17に導入し、
前記ハーゲン・ポアズイユ(Hagen Poeseuille)の法則
を利用することにより第2液温時における粘度を求める
ことができる。The absolute viscosity μ 1 obtained by the first liquid temperature viscosity measuring section 30 is obtained by introducing the differential pressure signal 19 from the first differential pressure detector 8 into the arithmetic BOX 17 and calculating the difference from the Hagen Poiseuille.
By using Poeseuille's law, the viscosity at the first liquid temperature can be determined. Similarly, the absolute viscosity μ 2 by the second liquid temperature viscosity measurement unit 31 is obtained by introducing the differential pressure signal 21 from the second differential pressure detector 10 to the calculation box 17,
The viscosity at the time of the second liquid temperature can be obtained by utilizing the above-mentioned Hagen Poeseuille's law.
【0016】なお、密度信号23は、例えば、サンプル
液が流れる薄肉円筒を径方向に固有振動数で加振する
か、あるいは、液体が流れるコリオリ流量計(図示せ
ず)の測定管を支持軸を支点として支点まわりに固有振
動で加振したときの固有振動数の逆関数として求めら
れ、演算BOX17で、そのときの温度信号22に従っ
て、基準温度、例えば、15℃における密度値ρ15を算
出記憶しており、この値から、第1液温用粘度計測手段
における液体温度t1での密度ρ1を算出し、同様に、第
2液温用粘度計測手段における液体温度t2での密度ρ2
を算出して、絶対粘度,動粘度および密度の関係により
第1動粘度ν1および第2動粘度ν2を求める。The density signal 23 is generated by, for example, vibrating a thin-walled cylinder through which a sample liquid flows at a natural frequency in a radial direction, or by supporting a measuring tube of a Coriolis flowmeter (not shown) through which a liquid flows through a supporting shaft. Is calculated as an inverse function of a natural frequency when a natural vibration is applied around the fulcrum with the fulcrum as a fulcrum, and a density value ρ 15 at a reference temperature, for example, 15 ° C., is calculated in an operation box 17 according to the temperature signal 22 at that time. From this value, the density ρ 1 at the liquid temperature t 1 in the first liquid temperature viscosity measuring means is calculated, and similarly, the density ρ 1 at the liquid temperature t 2 in the second liquid temperature viscosity measuring means is calculated. ρ 2
Is calculated, and the first kinematic viscosity ν 1 and the second kinematic viscosity ν 2 are obtained from the relationship among the absolute viscosity, the kinematic viscosity and the density.
【0017】第1動粘度ν1と第2動粘度ν2からJIS
K2283に定められている式を利用することにより、
所定温度、例えば、50℃における動粘度ν50を求める
ことができる。JIS based on the first kinematic viscosity ν 1 and the second kinematic viscosity ν 2
By using the equation defined in K2283,
The kinematic viscosity ν 50 at a predetermined temperature, for example, 50 ° C. can be determined.
【0018】上述の請求項1の発明では図1に示したよ
うに、略一定温度のサンプル液が流入し流出する容器1
内で、該容器1内のサンプル液を定量ポンプ3で圧送し
て、第1の細管7に導入して得た差圧△P1から第1液
温における第1粘度μ1を算出する第1液温用粘度計測
部30から導出された小流量のサンプル液を、熱交換器
14により目的に応じた温度に加熱又は冷却し、保温B
OX13に収納された細管9に導入して第2粘度μ2を
算出する第2液温用粘度計測部31にサンプル液が流れ
るようにしたので、第1液温用粘度計測部30と、第2
液温用粘度計測部31を適宜組み合わせることにより、
大形な恒温槽が必要でなくなり、小形な細管式粘度計を
構成できる。また、熱交換器14により、サンプル液を
第1液温から応答よく第2液温に過度変換することがで
き、かつ、保温BOX13により第2液温を保持しなが
ら絶対粘度を高精度に計測することができる。According to the first aspect of the present invention, as shown in FIG. 1, a container 1 into which a sample liquid at a substantially constant temperature flows in and out.
