[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1013730A - Video camera - Google Patents

Video camera

Info

Publication number
JPH1013730A
JPH1013730A JP8185509A JP18550996A JPH1013730A JP H1013730 A JPH1013730 A JP H1013730A JP 8185509 A JP8185509 A JP 8185509A JP 18550996 A JP18550996 A JP 18550996A JP H1013730 A JPH1013730 A JP H1013730A
Authority
JP
Japan
Prior art keywords
infrared light
light image
visible light
video signal
image signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8185509A
Other languages
Japanese (ja)
Inventor
Fumio Nihei
文雄 仁平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP8185509A priority Critical patent/JPH1013730A/en
Publication of JPH1013730A publication Critical patent/JPH1013730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize sufficient focal accuracy even when contrast of an object is low by properly selecting a visual light video signal and an infrared ray video signal. SOLUTION: An output S1 of a visual light CCD 5 is given to a visual light image signal processing circuit 7, in which a visual light video signal S3 is obtained, and on the other hand, an output S2 of an infrared ray CCD 4 is given to an infrared ray image signal processing circuit 8, in which a infrared ray video signal S4 is obtained and they are fed to a video changeover control section 9 and an automatic focus control means 10. The video changeover control section 9 gives usually the visual light video signal S3 to a view finder 11 and a recorder 12, but when the infrared ray video signal S4 is more effective than the visual light video signal S3, the infrared ray video signal S4 is fed to both or one of the view finder 11 and the recorder 12 automatically. The comparison of the effectiveness of the visual light video signal S3 and the infrared ray video signal S4 is conducted based on a signal C1 from an automatic focus control means 10 and either of the signals is selected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ビデオカメラ、電
子スチルカメラに関し、特にそのオートフォーカス機能
の改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a video camera and an electronic still camera, and more particularly to an improvement in an autofocus function thereof.

【0002】[0002]

【従来の技術】一般的に、民生用のビデオカメラは、そ
の便利さから被写体に対して自動的に合焦させる、オー
トフォーカス機能を持っている。その原理は、映像信号
に含まれる高域成分が増加する方向に撮影光学系の一部
を移動させ、又は、撮影光学系と撮像素子との相対距離
を変化させ、映像信号の高域成分の最大値を以て合焦と
判断するものであり、所謂山登り方式又はビデオAFと
呼ばれている方式ある。なお、この他にも、 1.超音波の反射波到達時間から被写体までの距離を測
定し、結像光学系を移動して合焦を行う所謂ソナー方式
と呼ばれる方式。 2.撮影用光学系と一緒に移動する別の結像光学系を持
ち、その焦点に置いた瞳分割レンズとラインセンサーに
より、焦点のズレを検出し、結像光学系を移動して合焦
を行う所謂位相差検出方式と呼ばれる方式。 3.撮影用光学系とは別にオートフォーカス用結像光学
系とラインセンサーを持ち、赤外光束を被写体に投影
し、被写体上の赤外光像をラインセンサーで検出して被
写体の距離を測定する、所謂三角測量方式と呼ばれる方
法。 等があるが、オートフォーカス専用の部品が要らないこ
とや、撮影光学系の焦点距離が望遠側に伸びても、合焦
精度が低下しないこと、画面の中における合焦エリア
が、ズーミングに伴う焦点距離の変化によって変化しな
いことなどから、先に述べた所謂ビデオAFが主流とな
っている。
2. Description of the Related Art In general, a consumer video camera has an autofocus function for automatically focusing on a subject because of its convenience. The principle is that a part of the imaging optical system is moved in a direction in which the high frequency component included in the video signal increases, or the relative distance between the imaging optical system and the image sensor is changed, and the high frequency component of the video signal is Focusing is determined based on the maximum value, and there is a so-called hill-climbing method or a method called video AF. In addition, in addition to this, 1. A so-called sonar system in which the distance to the subject is measured from the time of arrival of the reflected ultrasonic wave, and the imaging optical system is moved for focusing. 2. It has another imaging optical system that moves together with the shooting optical system, and the pupil division lens and the line sensor at the focal point detect the focus shift and move the imaging optical system to focus. A method called a so-called phase difference detection method. 3. It has an imaging optical system for autofocus and a line sensor separately from the optical system for shooting, projects infrared light onto the subject, detects the infrared light image on the subject with the line sensor, and measures the distance to the subject. A so-called triangulation method. However, there is no need for autofocus-specific parts, even if the focal length of the photographic optical system extends to the telephoto side, the focusing accuracy does not decrease, and the focusing area in the screen is associated with zooming. The so-called video AF described above is mainly used because it does not change due to a change in the focal length.

【0003】[0003]

【発明が解決しようとする課題】上に説明したように、
所謂ビデオAFは多くの特長を有しているが、被写体の
照度が低かったり、照度が充分あっても被写体に一定レ
ベル以上のコントラストがないと合焦できなかったり、
合焦精度が低下するという問題点を有している。例え
ば、結婚披露宴で行われるキャンドルサービスは、照明
を落とした会場で、新郎新婦が各テーブルのローソクに
点火して回る。その際、点火の直前にスポット照明が落
とされ、点火と同時にスポット照明が当てられる。点火
前は暗すぎるため、被写体である新郎新婦にコントラス
トを検出できず、オートフォーカスは迷い続ける。とこ
ろが、ローソクに点火され、新郎新婦に照明が当てられ
た瞬間、画面はピンボケ状態であり、その後被写体のコ
ントラストを検出して新郎新婦に合焦する。また、照明
が落ちている場合でも、会場の中には小さなライトや非
常口表示等があるため、オートフォーカスが迷い続ける
場合も生じる。このような見苦しい撮影をしないために
は、オートフォーカス機能を停止させ、マニュアルフォ
ーカスで撮影することも考えられるが、暗い会場内で電
子ビューファインダーを覗きながら、マニュアルフォー
カスすることは困難を伴う。
SUMMARY OF THE INVENTION As explained above,
The so-called video AF has many features, but the illuminance of the subject is low, or even if the illuminance is sufficient, the subject cannot be focused without a certain level of contrast,
There is a problem that the focusing accuracy is reduced. For example, in a candle service at a wedding reception, the bride and groom ignite the candles at each table and turn around in a venue where lights are turned off. At that time, the spot illumination is turned off immediately before the ignition, and the spot illumination is applied simultaneously with the ignition. Before the ignition is too dark, the contrast cannot be detected for the bride and groom who are the subjects, and the autofocus continues to be lost. However, the moment the candle is lit and the bride and groom are illuminated, the screen is out of focus, and then the contrast of the subject is detected to focus on the bride and groom. In addition, even when the lighting is down, there is a case where the autofocus continues to be lost because small lights and emergency exit signs are present in the venue. In order to prevent such unsightly shooting, it is conceivable to stop the auto focus function and shoot with manual focus. However, it is difficult to manually focus while looking through the electronic viewfinder in a dark venue.

【0004】[0004]

【課題を解決するための手段】本願発明は、斯かる問題
に鑑みなされたものであり、請求項1に係る発明は、
「撮影光学系と、該撮影光学系によって結像する像を可
視光像と赤外光像とに分離するダイクロイックミラー
と、該ダイクロイックミラーによって分離結像した可視
光像を光電変換する可視光用撮像素子と、該ダイクロイ
ックミラーによって分離結像した赤外光像を光電変換す
る赤外光用撮像素子と、該可視光用撮像素子の出力を可
視光映像信号に変換する可視光像信号処理回路と、該赤
外光用撮像素子の出力を赤外光映像信号に変換する赤外
光像信号処理回路と、該可視光映像信号又は該赤外光映
像信号の高域成分をもとに、該高域成分が増加する方向
に該撮影光学系の一部を移動させ又は、該撮影光学系と
該可視光用撮像素子又は該赤外光用撮像素子との相対距
離を変化させて合焦動作を行うオートフォーカス制御手
段と、被写体を赤外光で照明する赤外光放射手段と、該
可視光映像信号による合焦が困難な場合に、該赤外光放
射手段を動作させて被写体を照明し、該赤外光映像信号
により、合焦動作を行うモードとを備えたビデオカメ
ラ。」を提供するものであり、
Means for Solving the Problems The present invention has been made in view of such a problem.
"A photographing optical system, a dichroic mirror for separating an image formed by the photographing optical system into a visible light image and an infrared light image, and a visible light for photoelectrically converting the visible light image separated and formed by the dichroic mirror. An image sensor, an infrared image sensor for photoelectrically converting an infrared image separated and formed by the dichroic mirror, and a visible light image signal processing circuit for converting an output of the visible light image sensor into a visible light video signal And an infrared light image signal processing circuit that converts the output of the infrared light image sensor into an infrared light image signal, based on the high-frequency component of the visible light image signal or the infrared light image signal, Move a part of the photographing optical system in a direction in which the high-frequency component increases, or change the relative distance between the photographing optical system and the visible light image sensor or the infrared light image sensor to focus. Auto focus control means for performing operations and infrared An infrared light radiating means for illuminating the object and illuminating a subject by operating the infrared light radiating means when focusing by the visible light image signal is difficult, and performing a focusing operation by the infrared light image signal And a video camera equipped with a mode for performing