The first viscosity μ 1 at the first liquid temperature is calculated from the differential pressure ΔP 1 obtained by pumping the sample liquid in the container 1 by the metering pump 3 and introducing the sample liquid into the first thin tube 7. The sample liquid with a small flow rate derived from the one-liquid temperature viscosity measurement unit 30 is heated or cooled by the heat exchanger 14 to a temperature according to the purpose, and the heat retention B
Since the sample liquid was introduced into the thin tube 9 housed in the OX 13 and flowed to the second liquid temperature viscosity measurement unit 31 for calculating the second viscosity μ 2 , the first liquid temperature viscosity measurement unit 30 and the second liquid temperature viscosity measurement unit 30 2
By appropriately combining the liquid temperature viscosity measurement unit 31,
A large thermostat is not required, and a small capillary viscometer can be constructed. Moreover, the sample liquid can be excessively converted from the first liquid temperature to the second liquid temperature with good response by the heat exchanger 14, and the absolute viscosity is measured with high accuracy while the second liquid temperature is maintained by the heat retention box 13. can do.
【0019】(請求項2の発明)図2は、請求項2の発
明による細管式粘度計の、他の実施形態例を説明するた
めの図であり、図中、32は恒温槽、33は撹拌装置、
34はヒータ、35は恒温槽32の温度コントロール用
測温抵抗体、36は伝熱管、40はサンプル液流入口、
41はサンプル液流出口、42は入口弁、43は出口
弁、50はコントロールBOX、であり、図1と同様の
作用する部分とは図1と同じ参照番号を付してある。(Invention of Claim 2) FIG. 2 is a view for explaining another embodiment of the capillary viscometer according to the invention of claim 2, in which 32 is a thermostat, and 33 is a thermostat. Stirrer,
34 is a heater, 35 is a temperature measuring resistor for controlling the temperature of the thermostat 32, 36 is a heat transfer tube, 40 is a sample liquid inlet,
Reference numeral 41 denotes a sample liquid outlet, 42 denotes an inlet valve, 43 denotes an outlet valve, and 50 denotes a control box. The same reference numerals as in FIG.
【0020】図2に示した細管式粘度計は、サンプル液
の温度が不安定な場合に適用されるもので、第1液温用
粘度測定部30は、流入する不安定な温度のサンプル液
を安定な第1温度に制御する恒温槽32と、恒温槽32
内の温度を一定にするコントロールBOX50を備えて
いる。The capillary viscometer shown in FIG. 2 is used when the temperature of the sample liquid is unstable. Thermostat 32 for controlling the temperature of the container to a stable first temperature;
A control box 50 for keeping the inside temperature constant is provided.
【0021】恒温槽32内には、一定量の熱媒体32a
と、該恒温槽32内に温度不安定のサンプル液が流れる
サンプル液流路2とを収容している。また、熱媒体32
aを一定の第1の温度になるように制御するためのコン
トロールBOX50を有し、コントロールBOX50に
は温度コントロール用測温抵抗体35、ヒータ34、撹
拌装置33が接続され、一定量の熱媒体32aを均一で
一定な第1温度に保持している。A fixed amount of heat medium 32a is
And a sample liquid flow path 2 through which a temperature-unstable sample liquid flows in the thermostatic bath 32. The heat medium 32
has a control box 50 for controlling a to a constant first temperature. The control box 50 is connected to a temperature control resistor 35 for temperature control, a heater 34, and a stirring device 33, and a fixed amount of heat medium. 32a is maintained at a uniform and constant first temperature.
【0022】恒温槽32には、恒温槽32の外部からサ
ンプル液を導入するサンプル液流入口40、入口弁42
を備えたサンプル液流路2が接続され、該サンプル液流
路2内に定量ポンプ3により一定流量のサンプル液が圧
送され、コイル状に巻回された伝熱管36により熱交換
を促進し、第1液温に加熱保持される。伝熱管36の後
流側には、サンプル液流路2を介して、第1の測温抵抗
体6と第1の細管7が接続されており、第1の測温抵抗
体6でサンプル液流路2内の第1液温を検知し、第1の
細管7両端の差圧を、第1の差圧検出器8で計測され、
第1液温における絶対粘度μ1を求めることができる。The thermostat 32 has a sample liquid inlet 40 and an inlet valve 42 for introducing a sample liquid from outside the thermostat 32.
Is connected, a constant flow rate of the sample liquid is pumped into the sample liquid flow path 2 by the metering pump 3, and heat exchange is promoted by the heat transfer tube 36 wound in a coil shape. Heated and maintained at the first liquid temperature. A first temperature measuring resistor 6 and a first thin tube 7 are connected to the downstream side of the heat transfer tube 36 via the sample liquid flow path 2. A first liquid temperature in the flow path 2 is detected, and a differential pressure between both ends of the first thin tube 7 is measured by a first differential pressure detector 8,
It can be the absolute viscosity mu 1 of the first liquid temperature.
【0023】前記第1の細管7に接続されたサンプル液
流路2は、図1の場合と同様に、第1液温用粘度測定部
30の外部に導出され、第2液温用粘度計測部31に弁
2aを介して導入され熱交換器14を通り、保温BOX
13内のチャンバ12と第2の細管9に致る。よって、
熱交換器14により、第2液温に変換され、チャンバ1
2内で第2の測温抵抗体11により第2液温を検知し、
第2の細管9両端の差圧を第2の差圧検出器10で計測
し、第2液温における絶対粘度μ2を求めることができ
る。The sample liquid flow path 2 connected to the first thin tube 7 is led out of the first liquid temperature viscosity measurement unit 30 and is subjected to the second liquid temperature viscosity measurement, as in the case of FIG. The heat is introduced into the section 31 via the valve 2a, passes through the heat exchanger 14, and is stored in the heat-retaining BOX.
13 and the second capillary 9. Therefore,
The heat is converted to the second liquid temperature by the heat exchanger 14,
2, the second temperature sensor 11 detects the second liquid temperature,
The differential pressure at both ends of the second thin tube 9 is measured by the second differential pressure detector 10, and the absolute viscosity μ 2 at the second liquid temperature can be obtained.
【0024】請求項2の発明による細管式粘度計によれ
ば、温度が不安定なサンプル液の場合は、該サンプル液
を恒温槽32内で第1液温に制御し、絶対粘度μ1を求
めるようにした第1液温用粘度測定部30を設置するの
で、伝熱性の優れた熱容量の大きい熱媒体32aにより
応答よく第1液温に制御することができる。According to the capillary viscometer according to the second aspect of the present invention, when the temperature of the sample liquid is unstable, the sample liquid is controlled to the first liquid temperature in the thermostatic chamber 32 to reduce the absolute viscosity μ 1 . Since the viscosity measuring unit 30 for the first liquid temperature that is obtained is installed, the first liquid temperature can be controlled with good response by the heat medium 32a having excellent heat conductivity and a large heat capacity.
【0025】(請求項3の発明)請求項3の発明は、第
1液温用粘度測定部30と第2液温用粘度測定部31と
を着脱自在にしたものであり、図1,図2に示す細管式
粘度測定装置において、第1液温用粘度測定部30と第
2液温用粘度測定部31とは、サンプル液流路2の弁2
aと弁2bを閉弁することで着脱自在となり、弁2cを
開弁することにより、第1液温用粘度測定部30単独で
第1液温における粘度測定が可能となる。また、既存さ
れた1点温度の細管式粘度計の流路に一部改良を施して
第2液温用粘度計測部31を接続することにより、容易
に1点温度の細管式粘度計から2点温度の細管式粘度計
にすることができる。(Invention of claim 3) In the invention of claim 3, the first liquid temperature viscosity measuring section 30 and the second liquid temperature viscosity measuring section 31 are made detachable. 2, the first liquid temperature viscosity measuring section 30 and the second liquid temperature viscosity measuring section 31 are connected to the valve 2 of the sample liquid flow path 2.
By closing the valve a and the valve 2b, it becomes detachable, and by opening the valve 2c, the viscosity measurement at the first liquid temperature can be performed by the first liquid temperature viscosity measuring unit 30 alone. Further, by partially improving the flow path of the existing one-point temperature capillary viscometer and connecting the second liquid temperature viscosity measurement unit 31, it is easy to change the one-point temperature capillary viscometer from the one-point temperature capillary viscometer. It can be a capillary viscometer with a point temperature.