【0005】請求項2に係る発明は、「撮影光学系と、
該撮影光学系によって結像する像を可視光像と赤外光像
とに分離するダイクロイックミラーと、該ダイクロイッ
クミラーによって分離結像した可視光像を光電変換する
可視光用撮像素子と、該ダイクロイックミラーによって
分離結像した赤外光像を光電変換する赤外光用撮像素子
と、該可視光用撮像素子の出力を可視光映像信号に変換
する可視光像信号処理回路と、該赤外光用撮像素子の出
力を赤外光映像信号に変換する赤外光像信号処理回路
と、該可視光映像信号又は該赤外光映像信号の高域成分
をもとに、該高域成分が増加する方向に該撮影光学系の
一部を移動させ又は、該撮影光学系と該可視光用撮像素
子又は該赤外光用撮像素子との相対距離を変化させて合
焦動作を行うオートフォーカス制御手段と、赤外光パタ
ーンを被写体に投光する赤外光発光手段と、該可視光映
像信号による合焦が困難な場合に、該赤外光発光手段を
動作させて被写体に該赤外光パターンを投光し、該赤外
光映像信号により、合焦動作を行うモードとを備えたビ
デオカメラ。」を提供するものである。
According to a second aspect of the present invention, there is provided an image-taking optical system comprising:
A dichroic mirror for separating an image formed by the photographing optical system into a visible light image and an infrared light image, a visible light image sensor for photoelectrically converting the visible light image separated and formed by the dichroic mirror, and the dichroic An infrared light image sensor for photoelectrically converting an infrared light image separated and formed by a mirror, a visible light image signal processing circuit for converting an output of the visible light image sensor to a visible light image signal, An infrared light image signal processing circuit for converting an output of the imaging device for use into an infrared light image signal, and the high frequency component increases based on the high frequency component of the visible light image signal or the infrared light image signal. Autofocus control for moving a part of the photographing optical system in the direction in which the photographing optical system is moved or changing a relative distance between the photographing optical system and the visible light image sensor or the infrared light image sensor to perform a focusing operation. Means and an infrared light pattern projected on the subject An infrared light emitting means, and when focusing by the visible light image signal is difficult, the infrared light emitting means is operated to project the infrared light pattern on a subject, and the infrared light image signal And a mode for performing a focusing operation. ”.

【0006】[0006]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について説明する。図1は、本願発明の実施の
形態を示すブロック図である。同図において、1は撮影
光学系であり、この例ではフォーカスレンズ1aがフォ
ーカスモータ2に駆動されて光軸方向に移動することに
より合焦動作が行われる。撮影光学系1の焦点付近に
は、赤外光を反射し可視光を透過するダイクロイックミ
ラー3aが形成されたプリズム3が設けられており、こ
のプリズム3は、赤外光束と可視光束とを分離して、赤
外光用CCD4、可視光用CCD5にそれぞれ入射させ
る。なお、6は、プリズム3と可視光用CCD5の間に
設けた光学的ローパスフィルターである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a photographing optical system. In this example, a focus lens 1a is driven by a focus motor 2 and moves in the optical axis direction to perform a focusing operation. A prism 3 having a dichroic mirror 3a that reflects infrared light and transmits visible light is provided near the focal point of the imaging optical system 1. This prism 3 separates an infrared light beam and a visible light beam. Then, the light is incident on the CCD 4 for infrared light and the CCD 5 for visible light, respectively. Reference numeral 6 denotes an optical low-pass filter provided between the prism 3 and the visible light CCD 5.