【0026】[0026]
【発明の効果】請求項1に対応する効果:略一定な第1
液温の液体が流れる容器内に、一端が前記容器内で開口
する流管と、該流管に前記液体を定流量で圧送するポン
プおよび第1の細管を設け、該第1の細管の両端差圧か
ら前記液体の第1液温における絶対粘度を計測する第1
液温用粘度計測部と、前記流管を該第1液温用粘度計測
部の下流側から前記容器外に導出し、該流管を流れる前
記第1液温の液体を該第1液温と異なる第2液温に変換
する熱交換器と、該第2液温を測定するためのチャンバ
と、該チャンバに近接して接続された第2の細管と、該
チャンバ内の第2液温と該第2の細管内の液温との温度
差を生じさせないための保温器とを設け、前記第2の細
管の両端差圧から液体の前記第2液温における絶対粘度
を計測する第2液温用粘度計測部とからなり、該第2液
温用粘度計測部の下流側に接続された前記流管を前記容
器内に開口し、前記液体を前記容器内に戻すようにした
ので、第1液温用粘度計測部と、第2液温用粘度計測部
を適宜、組合せることにより大形な恒温槽が必要でなく
なり小形な細管式粘度計を構成できる。また、熱交換器
によりサンプル液を第1液温から応答よく第2液温に温
度変換することができ、かつ、保温器により、第2液温
を保持しながら絶対粘度を高精度に計測することができ
る。According to the first aspect of the present invention, the first constant is substantially constant.
In a container through which a liquid having a liquid temperature flows, a flow tube having one end open in the container, a pump for pumping the liquid at a constant flow rate into the flow tube, and a first thin tube are provided, and both ends of the first thin tube are provided. A first method for measuring the absolute viscosity of the liquid at a first liquid temperature from the differential pressure;
A liquid temperature viscosity measuring unit and the flow tube are led out of the vessel from a downstream side of the first liquid temperature viscosity measuring unit, and the liquid having the first liquid temperature flowing through the flow tube is subjected to the first liquid temperature. A heat exchanger for converting to a second liquid temperature different from the above, a chamber for measuring the second liquid temperature, a second thin tube connected in close proximity to the chamber, and a second liquid temperature in the chamber And a warmer for preventing a temperature difference between the liquid temperature in the second thin tube and the liquid temperature in the second thin tube, and measuring the absolute viscosity of the liquid at the second liquid temperature from the pressure difference between both ends of the second thin tube. A liquid temperature viscosity measurement unit, the flow tube connected to the downstream side of the second liquid temperature viscosity measurement unit was opened in the container, and the liquid was returned into the container. By appropriately combining the viscosity measuring unit for the first liquid temperature and the viscosity measuring unit for the second liquid temperature, a large-sized constant temperature bath is not required and a small capillary tube It can be configured degree meter. Further, the temperature of the sample solution can be converted from the first solution temperature to the second solution temperature with good response by the heat exchanger, and the absolute viscosity can be measured with high accuracy while maintaining the second solution temperature by the warmer. be able to.
【0027】請求項2に対応する効果:主流路から分岐
した温度不安定な液体が流れる流管に接続され、前記液
体を定流量で圧送するポンプと、熱交換を促進させる伝
熱管と、第1液温を測定するための第1チャンバおよび
第1の細管を、一定な前記第1液温に制御された恒温槽
内に設け、前記流管内の液体の液温を第1液温に変換さ
せ、前記第1の細管の両端差圧から液体の前記第1液温
における絶対粘度を計測する第1液温用粘度計測部と、
前記流管を該第1液温用粘度計測部の下流側から前記恒
温槽外に導出し、該流管を流れる前記第1液温の液体を
該第1液温と異なる第2液温に変換する熱交換器と、該
第2液温を測定するための第2チャンバと、該第2チャ
ンバに近接して接続された第2の細管と、該第2チャン
バ内の第2液温と該第2の細管内の液温との温度差を生
じさせないための保温器とを設け、前記第2の細管の両
端差圧から液体の前記第2液温における絶対粘度を計測
する第2液温用粘度計測部とからなり、該第2液温用粘
度計測部の下流側に接続された前記流管を前記主流路内
に開口し、前記液体を主流路内に戻すようにしたので、
請求項1の効果の他に、温度不安定なサンプル液の場合
でも、伝熱性の優れた熱容量の大きい恒温槽内で応答よ
く第1液温に制御することができる。According to a second aspect of the present invention, there is provided a pump connected to a flow pipe through which a temperature-unstable liquid branched from the main flow path flows to pump the liquid at a constant flow rate, a heat transfer pipe for promoting heat exchange, A first chamber and a first thin tube for measuring one liquid temperature are provided in a constant temperature chamber controlled at a constant first liquid temperature, and the liquid temperature of the liquid in the flow tube is converted into the first liquid temperature. A first liquid temperature viscosity measuring unit for measuring an absolute viscosity of the liquid at the first liquid temperature from a differential pressure between both ends of the first thin tube;
The flow pipe is led out of the constant temperature bath from the downstream side of the first liquid temperature viscosity measurement unit, and the liquid of the first liquid temperature flowing through the flow pipe is set to a second liquid temperature different from the first liquid temperature. A heat exchanger to be converted, a second chamber for measuring the second liquid temperature, a second thin tube connected in close proximity to the second chamber, and a second liquid temperature in the second chamber. A second liquid for measuring an absolute viscosity of the liquid at the second liquid temperature from a pressure difference between both ends of the second thin tube, provided with a warmer for preventing a temperature difference from a liquid temperature in the second thin tube; A liquid viscosity measuring section, and the flow tube connected to the downstream side of the second liquid temperature viscosity measuring section was opened in the main flow path, and the liquid was returned to the main flow path.