【0007】可視光用CCD5の出力S1は可視光像信
号処理回路7で、可視光映像信号S3となり、映像切替
制御部9及びオートフォーカス制御手段10に送られ
る。他方、赤外光用CCD4の出力S2は赤外光像信号
処理回路8で、赤外光映像信号S4となり、映像切替制
御部9及びオートフォーカス制御手段10に送られる。
映像切替制御部9では、通常時には可視光映像信号S3
をビューファインダー11及び記録装置12に送るが、
可視光映像信号S3よりも赤外光映像信号S4が有効で
ある場合には自動的に赤外光映像信号S4をビューファ
インダー11と記録装置12の両方、又は一方に送る。
ここで、可視光映像信号S3と赤外光映像信号S4との
有効性の比較判断は種々の方法が考えられるが、この例
では、オートフォーカス制御手段10からの信号C1に
より、これらの映像信号を切り替えるようになってい
る。
The output S1 of the visible light CCD 5 is converted into a visible light image signal S3 by a visible light image signal processing circuit 7 and sent to an image switching control section 9 and an auto focus control means 10. On the other hand, the output S2 of the infrared light CCD 4 is converted into an infrared light image signal S4 by the infrared light image signal processing circuit 8, and sent to the image switching control section 9 and the auto focus control means 10.
The video switching control unit 9 normally uses the visible light video signal S3
Is sent to the viewfinder 11 and the recording device 12,
If the infrared light image signal S4 is more effective than the visible light image signal S3, the infrared light image signal S4 is automatically sent to the viewfinder 11 and / or the recording device 12.
Here, various methods can be considered for comparing and judging the validity of the visible light video signal S3 and the infrared light video signal S4. In this example, the video signal S3 and the infrared light video signal S4 are determined by the signal C1 from the autofocus control means 10. Is switched.

【0008】すなわち、オートフォーカス制御手段10
では、フォーカスレンズ1aを所定の間隔ピッチで移動
させつつ可視光映像信号S3、赤外光映像信号S4から
それぞれ高域成分を抽出して移動の前後における高域成
分の差分ΔS3、ΔS4を求めており、この差分が正の
値であれば更に同方向に1ピッチ、フォーカスレンズ1
aを移動し、この差分が負の値であれば移動方向を反転
するという制御が行われる。そして、可視光映像信号S
3、赤外光映像信号S4の何れの信号を採用してこの制
御を行うかは、フォーカスレンズ1aの任意の移動ステ
ップにおける差分ΔS3、ΔS4の大小比較を行い、大
きい差分が得られる映像信号を採用すればよい。一般
に、差分が大きい方が信頼性の高い信号と考えられるか
らである。従って、ΔS3<ΔS4、ΔS3>ΔS4に
対応して信号C1の値をH,Lとすることにより、映像
切替制御部9で映像信号を切り替えることができる。勿
論この切替は、撮影者の任意により手動でも切り替えら
れるようにしてもい。
That is, the auto focus control means 10
Then, the high-frequency components are extracted from the visible light image signal S3 and the infrared light image signal S4 while moving the focus lens 1a at a predetermined pitch, and the differences ΔS3 and ΔS4 of the high-frequency components before and after the movement are obtained. If the difference is a positive value, the focus lens 1 is further moved in the same direction by one pitch.
is moved, and if the difference is a negative value, control is performed to reverse the moving direction. Then, the visible light video signal S
3. Which signal of the infrared light image signal S4 is to be used for this control is determined by comparing the magnitudes of the differences ΔS3 and ΔS4 in an arbitrary moving step of the focus lens 1a, Adopt it. This is because generally, a signal having a larger difference is considered to be a signal having higher reliability. Therefore, by setting the value of the signal C1 to H or L in accordance with ΔS3 <ΔS4, ΔS3> ΔS4, the video switching control unit 9 can switch the video signal. Of course, this switching may be manually performed by the photographer.

【0009】オートフォーカス制御手段10では、通常
時には可視光映像信号S3に基づいて、フォーカスモー
タ2を制御し、オートフォーカス動作をしているが、被
写体照度が暗く、可視光映像信号S3によっては正しく
合焦できない場合は、赤外映像信号S4に基づいて、フ
ォーカスモータ2を制御し、オートフォーカス動作をす
るように、自動的に切り替える。
Normally, the autofocus control means 10 controls the focus motor 2 based on the visible light image signal S3 to perform an autofocus operation. When focusing cannot be performed, the focus motor 2 is controlled based on the infrared video signal S4, and the focus motor 2 is automatically switched to perform an autofocus operation.

【0010】更に、赤外光映像信号S4に基づいても正
しく合焦できない場合は、オートフォーカス制御手段1
0は赤外光放射手段13を動作させ、被写体を赤外光に
よって照明し、赤外光映像信号S4に基づいてフォーカ
スモータ2を制御し、オートフォーカス動作をする。
Further, if focusing cannot be performed correctly based on the infrared light image signal S4, the auto focus control means 1
0 operates the infrared light emitting means 13 to illuminate the subject with infrared light, controls the focus motor 2 based on the infrared light image signal S4, and performs an autofocus operation.

【0011】更に、赤外光で被写体を照明した状態で
も、赤外光映像信号S4に基づく合焦が正しく行えない
場合は、赤外光放射手段13を動作させ、赤外パターン
を被写体に投光し、赤外光映像信号S4に基づいて、フ
ォーカスモータ2を制御し、オートフォーカス動作をす
る。なお、ここで赤外パターンの一例としては、撮像素
子の主走査方向に直交する方向のスリット状のパターン
14を用いることができる。また、このようなパターン
を被写体に投光するためには、赤外光放射手段13の投
影レンズの大略焦点面上にスリットを配置すればよい。
以上の切替は自動的に行われるが、撮影者の操作によ
り、手動で切り替えるようにしてもよいことは勿論であ
る。
Furthermore, even if the subject is illuminated with infrared light, if focusing based on the infrared light image signal S4 cannot be performed correctly, the infrared light emitting means 13 is operated to project an infrared pattern onto the subject. The focus motor 2 is controlled based on the infrared light image signal S4 to perform an autofocus operation. Here, as an example of the infrared pattern, a slit-shaped pattern 14 in a direction orthogonal to the main scanning direction of the image sensor can be used. In order to project such a pattern on a subject, a slit may be arranged on a substantially focal plane of the projection lens of the infrared light emitting means 13.
Although the above switching is performed automatically, it is needless to say that the switching may be manually performed by the operation of the photographer.

【0012】[0012]

【発明の効果】以上説明したように本発明のビデオカメ
ラによれば、被写体照度が低い状態、被写体のコントラ
ストが低い状態等においても合焦動作のために高域成分
を抽出すべき映像信号として、可視光映像信号と赤外光
映像信号とを適宜選択することにより、充分な合焦精度
を実現することができるという効果を奏する。
As described above, according to the video camera of the present invention, even when the illuminance of the subject is low, the contrast of the subject is low, or the like, the video signal from which the high frequency component should be extracted for the focusing operation. By selecting the visible light image signal and the infrared light image signal appropriately, there is an effect that sufficient focusing accuracy can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明のビデオカメラの実施の形態を示すブ
ロック図である。
FIG. 1 is a block diagram showing an embodiment of a video camera according to the present invention.

【符号の説明】[Explanation of symbols]

1 撮影光学系 2 フォーカスモータ 3 プリズム 4 赤外光用CCD 5 可視光用CCD 6 光学的ローパスフィルター 7 可視光像信号処理回路 8 赤外光像信号処理回路 9 映像切替制御部 10 オートフォーカス制御手段 11 ビューファインダー 12 記録装置 13 赤外光放射手段 REFERENCE SIGNS LIST 1 shooting optical system 2 focus motor 3 prism 4 infrared light CCD 5 visible light CCD 6 optical low-pass filter 7 visible light image signal processing circuit 8 infrared light image signal processing circuit 9 video switching control unit 10 auto focus control means DESCRIPTION OF SYMBOLS 11 View finder 12 Recording device 13 Infrared light emission means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】撮影光学系と、 該撮影光学系によって結像する像を可視光像と赤外光像
とに分離するダイクロイックミラーと、 該ダイクロイックミラーによって分離結像した可視光像
を光電変換する可視光用撮像素子と、 該ダイクロイックミラーによって分離結像した赤外光像
を光電変換する赤外光用撮像素子と、 該可視光用撮像素子の出力を可視光映像信号に変換する
可視光像信号処理回路と、 該赤外光用撮像素子の出力を赤外光映像信号に変換する
赤外光像信号処理回路と、 該可視光映像信号又は該赤外光映像信号の高域成分をも
とに、該高域成分が増加する方向に該撮影光学系の一部
を移動させ又は、該撮影光学系と該可視光用撮像素子又
は該赤外光用撮像素子との相対距離を変化させて合焦動
作を行うオートフォーカス制御手段と、 被写体を赤外光で照明する赤外光放射手段と、 該可視光映像信号による合焦が困難な場合に、該赤外光
放射手段を動作させて被写体を照明し、該赤外光映像信
号により、合焦動作を行うモードとを備えたビデオカメ
ラ。
An image pickup optical system, a dichroic mirror for separating an image formed by the image pickup optical system into a visible light image and an infrared light image, and a visible light image separated and formed by the dichroic mirror is photoelectrically converted. An imaging device for visible light, an infrared imaging device for photoelectrically converting an infrared light image separated and formed by the dichroic mirror, and a visible light for converting an output of the imaging device for visible light into a visible light video signal An image signal processing circuit; an infrared light image signal processing circuit for converting an output of the infrared light image pickup device into an infrared light image signal; and a high frequency component of the visible light image signal or the infrared light image signal. Originally, a part of the photographing optical system is moved in a direction in which the high frequency component increases, or the relative distance between the photographing optical system and the visible light image sensor or the infrared light image sensor is changed. Auto focus control means for performing a focusing operation by An infrared light radiating means for illuminating the subject with infrared light; and when it is difficult to focus on the visible light video signal, the infrared light radiating means is operated to illuminate the subject, and the infrared light video signal And a mode for performing a focusing operation.
【請求項2】撮影光学系と、 該撮影光学系によって結像する像を可視光像と赤外光像
とに分離するダイクロイックミラーと、 該ダイクロイックミラーによって分離結像した可視光像
を光電変換する可視光用撮像素子と、 該ダイクロイックミラーによって分離結像した赤外光像
を光電変換する赤外光用撮像素子と、 該可視光用撮像素子の出力を可視光映像信号に変換する
可視光像信号処理回路と、 該赤外光用撮像素子の出力を赤外光映像信号に変換する
赤外光像信号処理回路と、 該可視光映像信号又は該赤外光映像信号の高域成分をも
とに、該高域成分が増加する方向に該撮影光学系の一部
を移動させ又は、該撮影光学系と該可視光用撮像素子又
は該赤外光用撮像素子との相対距離を変化させて合焦動
作を行うオートフォーカス制御手段と、 赤外光パターンを被写体に投光する赤外光発光手段と、 該可視光映像信号による合焦が困難な場合に、該赤外光
発光手段を動作させて被写体に該赤外光パターンを投光
し、該赤外光映像信号により、合焦動作を行うモードと
を備えたビデオカメラ。
A photographing optical system, a dichroic mirror for separating an image formed by the photographing optical system into a visible light image and an infrared light image, and a photoelectric conversion of the visible light image separated and formed by the dichroic mirror. An imaging device for visible light, an infrared imaging device for photoelectrically converting an infrared light image separated and formed by the dichroic mirror, and a visible light for converting an output of the imaging device for visible light into a visible light video signal An image signal processing circuit; an infrared light image signal processing circuit for converting an output of the infrared light image pickup device into an infrared light image signal; and a high frequency component of the visible light image signal or the infrared light image signal. Originally, a part of the photographing optical system is moved in a direction in which the high frequency component increases, or the relative distance between the photographing optical system and the visible light image sensor or the infrared light image sensor is changed. Auto focus control means for performing a focusing operation by An infrared light emitting means for projecting an infrared light pattern onto a subject; and when focusing by the visible light image signal is difficult, the infrared light emitting means is operated to project the infrared light pattern on the subject. A video camera that emits light and performs a focusing operation based on the infrared light video signal.
JP8185509A 1996-06-26 1996-06-26 Video camera Pending JPH1013730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8185509A JPH1013730A (en) 1996-06-26 1996-06-26 Video camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8185509A JPH1013730A (en) 1996-06-26 1996-06-26 Video camera

Publications (1)

Publication Number Publication Date
JPH1013730A true JPH1013730A (en) 1998-01-16

Family

ID=16172035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8185509A Pending JPH1013730A (en) 1996-06-26 1996-06-26 Video camera

Country Status (1)

Country Link
JP (1) JPH1013730A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003017647A1 (en) * 2001-08-20 2003-02-27 Sony Corporation Still image pickup device and pickup method
JP2008276017A (en) * 2007-05-01 2008-11-13 Sony Corp Imaging apparatus and method, and program
JP2011118415A (en) * 1999-05-26 2011-06-16 Daimler Ag Device for imaging color image
JP2021110778A (en) * 2020-01-07 2021-08-02 キヤノン株式会社 Imaging device and control method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011118415A (en) * 1999-05-26 2011-06-16 Daimler Ag Device for imaging color image
WO2003017647A1 (en) * 2001-08-20 2003-02-27 Sony Corporation Still image pickup device and pickup method
US7224396B2 (en) 2001-08-20 2007-05-29 Sony Corporation Still image pickup device and pickup method
KR100843818B1 (en) 2001-08-20 2008-07-04 소니 가부시끼 가이샤 Still image pickup device and pickup method
JP2008276017A (en) * 2007-05-01 2008-11-13 Sony Corp Imaging apparatus and method, and program
US8537264B2 (en) 2007-05-01 2013-09-17 Sony Corporation Image capturing apparatus, method, and program for performing an auto focus operation using invisible and visible light
JP2021110778A (en) * 2020-01-07 2021-08-02 キヤノン株式会社 Imaging device and control method therefor

Similar Documents

Publication Publication Date Title
US7405762B2 (en) Camera having AF function
JP3921069B2 (en) Imaging device
KR0138032B1 (en) Camera having red-eye reducing function
JP2004309866A (en) Automatic focusing device for camera
US7437065B2 (en) Imaging apparatus
JP4893334B2 (en) Image tracking device and imaging device
JP2006301150A (en) Automatic focusing device
JPH11326744A (en) Autofocusing camera
KR920003093A (en) Auto focus matching device
JPH1013730A (en) Video camera
JP2009088800A (en) Color imaging device
JP4170194B2 (en) Imaging device
JP2003270517A (en) Focus state detector
JP4847352B2 (en) Imaging apparatus and control method thereof
JPH09318871A (en) Auxiliary light projecting device and focus detector
JP4701837B2 (en) Automatic focus adjustment device
JP4272717B2 (en) Video camera system
KR200170178Y1 (en) Auto-distance measuring apparatus of passive type using added flash
JP2005300687A (en) Autofocus system
JP2009063606A (en) Autofocusing device, imaging device, projector autofocusing system, projector, and autofocusing method for projector
JP2004118141A (en) Autofocus system
JP3441931B2 (en) Automatic focus adjustment device, imaging device, imaging system, and recording medium
JP2006350253A (en) Single lens reflex type digital camera
JP2003215441A (en) Camera
JP6672841B2 (en) Camera with display device in viewfinder