In addition to the effect of the first aspect, even in the case of a sample liquid whose temperature is unstable, it is possible to control the first liquid temperature with good responsiveness in a thermostatic chamber having excellent heat conductivity and a large heat capacity.
【0028】請求項3に対応する効果:請求項1または
請求項2の発明において、前記第2液温用粘度計測部
は、前記第1液温用粘度計測部と着脱自在に接続できる
ようにしたので、弁操作により、第1液温用粘度計測部
単体で第1液温における粘度測定が可能となる。また、
既存された1点温度の細管式粘度計の流路に一部改良を
施して、第2液温用粘度計測部を接続することにより、
容易に1点温度の細管式粘度計から、2点温度の細管式
粘度計にすることができる。According to a third aspect of the present invention, in the first or second aspect of the present invention, the second liquid temperature viscosity measuring section can be detachably connected to the first liquid temperature viscosity measuring section. Accordingly, the viscosity measurement at the first liquid temperature can be performed by the first liquid temperature viscosity measurement unit alone by operating the valve. Also,
By partially improving the flow path of the existing one-point temperature capillary viscometer and connecting the second liquid temperature viscosity measurement unit,
A one-point temperature capillary viscometer can easily be changed to a two-point temperature capillary viscometer.
【図1】 請求項1の発明による細管式粘度計の実施形
態例を説明するための構成図である。FIG. 1 is a configuration diagram for describing an embodiment of a capillary viscometer according to the invention of claim 1;
【図2】 請求項2の発明による細管式粘度計の実施形
態例を説明するための図である。FIG. 2 is a view for explaining an embodiment of a capillary viscometer according to the invention of claim 2;
1…サンプル液容器、2…サンプル液流路、2a〜2c
…弁、3…定量ポンプ、4…同期電動機、5…スタータ
BOX、6…第1の測温抵抗体、7…第1の細管、8…
第1の差圧検出器、9…第2の細管、10…第2の差圧
検出器、11…第2の測温抵抗体、12…チャンバ、1
3…保温BOX、14…熱交換器、15a,15b…熱
交換液流路、16…調整弁、17…演算用BOX、18
…第1の液温信号、19…第1の差圧信号、20…第2
の液温信号、21…第2の差圧信号、22…密度測定時
の温度信号、23…密度信号、30…第1液温用粘度測
定部、31…第2液温用粘度測定部、32…恒温槽、3
3…撹拌装置、34…ヒータ、35…恒温槽32の温度
コントロール用測温抵抗体、36…伝熱管、40…サン
プル液流入口、41…サンプル液流出口、42…入口
弁、43…出口弁、50…コントロールBOX。1: Sample liquid container, 2: Sample liquid flow path, 2a to 2c
... Valve, 3 ... Meter pump, 4 ... Synchronous motor, 5 ... Starter BOX, 6 ... First resistance temperature detector, 7 ... First thin tube, 8 ...
1st differential pressure detector, 9 ... second capillary, 10 ... second differential pressure detector, 11 ... second resistance temperature detector, 12 ... chamber, 1
3 ... Heat-retaining BOX, 14 ... Heat exchanger, 15a, 15b ... Heat exchange liquid flow path, 16 ... Adjustment valve, 17 ... Calculation BOX, 18
... first liquid temperature signal, 19 ... first differential pressure signal, 20 ... second
Liquid temperature signal, 21 ... second differential pressure signal, 22 ... temperature signal at the time of density measurement, 23 ... density signal, 30 ... first liquid temperature viscosity measurement unit, 31 ... second liquid temperature viscosity measurement unit, 32 ... constant temperature bath, 3
DESCRIPTION OF SYMBOLS 3 ... Stirrer, 34 ... Heater, 35 ... Temperature measuring resistor for temperature control of thermostat 32, 36 ... Heat transfer tube, 40 ... Sample liquid inlet, 41 ... Sample liquid outlet, 42 ... Inlet valve, 43 ... Exit Valve, 50 ... control box.
Claims (3)
に、一端が前記容器内で開口する流管と、該流管に前記
液体を定流量で圧送するポンプおよび第1の細管を設
け、該第1の細管の両端差圧から前記液体の第1液温に
おける絶対粘度を計測する第1液温用粘度計測部と、前
記流管を該第1液温用粘度計測部の下流側から前記容器
外に導出し、該流管を流れる前記第1液温の液体を該第
1液温と異なる第2液温に変換する熱交換器と、該第2
液温を測定するためのチャンバと、該チャンバに近接し
て接続された第2の細管と、該チャンバ内の第2液温と
該第2の細管内の液温との温度差を生じさせないための
保温器とを設け、前記第2の細管の両端差圧から液体の
前記第2液温における絶対粘度を計測する第2液温用粘
度計測部とからなり、該第2液温用粘度計測部の下流側
に接続された前記流管を前記容器内に開口し、前記液体
を前記容器内に戻すことを特徴とする細管式粘度計。1. A flow tube having one end opened in a container through which a liquid having a substantially constant first liquid temperature flows, a pump for pumping the liquid to the flow tube at a constant flow rate, and a first thin tube. A first liquid temperature viscosity measurement unit that measures the absolute viscosity of the liquid at a first liquid temperature from a pressure difference between both ends of the first thin tube; and a flow tube that is connected to the first liquid temperature viscosity measurement unit. A heat exchanger that is led out of the vessel from a downstream side and converts the liquid at the first liquid temperature flowing through the flow tube into a second liquid temperature different from the first liquid temperature;
A chamber for measuring the liquid temperature, a second capillary connected in close proximity to the chamber, and no temperature difference between the second liquid temperature in the chamber and the liquid temperature in the second capillary. And a second liquid temperature viscosity measuring unit for measuring the absolute viscosity of the liquid at the second liquid temperature from the pressure difference between both ends of the second thin tube, and the second liquid temperature viscosity A capillary viscometer, wherein the flow tube connected to a downstream side of a measuring unit is opened in the container, and the liquid is returned into the container.
流れる流管に接続され、前記液体を定流量で圧送するポ
ンプと、熱交換を促進させる伝熱管と、第1液温を測定
するための第1チャンバおよび第1の細管を、一定な前
記第1液温に制御された恒温槽内に設け、前記流管内の
液体の液温を第1液温に変換させ、前記第1の細管の両
端差圧から液体の前記第1液温における絶対粘度を計測
する第1液温用粘度計測部と、前記流管を該第1液温用
粘度計測部の下流側から前記恒温槽外に導出し、該流管
を流れる前記第1液温の液体を該第1液温と異なる第2
液温に変換する熱交換器と、該第2液温を測定するため
の第2チャンバと、該第2チャンバに近接して接続され
た第2の細管と、該第2チャンバ内の第2液温と該第2
の細管内の液温との温度差を生じさせないための保温器
とを設け、前記第2の細管の両端差圧から液体の前記第
2液温における絶対粘度を計測する第2液温用粘度計測
部とからなり、該第2液温用粘度計測部の下流側に接続
された前記流管を前記主流路内に開口し、前記液体を主
流路内に戻すことを特徴とする細管式粘度計。2. A pump connected to a flow pipe through which a temperature-unstable liquid branched from the main flow path flows for pumping the liquid at a constant flow rate, a heat transfer pipe for promoting heat exchange, and measuring a first liquid temperature. A first chamber and a first thin tube are provided in a constant temperature bath controlled at a constant first liquid temperature, and the liquid temperature of the liquid in the flow tube is converted to a first liquid temperature, and A first liquid temperature viscosity measurement unit for measuring the absolute viscosity of the liquid at the first liquid temperature from the pressure difference between both ends of the thin tube, and the flow tube is connected to the outside of the constant temperature bath from a downstream side of the first liquid temperature viscosity measurement unit. And the liquid having the first liquid temperature flowing through the flow tube is changed to a second liquid having a different liquid temperature from the first liquid temperature.
A heat exchanger for converting to a liquid temperature, a second chamber for measuring the second liquid temperature, a second thin tube connected in close proximity to the second chamber, and a second capillary in the second chamber. Liquid temperature and the second
A second liquid temperature viscosity for measuring an absolute viscosity of the liquid at the second liquid temperature from a pressure difference between both ends of the second thin tube by providing a warmer for preventing a temperature difference from a liquid temperature in the thin tube. A capillary tube comprising a measuring unit, wherein the flow tube connected to the downstream side of the second liquid temperature viscosity measuring unit is opened in the main flow path, and the liquid is returned into the main flow path. Total.
液温用粘度計測部と着脱自在に接続できることを特徴と
する請求項1または請求項2記載の細管式粘度計。3. The first liquid temperature viscosity measuring section according to claim 1, wherein
3. The capillary viscometer according to claim 1, wherein the capillary viscometer can be detachably connected to a liquid temperature viscosity measuring unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18287696A JP3429627B2 (en) | 1996-07-12 | 1996-07-12 | Capillary viscometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18287696A JP3429627B2 (en) | 1996-07-12 | 1996-07-12 | Capillary viscometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1026582A true JPH1026582A (en) | 1998-01-27 |
JP3429627B2 JP3429627B2 (en) | 2003-07-22 |
Family
ID=16125974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18287696A Expired - Fee Related JP3429627B2 (en) | 1996-07-12 | 1996-07-12 | Capillary viscometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3429627B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101233280B1 (en) * | 2011-01-18 | 2013-02-22 | 경상대학교산학협력단 | Capillary type digital viscometer |
-
1996
- 1996-07-12 JP JP18287696A patent/JP3429627B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101233280B1 (en) * | 2011-01-18 | 2013-02-22 | 경상대학교산학협력단 | Capillary type digital viscometer |
Also Published As
Publication number | Publication date |
---|---|
JP3429627B2 (en) | 2003-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5172585A (en) | Continuously operating capillary rheometer apparatus with minimized response-time lag | |
US5877409A (en) | Method and system for determining viscosity index | |
Christensen et al. | Isothermal, isobaric, elevated temperature, high‐pressure, flow calorimeter | |
US20150316401A1 (en) | Thermal, flow measuring apparatus and method for determining and/or monitoring flow of a medium | |
US6953280B2 (en) | Calorimeter | |
JPS60225213A (en) | Method of adjusting fixed temperature for liquid and thermostat | |
CN109781779B (en) | Method and device suitable for measuring specific constant pressure heat capacity of dissolved gas fluid | |
CN109781782A (en) | A kind of desktop type self-water-supplying heat exchanger performance test device | |
KR970007816B1 (en) | Calorimeter | |
US5731508A (en) | Calibrating gas generator | |
Nagendra et al. | Free convection heat transfer from vertical cylinders and wires | |
Nagendra | Interaction of free and forced convection in horizontal tubes in the transition regime | |
JPH1026582A (en) | Capillary-type viscosimeter | |
US4720196A (en) | Method and apparatus for measuring the heating power of combustible gases | |
US2834200A (en) | Continuous automatic viscosimeter | |
US7865314B1 (en) | Method for determining the salt content of liquid and device for carrying out said method | |
Merlone et al. | A liquid bath for accurate temperature measurements | |
JP2620711B2 (en) | Precision calorimeter | |
CN113984316B (en) | Automobile part pressure pulsation test device | |
JP2001515207A (en) | Method and apparatus for measuring concentration of ice / liquid mixture | |
JP2003344324A (en) | Isopiestic specific heat measurement method and apparatus therefor for high pressure fluid | |
SU1223110A1 (en) | Method of determining temperature conduction of liquid | |
SU817562A1 (en) | Device for analysis of moving liquid | |
RU1789882C (en) | Method of determining boiling heat transfer coefficient | |
SU803646A1 (en) | Method for estimating quantity of liquid in two-phase liquid flow boundary film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090516 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090516 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100516 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100516 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120516 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140516 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |