[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0376828B2 - - Google Patents

Info

Publication number
JPH0376828B2
JPH0376828B2 JP60215864A JP21586485A JPH0376828B2 JP H0376828 B2 JPH0376828 B2 JP H0376828B2 JP 60215864 A JP60215864 A JP 60215864A JP 21586485 A JP21586485 A JP 21586485A JP H0376828 B2 JPH0376828 B2 JP H0376828B2
Authority
JP
Japan
Prior art keywords
weight
resin
pigment
chromium
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60215864A
Other languages
Japanese (ja)
Other versions
JPS6273938A (en
Inventor
Masateru Takimoto
Tamotsu Boda
Juichi Yoshida
Kazunobu Ookawa
Hideo Kawaguchi
Hideo Okuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Nippon Steel Corp
Original Assignee
Nippon Paint Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd, Sumitomo Metal Industries Ltd filed Critical Nippon Paint Co Ltd
Priority to JP21586485A priority Critical patent/JPS6273938A/en
Publication of JPS6273938A publication Critical patent/JPS6273938A/en
Publication of JPH0376828B2 publication Critical patent/JPH0376828B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶接性、加工性、耐食性に優れた塗装
積層体に係り、就中自動車ボデー用鋼材に適した
連続スポツト溶接性に優れ、高加工性、高耐食性
の塗装積層体に関するものである。 塗装を施して実際使用に供される各種機器、部
品等は一般に、加工、組立後において全体に塗装
が施される。ところがこのような加工、組立後の
塗装では、部位によつて十分な塗膜が得られない
ことがある。かる不利を解消するため従来より、
予め塗装した、いわゆる塗装鋼板が広く採用され
ている。ところが、この種塗装鋼板は普通、抵抗
溶接が不可能で、その組立てには、溶接以外の、
例えばボルト・ナツト等の固着手段を採用しなけ
ればならず、作業性、組立コストの点で不利が大
きい。 塗装鋼板スポツト溶接性という点からは塗膜が
電気導通性を有することが必要で、従来導電顔料
を用いることにより概ねその目的を達している。 しかしながら、自動車ボデー生産ラインの如く
高速かつ大量、省人のラインにおいては連続スポ
ツト溶接性が重要な課題となる。尚、連続スポツ
ト溶接性は、溶接回数の増大につれ電極が鋼板、
メツキ皮膜、塗膜組成物などで汚染され、その清
浄化や交換が必要となるので、該清浄化あるいは
交換を要するまでの溶接回数により評価せられ
る。 導電顔料を用いて塗膜に導電性をもたせる技術
(例えば特公昭52−44569号、特開昭58−138758
号、特開昭58−174582号等)あるいは顔料の工夫
により塗膜導電性をさらに向上させる技術(例え
ば特開昭51−79138号、特公昭58−19706号)など
ではスポツト溶接は可能であつても2000点あるい
はそれ以上の連続スポツト溶接性を確保するため
の要件、すなわち電極汚染対体する配慮がなく不
満足な結果となる。しかも近時の自動車生産工程
に於いては可及的に大なる、例えば2000〜5000点
の連続スポツト溶接性が要望せられる。 また塗装材のプレスまたは深絞り加工において
は、加工時に路膜が粉状に剥離しプレス機に付着
して加工キズ発生の原因となつたり、ブレス機清
掃の頻度が大となつたり、また加工時に塗膜が素
地から剥離し、あるいはクラツクを生じ該部位の
耐食性を低下せしめることがあつてはならない。
この塗膜の加工性を向上せしめる目的で無機ある
いは有機性潤滑剤を添加することは公知である。 しかしながら元来、溶接可能な塗膜は導電性確
保のため顔料リツチな組成となる傾向があつて、
例えば二硫化モリブデンや炭素、酸化鉛の様な無
機性顔料をその効果が充分発揮される量配合する
ことは、逆に塗膜の強度、加工性の低下につなが
るという問題がある。 また自動車などの生産においては通常ボデー各
部、例えばロツカーパネル、ドア、フエンダーな
どが鋼板からペレス加工で作られ、スポツト溶接
で組みたてられ、その後脱脂、リン酸塩処理を経
て電着塗装されるので、加工性、スポツト溶接性
と共に、電着塗膜との密着性ならびに耐食性の良
好なことが要求せられる。 また各パーツの合せ目、カド部分など電着塗装
が不充分となる部位などで耐食性が問題となる。
一般に導電顔料や潤滑剤を比較適多量に含む塗料
を適用すると塗膜の耐食性は低下する傾向があ
り、なかには導電顔料それ自体あるいはその分解
生成物が腐食促進効果を示すこともあるので、導
電顔料の種類、その使用条件などが高耐食性塗膜
を得るうえで特に重要である。 さらに、塗装鋼板の上述の塗膜密着性、耐食性
は、基体金属の性質に大きく依存する。従来の塗
装鋼板には、一般の冷延鋼板母材に、6価クロム
を含む被覆を施してから、Zn、Al等の電気伝導
性物質を含有する塗料を塗布したもの(特公昭47
−6882号)、そして母材にZnメツキ鋼板を使用し
て、各種導電性物質を含む塗料を塗布したもの
(特公昭54−11331号)、である。しかるにこれら
従来の溶接可能型塗装鋼板はその何れもが、上記
した如き用途向けとしては決して十分なものとは
云えない。冷延板使用の前者はまず、塗膜密着性
に難があり、冷えば自動車のフエンダー等の成形
加工は非常に高加工であるため塗膜が剥離する危
険が高い。これはそもそも、冷延母材と塗装下地
としてのクロメート皮膜との間の密着性が十分で
ないためである。更にこの塗装鋼板では、加工時
或いは使用中に塗膜損傷がおこると、母材に早期
に赤錆が発生し商品価値が損われるという耐食上
の問題もある。 後者の亜鉛メツキ鋼板使用ものものは、いわば
上記塗装鋼板の、とくに耐食性の問題の解決を意
図したもので、確かに耐赤錆性という点では優位
に立つ。しかしながら、亜鉛メツキ鋼板の耐食性
とは本来、腐食環境下において亜鉛が優先的に溶
解して鋼板素地の腐食を防ぐという、いわゆる犠
牲防食性に依存するものであつて、腐食環境によ
る亜鉛の溶解速度が大となるために、傷部或いは
端面部付近では塗膜下での亜鉛溶解が進行し、早
期に塗膜ふくれ(以下、ブリスターと云う)が生
じる傾向がある。このブリスターはこの種塗装鋼
板の商品化値を著しく損ねるものであるから、こ
の点が大きな問題となる。 近年、これら基体金属における問題を解決する
ために、ニツケル含有電気亜鉛メツキ鋼板(Ni
−Zn合金メツキ鋼板)が実用に供されつつある。 このNi−Zn合金メツキ鋼板は、犠牲防食性を
も有するが、その性格は薄く、電気化学的な防食
機能の方がはるかに強いもので、その裸の防食性
は一般の亜鉛メツキ鋼板を可成りうわまわるもの
である。このNi−Znメツキ鋼板の使用により、
冷延板を使つた場合と同等の塗装後の耐ブリスタ
ー性と、しかも耐食性も、亜鉛メツキ鋼板使用の
場合に対し大巾に向上することが期待されてい
る。 しかしながら、Ni−Zn合金メツキ層の高耐食
性の性質は、逆に一般に塗装下地処理に使用され
る薬剤との反応性を低下せしめ、形成される下地
皮膜と素地の密着性が低下し、充分な塗装後の品
質が得られない場合が多々あり、特に金属の不動
態化力の強い6価クロム含有型の下地処理の場合
には問題が大きい。 従つて本発明目的の一つは特定のメツキ鋼板に
クロメート皮膜、塗膜を積層させ、相乗的加工
性、耐食性に優れ、かつ連続スポツト溶接性に優
れた塗装積層体を提供するにある。本発明の目的
は加工性、耐食性、連続スポツト溶接性に優れて
いると共に、電着塗装など後塗装時の塗膜密着
性、あるいは塗装不充分な部位での耐食性にも優
れ、特に自動車等の生産に好適なプレコート鋼板
を提供するにある。 本発明者らは連続スポツト溶接性と塗膜組成と
の関連性につき研究の結果、塗膜バインダー樹脂
の熱分解性がこの連続スポツト溶接性に大きく関
与し、また該熱分解性は樹脂分子中の芳香族環含
有率と、易熱分解性物質の共存の有無により変化
し、芳香族環含有率が0あるいは、ある限度内で
あり、且つ易熱分解性物質を適量配合することに
より連続スポツト溶接性が著しく向上せしめられ
ることを見出した。また加工性の向上に関しては
無機顔料がかなりの量共存するため、なるべく少
量でしかも低比重、大容積のもの、すなわち有機
性の潤滑剤であることが好ましく、自動車ボデー
の如く高度の加工を行うものについては適切な潤
滑剤の種類と量の選択、ならびに導電顔料とその
他の無機顔料の総量が重要であることを知つた。 溶接可能ならしめるためには導電顔料が当然含
有せしめられるが、本発明者らは導電顔料を含む
塗料層の下に特定の耐食クロメート層とメツキ層
を設けることにより、積層体の耐食性を大巾に改
善しうること、また導電顔料中特にリン化鉄を主
成分とするものが耐食性、加工性に対する悪影響
が小さく、また電気抵抗が安定して低いとか、溶
接時に溶融せず硬度も大で特に優れていること、
さらにはリン化鉄分解抑制剤を併用し、無機顔料
濃度を制御することにより、より高耐食性で加工
性、溶接性、塗膜密着性、就中加工後の耐食性に
優れた積層体の得られことを見出し本発明を完成
するに至つた。すなわち本発明に従えば、冷延鋼
板にγ相単相からなるニツケル含有電気亜鉛メツ
キ相を形成し、さらに溶解度20〜10-5の6価クロ
ムを含む化合物の少なくとも1種と水性シリカお
よび/または水性樹脂バインダー、溶解度が20よ
り大なる水溶性クロム化合物さらに2〜6重量%
のリン酸化合物を含む組成物の耐食層ならびに導
電塗料層が順次積層されてなり、該塗膜層が、 分子中の芳香族環含有率が0〜50重量%の 塗料用樹脂 10〜35重量% 有機潤滑剤 4〜30重量% リン酸鉄主成分の導電顔料 15〜85重量% リン化鉄分解抑制剤 1〜71重量% その他の無機顔料 0〜70重量% 但し、導電顔料、リン化鉄分解抑制剤および
その他の無機顔料の合計量が35〜86重量%の組成
を含んでなる層である耐食性塗装積層体が提供せ
られる。 本発明の積層体における金属基材は冷延鋼板に
γ相単相からなるNi−Zn合金メツキ層が形成さ
れた鉄鋼板が使用される。 本発明において、メツキ鋼板のNi−Zn合金メ
ツキ層をγ相単相からなるものとしたのは、これ
以外の、例えばη+γ相、γ+α相等では耐食性
や耐ブリスター性に劣るからである。γ相単相か
らなるNi−Zn合金メツキ層では、適度の犠牲防
食性と、前記した電気化学的な防食機能を兼ね備
えるものであり、極めて優れた耐食性を有し、し
かもメツキ層の溶解速度が充分小さいため塗装後
のブリスター発生の問題も解決できる。γ相単相
の場合、Ni−Zn合金メツキ層のNi含有量は9〜
20%となる。9〜20%Ni含有のNi−Zn合金メツ
キ層は、一般公知のZn電気メツキにおいて、浴
中Zn量の70%程度を硫酸ニツケルあるいは塩化
ニツケル等に置換えることによつて得ることがで
きる。この目付量については、特に規定するもの
ではないが、耐食性の点から1g/m2以上あるの
が好ましい。しかしながら60g/m2を越える厚目
付は実用上不要であり、不経済である許りでな
く、溶接性の点から望ましくない。Ni−Zn合金
メツキ層がCo含有量1重量%以下又は鉄含有量
3重量%以下含有する場合についても前記と同じ
ような耐食性、溶接性の向上が歯かれる。これら
金属基材を必要により脱脂処理される。これは通
常の脱脂処理で当業者衆知技術に属し、その詳細
は説明する必要がなかろう。 本発明においては、この金属基材上に溶解度が
20〜10-5の6価クロムを含むクロム化合物の少な
くとも1種と、水性シリカおよび/また水性樹脂
バインダー、溶解度が20より大なる水溶性クロム
化合物、さらに2〜6重量%のりん酸化合物を含
む組成物の耐食層が設けられる。ここで云う溶解
度は20℃の純枠で100mlに飽和まで溶解した化合
物のg数を表わす。この耐食層に含有される溶解
度20〜10-5の6価クロム含有クロム化合物の代表
的なものは溶解度20〜10のクロム酸カルシウム、
溶解度10〜10-1のクロム酸亜鉛カリウム、クロム
酸ストロンチウム、溶解度10-1〜10-5のクロム酸
バリウム、クロム酸鉛等である。また、6価クロ
ム化合物とその他の金属との混合物あるいは有機
物との反応物であつて溶解度が20〜10-5の化合物
などである。溶解度が20をこえる化合物は活性に
過ぎるため、塗膜形成時に塗料組成物との接触で
不活性化したり、塗膜形成後においても経時にお
いて不活性化して耐食性を充分に向上せしめない
し、他方溶解度10-5未満のクロム化合物は防食能
が不充分である。かかるクロム化合物は通常1種
あるいは2種以上の組合せで耐食層中に存在せし
められる。さらに該耐食層には溶解度が20をこえ
る水溶性クロム化合物、例えばCrO3、K2CrO4
Cr(NO33・9H2O、Cr2(SO43・18H2O、その他
のクロム酸塩、重クロム酸塩どが加えられる。こ
れらの水溶性クロム化合物は後述する水性シリカ
および/または水性樹脂との反応によつてその中
に溶解度20〜10-5の6価クロムを含むクロム化合
物を取り込んだ強固な層を形成し、高耐食性を発
揮する。 この様な強固な層を形成するためには、水溶性
6価クロム化合物と水溶性3価クロム化合物を混
合して用いることが好ましく、例えばCrO3とCr
(NO33・9H2Oを併用したり、CrO3をホルマリ
ン等で部分的に還元して得られる。6価クロム化
合物の比率はクロム金属換算で全水溶性クロムの
10〜90重量%、特に50〜80重量%で最大の耐食性
を発揮する。 溶解度20〜10-5の6価クロムを含むクロム化合
物(A1)と溶解度20を越える水溶性クロム化合
物(A2)の比率はA2中のCr/A2中のCrが0.25/
1.75〜1/1が好ましい。0.25/1.75未満では耐
食性が低下する傾向にあり、1/1を越えると層
が脆くなり、塗膜密着性が低下する傾向にある。 また、この耐食層中に含有されるクロム化合物
(A1とA2)は、金属クロム換算で0.01〜1g/m2
が好ましい。0.01g/m2未満では、耐食性が不充
分で、1g/m2を越えると塗膜密着性が低下す
る。 水性シリカは粒子径100mμ以下のコロイダル
シリカあるいは水分散性シリカが代表的なもの
で、こういつたコロイダルシリカの具体的例はス
ノーテツクス0(コルイダルシリカ、日産化学社
製品名 固形分20% 平均粒度20μm、PH3.0)、
スノーテツクスN(同、PH9)、スノーテツクス
PL(同、粒子径40〜50mμ、PH3)であり、また
水分散性シリカとしては日本アエロジル社製商品
名のアエロジル300(粒子径100mμ以下)、アエロ
ジルTT−600r(粒子径0.1〜0.3μ)、イムシルA108
(粒子径5μ、イリノイスミネラル社製商品名)等
が好ましく用いられる。又、水性樹脂にはクロム
と相溶性のある水溶性樹脂および水分散性樹脂が
包含され、水溶性樹脂の具体例はポリビニルアル
コール、アルキルヒドロキシアルキルセルロー
ス、ポリアクリル酸およびその誘導体、ポリアク
リルアミドおよびその誘導体、ポリビニルピロリ
ドン、ポリビニルメチル無水マレイン酸とビニル
あるいはアクリル化合物との反応体等であり、ま
た水分散性樹脂の具体例はアルキド樹脂、フエノ
ール樹脂、アミノ樹脂、酢酸ビニル径エマルシヨ
ンポリマー、スチレン、ブタジエン系合成ラテツ
クスポリマー、アクリル系エマルシヨンポリマ
ー、天然および合成ゴム系エマルシヨンポリマー
などがあげられる。 これらバインダーは1種あるいは2種以上の組
合せで用いることができ、上記クロム化合物を金
属表面に密着固定せしめるのに有効である。 これらバインダーの耐食層中での含有率は、バ
インダー/クロム化合物(A1+A2)中の金属ク
ロムの重量比が1/10〜5/1が適している。
1/10未満では、塗装後の塗膜密着性が低下し、
5/1を越えると、耐食性が低下する。 既に述べた如く、本発明の金属基材は、冷延鋼
板にγ相単相からなるNi−Zn合金メツキ層が形
成された鉄鋼板が用いられる。該メツキ層は前述
の如く、それ自体、高度の耐食性を示すものであ
るが、それが故に、その上に形成されるクロメー
ト皮膜がメツキ表面と充分に反応出来ず、密着性
が低下する。この様な場合には、塗装後の塗膜加
工性が低下する。特に、本発明の塗装鋼板の用途
の如き、強度のプレス加工等においては顕著とな
り、これらは加工部耐食性の低下となつて表わ
れ、金属素材の高耐食性の長所が充分に発揮され
ない。 本発明において、上記問題の解決のために、り
ん酸化合物が耐食層に含有せしめられる。該化合
物は耐食層形成のための薬液中に、りん酸として
添加される。このりん酸は、耐食層形成時に不活
性なNi−Zn合金メツキ層とも反応し、形成され
る層の素地密着性を向上せしめる。 りん酸化合物の耐食層中の含有率は耐食層全重
量に対してリン酸として2〜6重量%である。2
重量%未満で、充分な耐食層の素地密着性が得ら
れず、6重量%を越えても同様であり、しかも耐
食性も低下する。 本発明の耐食層の形成方法は、上記条件を満た
す水性薬液を作成し、スプレー、浸漬、ロールコ
ート法等で所定量金属基材表面に塗布し、加熱乾
燥せられる。加熱は、薬液と金属基材との反応を
充分におこなわしむるために、比較的高温でおこ
なうことが良い。その温度は、金属基材の最高到
達温度として150〜250℃が適する。 本発明の積層体は前記耐食層の上に、加工性、
溶接性、耐食性などに優れた特定の導電性塗膜層
がもうけられている。 この塗膜層はバインダー樹脂として、分子中の
芳香族環含有率が0もしくは最大限50重量%まで
の塗料用樹脂、例えばエポキシ系樹脂、アルキド
系樹脂、アクリル系樹脂、メラミン系樹脂、ウレ
タン系樹脂、フエノール系樹脂、ビニル系樹脂、
ポリビニルブチラール樹脂、ポリビニルアセテー
ト樹脂、塩素化ゴム、オイルフリーポリエステル
樹脂、フタル酸樹脂、スチレン樹脂、ポリオレフ
イン樹脂等を有機溶剤タイプあるいは水性化され
たタイプで使用することを特徴とする。 これらの樹脂は単独でもあるいは2種以上の組
合せでも用いられるが、組合せの場合は平均含有
率で表現して、前述の如く芳香族環含有率が50重
量%以下、最も好ましくは0%でなくてはならな
い。 本発明者らは樹脂分子中の芳香族環含有率が連
続スポツト溶接性と密接に関係し、50%をこえる
と下記測定法による熱分解率 熱分解率=(1加熱後の樹脂重量/加熱前の樹脂重
量)×100 加熱後の樹脂重量…室温から550℃まで20℃/分
の速度で樹脂を昇温(N2気流中)させ、サン
プル温度が550℃に達した時の重量を熱重量分
析器で測定(サンプル量5〜10mg) が著しく低下し、それと共に連続スポツト溶接性
を著しく低下すること。芳香族環含有率が0〜50
重量%では、樹脂の熱分解による重量減少率は70
〜100%で、5000点までの連続スポツト溶接に充
分耐えうりことを見出した。 尚、樹脂の塗膜層中の含有率は10〜35重量%、
好ましく15〜25重量%で、10重量%を下まわると
加工性の低下が著しく、また35重量%をこえると
連続スポツト溶接性が低下することも見出されて
いる。 前記塗膜層には第2成分として有機潤滑剤が含
有せしめられる。有機潤滑剤は、加工用冶具と塗
膜との摩擦を減じ塗膜にかかる力を弱めて加工時
の塗膜損傷を減じようとするもので所謂滑り剤と
して知られるものであるが、少量でも低比重で塗
膜中での容積分率が大きい有機性物質であるだけ
でなく、熱分解性が良好(分解温度300〜500℃)
で発熱反応を示し、大部分が発揮して連続スポツ
ト溶接に悪影響を与えるカーボンを残さずさらに
共存する樹脂の熱分解促進物質であることが好ま
しく、かかる意味に於てポリオレフイン系化合
物、例えばポリエチレン、アイソタクチツクポリ
プロピレン、ポリブデン等、不飽和脂肪族オレフ
イン系炭化水素の重合体(好ましくは分子量1000
〜10000程度のもの); カルボン酸エステル系化合物、例えばステアリ
ン酸、オレイン酸、アジピン酸、アゼライン酸、
セバシン酸等のカルボン酸と、n−ブタノール、
sec.−ブタノール、3−メチルブタノール、2−
エチルヘキサノエート、ネオペンチルアルコール
などのアルコールとのモナ−、ジ−あるいはポリ
−エステル;ポリアルキレングリコール系化合
物、ととえばポリプロピレングリコール、ポリエ
チレングリコールなどが特に好ましい物質として
推奨せられる。加工性、熱分解性、耐食性、上塗
塗膜の密着性等の観点から就中好ましいものはポ
リエチレンワツクスで、最も好ましいものは分子
量が1000〜10000、粒径50μ以下のポリエチレン
微粉末である。 かかる有機潤滑剤は単独もしくは2種以上の組
合せで用いられるがその添加量は塗膜層中、4〜
30重量%、好ましくは4〜20重量%で、4重量%
未満では加工性が低下し、樹脂の熱分解促進効果
も認められず、他方30重量をこえても、それ以上
の加工性の向上は認められず、かえつて量の増大
につれ耐食性が低下する傾向が認められる。 本発明の塗膜層にはまた導電性付与の目的で導
電顔料を含有せしめるものであるが、かかる導電
顔料としては電気抵抗が安定して低く、少量で充
分な通電効果の得られること、溶接時の発熱によ
り溶融せず高融点物質であつて、溶融−接触面積
増大−電流密度の低下とか電極付着汚染などの欠
点のまいもの、また硬度が高く、溶接時の加圧で
導電粒子が絶縁体塗膜樹脂層を破壊し導電性をよ
り良好ならしめうること、およびなるべく低価格
で大量供給せられるものであることが好ましいこ
とは言うまでもない。 本発明者らは以上の長所をもち、なお且つ他の
金属粒にあに比し不活性で耐食性にも優れている
顔料としてリン化鉄(Fe2P)を主成分とする20μ
以下、好ましくは10μ以下の平均粒径をもつ顔料
が最適であることを見出した。 リン化鉄を主成分とする導電顔料はフエロホス
等として各種市販されており、それらが単独ある
いは組合せの形で用いられる。リン化鉄を主成分
とする導電顔料は塗膜層中15〜85重量%、好まし
く30〜70重量%の割合で用いられる。というのは
30重量%を下まわると塗膜厚10μ以上で導電性が
不足する場合があり、また15重量%未満では明ら
かに導電性不足でスポツト溶接ができない。70重
量%をこえると塗膜加工性が低下する場合があ
り、85重量%をこえると明らかに加工性が劣化し
実用的でなくなる。 このように本発明では導電顔料として知られる
もののうち、特にリン化鉄主成分の顔料が発明目
的に対し最も優れた結果を与えることの発見にそ
の基礎の一つをおくものであるが、それでもなお
腐食環境下、特に塗膜が酸性雰囲気におかれる場
合、リン化鉄の分解が生じ分解物により腐食が促
進されることのあることが見出された。塗膜が酸
性雰囲気になるか否かは塗膜組成物、素地金属、
腐食環境条件に依存するが、特に本発明で高耐食
性、高塗膜密着性を目的として用いられるNi−
Zn合金メツキ層、耐食層を塗膜下に持つ場合に
上述した現象が生じ易い。 従つて、リン化鉄の分解を抑制するか分解物の
無害化が必要で、その目的に対し、本発明者らは
懸濁水PHが6〜13、好ましくは7〜11になる顔料
の共存が塗膜を継続的に中性乃至はアルカリ性側
に置くことになり極めて有効な手段であることを
見出した。 従つて本発明の塗料組成物にはリン化鉄主成分
の導電顔料と共にリン化鉄分解抑制剤が必須成分
として含有せしめられる。かかる分解抑制剤は具
体的には例えば下記化合物があげられる。 アルカリ土類金属石油スルホネート クロム酸亜鉛、クロム酸亜鉛カリウム、クロ
ム酸バリウム、塩基性クロム酸鉛、クロム酸カ
ルシウム、クロム酸ストロンチウム等のクロム
酸塩顔料 リン酸亜鉛、リン酸鉄、トリポリリン酸アル
ミニウム等のリン酸塩顔料 鉛酸カルシウム、ケイ酸鉛等の鉛化合物顔料 タルク、炭酸カルシウム、シリカ等の体質顔
料 亜鉛末(リン化鉄と同量以下) 但しこの顔料は塗膜中1重量%以下で次に記述
する無機顔料の総量を越えない量とする。尚、こ
れらの化合物は防錆顔料あるいは体質顔料に分類
されることもあるが懸濁水PHの点で本発明に於て
はリン化鉄分解抑制剤として認識されるものであ
る。 本発明の塗膜層中にはまた所望によりその他の
無機顔料、例えば耐食性向上のためのクロム顔料
(クロム酸亜鉛系、クロム酸鉛系、クロム酸カル
シウム系、クロム酸ストロンチウム系顔料等)、
リン酸塩顔料(リン酸亜鉛、リン酸鉄、トリポリ
リン酸アルミニウム系顔料等)、鉛化合物顔料
(鉛酸カルシウム、ケイ酸鉛等):樹脂量の調整、
塗膜PH調整のための体質顔料(シリカ、炭酸カル
シウム、タルク、アルミナ等);着色顔料(酸化
クロム、酸化鉄、酸化鉛等)を加えることができ
る。こういつた無機顔料を加える場合は、次に述
べる無機顔料の総量を越えてはならない。 すなわち本発明で用いられる塗膜層においては
リン化鉄主成分の導電顔料、リン化鉄分解抑制剤
ならびに所望により加えられるその他の無機顔料
の総量が塗膜層中、35−86重量%、好ましくは35
−70重量%の範囲内にあることが重要である。と
いうのは前記総量が35重量%を下まわると塗膜加
工性が低下し、また70重量%をこえても加工性の
低下を認める場合があり、86重量%をこえると明
らかに大巾な気工性低下が認められるからであ
る。 尚塗膜層の厚みは1−20μ、好ましくは2−
10μである。厚みが1μ以下では耐食性が不充分で
あり、20μを越えると連続スポツト溶接性が低下
する。塗膜層は焼付けによつて形成されるが、そ
の条件は樹脂種により適宜選択され、いつぱんに
最高到達板温100−300℃で、20秒−5分程度であ
る。 本発明の積層体は極めて優れた加工性、耐食
性、連続スポツト溶接性、塗膜密着性を示し、自
動車等の工業的生産ラインに使用された特に有用
である。以下実施例により本発明を説明する。 尚、下記例において、金属基材として次の如き
ものが使用された。 比較例1、2を除き、表面清浄化された冷延鋼
板(板厚0.8mm)に一般公知の電気亜鉛メツキ浴
の浴中Zn量の70%を硫酸ニツケルに置換したメ
ツキ浴を使用し、Ni11wt%、Zn89wt%目付量20
g/m2のγ相単相のNi−Zn合金メツキ鋼板を得
た。比較例1では冷延鋼板をそのまま使用し、比
較例2では上記公知の電気亜鉛メツキ浴を用いて
得られた目付量40g/m2の電化亜鉛メツキ鋼板を
用いた。 実施例 1 上記Ni−Zn合金メツキ鋼板をアルカリ脱脂処
理、水洗、乾燥し、下記クロメート処理液をロー
ルコート法で塗布し、次にガス炉で最高到達板温
150℃になるよう1分間乾燥し、200mg/m2のクロ
ム量の耐食層を作つた。尚クロメート処理液とし
ては無水クロム酸水溶液をホルマリンで還元し、
Cr6+/Cr3+=7/3の総クロム量20g/の液を
調整し、アエロジル300(日本アエロジル社製、ヒ
ユームドシリカ)をg/の濃度に添加し、溶解
度10〜10-1のクロム酸亜鉛カリウム系顔料のジン
ククロメートC(菊池色素工業(株)製、略称ZPC)
をCr換算で15g/になる様に添加し、さらに
リン酸を本クロメート処理液中の固形分に対して
3%となる様に添加し、ペイントシエーカーで1
時間ガラスビーズ分散して得た液を用いた。別途
に下記塗料組成物も調整した。 樹脂Bとしてウレタン変性エポキシ樹脂(特開
昭57−30717、実施例3によつて調整、分子中ベ
ンゼン環含有率45wt%)を16重量部(固形分換
算)、樹脂Cとしてレゾール型フエノール樹脂
(昭和ユニオン合成(株)製、BKS−316、分子中ベ
ンゼン環含有率55wt%)を4重量部(固形分換
算)をシクロヘキサノンに溶融せしめ、フエロホ
スHRS2132(フーカーケミカルスアンドプラスチ
ツクス社製リン化鉄主成分導電顔料)を60重量
部、ストロンチウムクロメートN(菊池色素製品、
リン化鉄分解抑制材のクロム酸塩顔料)5重量部
を添加し、ペイントシエーカーで、2時間スチー
ルビーズ分散する。塗料を濾過し、セリダスト
3620(ヘキスト社製、微粉化ポリエチレンワツク
ス)を15重量部を添加して、デイスパーで均一に
混合し、シクロヘキサノンで不揮発部約60wt%
になる様、調整する。 前記クロメート処理鋼板に対し、該塗料組成物
をロールコート法で塗装し、ガス炉で最高到達板
温200℃で1分間焼付して、塗膜厚7μの被膜を形
成せしめ耐食性塗装積層体を得た。 実施例2〜6ならびに比較例1〜11 実施例1と同様方法で、但し金属基材、耐食層
組成、塗料組成を夫々下記第1表に記載の如く変
更し、塗装積層体を得た。 尚第1表において 黄鉛5G−DH 溶解度10-1〜10-5のクロム酸鉛系顔料 菊池色素工業(株)社製 亜鉛末 塗料用亜鉛末 三井金属鋼業(株)社製 Sicor Zmp/S リン酸亜鉛顔料 BASF社製 樹脂D エポキシ当量950で分子中のベンゼン環含有
率54%のエポキシ樹脂 東都化成社製、エポトートYD−D14 各実施例ならびに比較例で得られらた層体につ
き、夫々下記の性能試験を行ない、第2表の如き
結果が得られた。 試験方法及び評価基準 1 連続スポツト溶接性 電極径5mm、加圧力200Kg、通電時間10サイ
クル、電流8000Aの条件でスポツト溶接を実施
し、連続打点可能な打点数を調べた。 評価 ◎:5000点以上 電極汚れ少ない ○:5000点以上、電極汚れ多い △:3000点〜5000点 ×:3000点未満 2 円筒深絞り加工性 円筒深絞り試験器(エリクセン社製、モデル
B1−142型)を使用し、しわ押え圧3トン、ポ
ンチ径50mmφ、ダイス径52.4mmφ、絞り深さ40
mm、ブランク径95mm)で加工し、塗膜のキズ、
剥離を調べた。 評価 ◎:塗面異常なし ○:塗面キズ(素地金属未到達)有り(10%以
下) △:素地金属に達するキズ有り、また、塗面キ
ズ多い ×:原板ワレ 3 耐食性 複合腐食試験(1サイクル=塩水噴霧(5
%NaCl、35℃)、2時間→乾燥(60℃)、2
時間→湿潤(98%RH≦、50℃)4時間200
サイクル後の平面部の赤サビ、白サビの発生
状態を調べた。 評価 ◎:白サビ、赤サビ発生なし ○:白サビ発生面積5%以下、赤サビなし △: 〃 6%以上、 〃 ×:赤サビ1%以上発生 耐塩水噴霧性(JIS−Z2371に準ず)2500
時間後の平面部の赤サビ、白サビの発生状態
を調べた。 評価 ◎:白サビ、赤サビ発生なし ○:白サビ発生面積5%以下、赤サビなし △: 〃 6%以上、 〃 ×:赤サビ1%以上発生 円筒加工後の耐塩水噴霧性 2項の条件で円筒深絞り加工した後、室内
2ケ月経時させ、塩水噴霧試験(JIS−Z−
2371に準ず)に時間供し、加工面でのサビの
発生状態を調べ、3−の基準で評価した。
The present invention relates to a painted laminate with excellent weldability, workability, and corrosion resistance, and particularly to a painted laminate with excellent continuous spot weldability, high workability, and high corrosion resistance suitable for steel materials for automobile bodies. 2. Description of the Related Art Generally, various types of equipment, parts, etc. that are painted and put into actual use are painted entirely after being processed and assembled. However, with such processing and painting after assembly, a sufficient coating may not be obtained in some areas. In order to eliminate this disadvantage,
Pre-painted steel sheets, so-called painted steel sheets, are widely used. However, resistance welding is usually not possible with this type of painted steel plate, and the assembly requires methods other than welding.
For example, fixing means such as bolts and nuts must be used, which is disadvantageous in terms of workability and assembly cost. From the point of view of spot weldability of coated steel sheets, it is necessary that the coating film has electrical conductivity, and conventionally, this purpose has generally been achieved by using conductive pigments. However, continuous spot welding is an important issue in high-speed, large-volume, labor-saving lines such as automobile body production lines. Continuous spot welding performance is determined by the fact that as the number of welding increases, the electrode
Since it is contaminated with plating film, coating composition, etc. and requires cleaning or replacement, it is evaluated by the number of times welding until cleaning or replacement is required. Techniques for imparting conductivity to paint films using conductive pigments (for example, Japanese Patent Publication No. 52-44569, Japanese Patent Application Laid-Open No. 58-138758)
Spot welding is possible with techniques such as JP-A No. 58-174582, etc.) or technology that further improves the conductivity of the coating film by devising pigments (e.g. JP-A No. 51-79138, JP-B No. 58-19706). However, there is no consideration given to the requirements for ensuring continuous spot welding of 2000 points or more, that is, electrode contamination, resulting in unsatisfactory results. Moreover, in recent automobile production processes, continuous spot welding of as large as possible, for example 2000 to 5000 points, is required. In addition, when pressing or deep drawing painted materials, the road film may peel off into powder during processing and adhere to the press machine, causing processing scratches, requiring frequent cleaning of the press machine, or The coating must not peel off from the base or crack, which may reduce the corrosion resistance of the area.
It is known to add an inorganic or organic lubricant for the purpose of improving the workability of this coating film. However, originally, weldable coatings tend to have a pigment-rich composition to ensure conductivity.
For example, there is a problem in that blending inorganic pigments such as molybdenum disulfide, carbon, and lead oxide in amounts sufficient to exhibit their effects may lead to a decrease in the strength and processability of the coating film. In addition, in the production of automobiles, body parts such as car panels, doors, fenders, etc. are usually made from steel plates by perez processing, assembled by spot welding, and then degreased, treated with phosphate, and then electrodeposited. In addition to workability and spot weldability, it is required to have good adhesion to electrodeposited coatings and corrosion resistance. Corrosion resistance also becomes an issue in areas where electrodeposition coating is insufficient, such as the joints and edges of parts.
Generally, when a paint containing a relatively large amount of conductive pigment or lubricant is applied, the corrosion resistance of the paint film tends to decrease, and in some cases, the conductive pigment itself or its decomposition products may exhibit a corrosion-promoting effect. The type and conditions of use are particularly important in obtaining highly corrosion-resistant coatings. Furthermore, the above-mentioned coating film adhesion and corrosion resistance of the coated steel sheet largely depend on the properties of the base metal. Conventional painted steel sheets are made by applying a coating containing hexavalent chromium to a general cold-rolled steel sheet base material, and then applying a paint containing electrically conductive substances such as Zn and Al (Special Publications Co., Ltd.
-6882), and one using a Zn-plated steel plate as the base material and coated with paint containing various conductive substances (Japanese Patent Publication No. 11331/1982). However, none of these conventional weldable coated steel sheets can be said to be sufficient for the above-mentioned applications. The former method, which uses cold-rolled sheets, has problems with paint film adhesion, and when it cools down, there is a high risk that the paint film will peel off because the molding process for automobile fenders and the like is very highly processed. This is because the adhesion between the cold-rolled base material and the chromate film as a coating base is not sufficient in the first place. Furthermore, with this coated steel sheet, if the coating film is damaged during processing or use, red rust will develop on the base material at an early stage, resulting in a loss of commercial value, which is a problem in terms of corrosion resistance. The latter, which uses galvanized steel sheets, is intended to solve the problem of corrosion resistance of the above-mentioned painted steel sheets, so to speak, and is certainly superior in terms of red rust resistance. However, the corrosion resistance of galvanized steel sheets originally depends on so-called sacrificial corrosion protection, in which zinc preferentially dissolves in a corrosive environment and prevents corrosion of the steel sheet base, and the rate at which zinc dissolves in a corrosive environment depends on the corrosion resistance of galvanized steel sheets. As a result, zinc dissolution under the paint film progresses in the vicinity of scratches or end faces, and there is a tendency for paint film blisters (hereinafter referred to as blisters) to occur at an early stage. This blister is a major problem because it significantly impairs the commercialization value of this type of coated steel sheet. In recent years, electrolytic galvanized steel sheets containing nickel (Ni
-Zn alloy plated steel sheets) are being put into practical use. This Ni-Zn alloy plated steel sheet also has sacrificial corrosion resistance, but its properties are thin and its electrochemical corrosion protection function is much stronger, and its bare corrosion resistance surpasses that of ordinary galvanized steel sheets. Anything can happen. By using this Ni-Zn plated steel plate,
It is expected that the blister resistance after painting will be the same as when cold-rolled sheets are used, and the corrosion resistance will also be significantly improved compared to when galvanized steel sheets are used. However, the highly corrosion-resistant nature of the Ni-Zn alloy plating layer conversely reduces its reactivity with chemicals commonly used for painting base treatment, reducing the adhesion between the formed base film and the substrate, resulting in insufficient There are many cases where the quality after painting cannot be obtained, and this is a particularly serious problem in the case of base treatment containing hexavalent chromium, which has a strong passivating power for metals. Therefore, one of the objects of the present invention is to provide a painted laminate which has excellent synergistic workability, corrosion resistance, and continuous spot weldability by laminating a chromate film and a paint film on a specific plated steel plate. The purpose of the present invention is to provide excellent workability, corrosion resistance, and continuous spot weldability, as well as excellent coating film adhesion during post-coating such as electrodeposition coating, and corrosion resistance in areas where coating is insufficient, especially for automobiles, etc. The purpose is to provide a prepainted steel sheet suitable for production. As a result of research into the relationship between continuous spot weldability and coating film composition, the present inventors have found that the thermal decomposition of the coating film binder resin is greatly involved in this continuous spot weldability, and that the thermal decomposition property is It changes depending on the aromatic ring content of It has been found that weldability is significantly improved. In addition, in order to improve processability, since a considerable amount of inorganic pigment coexists, it is preferable to use a lubricant with a small amount, low specific gravity, and large volume, that is, an organic lubricant, which is suitable for high-level processing such as automobile bodies. I learned that it is important to select the appropriate type and amount of lubricant, as well as the total amount of conductive pigments and other inorganic pigments. In order to make it weldable, a conductive pigment is naturally included, but the present inventors greatly improved the corrosion resistance of the laminate by providing a specific corrosion-resistant chromate layer and plating layer under the paint layer containing the conductive pigment. In addition, conductive pigments, especially those containing iron phosphide as the main component, have little negative effect on corrosion resistance and workability, and have a stable and low electrical resistance, and do not melt during welding and have high hardness. Being excellent;
Furthermore, by using an iron phosphide decomposition inhibitor and controlling the inorganic pigment concentration, it is possible to obtain a laminate with higher corrosion resistance and excellent processability, weldability, paint film adhesion, and especially corrosion resistance after processing. This discovery led to the completion of the present invention. That is, according to the present invention, a nickel-containing electrogalvanized phase consisting of a single γ phase is formed on a cold rolled steel sheet, and at least one compound containing hexavalent chromium having a solubility of 20 to 10 -5 , aqueous silica and/or or aqueous resin binder, further 2 to 6% by weight of a water-soluble chromium compound with solubility greater than 20
A corrosion-resistant layer and a conductive paint layer of a composition containing a phosphoric acid compound of % Organic lubricant 4-30% by weight Conductive pigment mainly composed of iron phosphate 15-85% by weight Iron phosphide decomposition inhibitor 1-71% by weight Other inorganic pigments 0-70% by weight However, conductive pigments, iron phosphide Decomposition inhibitor and
A corrosion resistant paint laminate is provided, the layer comprising a composition having a total amount of other inorganic pigments of 35 to 86% by weight. The metal base material in the laminate of the present invention is a cold-rolled steel plate on which a Ni--Zn alloy plating layer consisting of a single γ phase is formed. In the present invention, the Ni-Zn alloy plating layer of the plated steel sheet is made of a single γ phase because other types, such as η+γ phase and γ+α phase, have poor corrosion resistance and blister resistance. The Ni-Zn alloy plating layer consisting of a single γ phase has both moderate sacrificial corrosion protection and the above-mentioned electrochemical corrosion protection function, and has extremely excellent corrosion resistance.Moreover, the dissolution rate of the plating layer is low. Since it is sufficiently small, it can also solve the problem of blistering after painting. In the case of a single γ phase, the Ni content of the Ni-Zn alloy plating layer is 9~
20%. A Ni--Zn alloy plating layer containing 9 to 20% Ni can be obtained by substituting about 70% of the Zn amount in the bath with nickel sulfate, nickel chloride, etc. in generally known Zn electroplating. Although this basis weight is not particularly specified, it is preferably 1 g/m 2 or more from the viewpoint of corrosion resistance. However, a thickness exceeding 60 g/m 2 is practically unnecessary, uneconomical, and undesirable from the viewpoint of weldability. Even when the Ni--Zn alloy plating layer contains Co content of 1% by weight or less or iron content of 3% by weight or less, the same improvement in corrosion resistance and weldability as described above can be achieved. These metal base materials are degreased if necessary. This is a common degreasing process that is well known to those skilled in the art, and there is no need to explain its details. In the present invention, the solubility is
At least one chromium compound containing hexavalent chromium of 20 to 10 -5 , an aqueous silica and/or an aqueous resin binder, a water-soluble chromium compound with a solubility of more than 20, and a phosphoric acid compound of 2 to 6% by weight. A corrosion-resistant layer of a composition comprising: The solubility here refers to the number of grams of a compound dissolved to saturation in 100 ml in a pure frame at 20°C. Typical hexavalent chromium-containing chromium compounds with a solubility of 20 to 10 -5 contained in this corrosion-resistant layer include calcium chromate with a solubility of 20 to 10;
These include potassium zinc chromate and strontium chromate with solubility of 10 to 10 -1 , barium chromate and lead chromate with solubility of 10 to 10 -5 . Further, it is a mixture of a hexavalent chromium compound and another metal or a reaction product with an organic substance and has a solubility of 20 to 10 -5 . Compounds with a solubility of more than 20 are too active and may be inactivated by contact with the coating composition during coating film formation, or may become inactivated over time even after coating film formation, resulting in insufficient improvement in corrosion resistance; Chromium compounds with a content of less than 10 -5 have insufficient anticorrosion ability. Such chromium compounds are usually present in the corrosion-resistant layer singly or in combination of two or more. Furthermore, the corrosion-resistant layer contains a water-soluble chromium compound with a solubility of over 20, such as CrO 3 , K 2 CrO 4 ,
Cr(NO 3 ) 3 ·9H 2 O, Cr 2 (SO 4 ) 3 ·18H 2 O, other chromates, dichromates, etc. are added. These water-soluble chromium compounds form a strong layer incorporating chromium compounds containing hexavalent chromium with a solubility of 20 to 10 -5 by reacting with water-based silica and/or water-based resin, which will be described later. Demonstrates corrosion resistance. In order to form such a strong layer, it is preferable to use a mixture of a water-soluble hexavalent chromium compound and a water-soluble trivalent chromium compound. For example, CrO 3 and Cr
(NO 3 ) It can be obtained by using 3.9H 2 O together or by partially reducing CrO 3 with formalin, etc. The ratio of hexavalent chromium compounds is the total water-soluble chromium in terms of chromium metal.
Maximum corrosion resistance is achieved at 10-90% by weight, especially 50-80% by weight. The ratio of a chromium compound containing hexavalent chromium (A 1 ) with a solubility of 20 to 10 -5 and a water-soluble chromium compound (A 2 ) with a solubility exceeding 20 is 0.25/Cr in A 2 / Cr in A 2
1.75 to 1/1 is preferable. If it is less than 0.25/1.75, corrosion resistance tends to decrease, and if it exceeds 1/1, the layer tends to become brittle and the coating film adhesion tends to decrease. In addition, the chromium compounds (A 1 and A 2 ) contained in this corrosion-resistant layer are 0.01 to 1 g/m 2 in terms of metallic chromium.
is preferred. If it is less than 0.01 g/m 2 , corrosion resistance will be insufficient, and if it exceeds 1 g/m 2 , coating film adhesion will decrease. Typical water-based silica is colloidal silica or water-dispersible silica with a particle size of 100 mμ or less. Specific examples of such colloidal silica include Snowtex 0 (Colloidal Silica, product name of Nissan Chemical Co., Ltd., solid content 20%, average particle size 20 μm, PH3.0),
Snowtex N (same, PH9), Snowtex
PL (particle size 40 to 50 mμ, PH3), and water-dispersible silicas include Aerosil 300 (particle size 100 mμ or less), manufactured by Nippon Aerosil Co., Ltd., and Aerosil TT-600r (particle size 0.1 to 0.3 μ). , Imcil A108
(particle size 5μ, trade name manufactured by Illinois Minerals), etc. are preferably used. In addition, water-based resins include water-soluble resins and water-dispersible resins that are compatible with chromium, and specific examples of water-soluble resins include polyvinyl alcohol, alkylhydroxyalkyl cellulose, polyacrylic acid and its derivatives, polyacrylamide and its derivatives. derivatives, polyvinylpyrrolidone, reactants of polyvinylmethylmaleic anhydride and vinyl or acrylic compounds, etc. Specific examples of water-dispersible resins include alkyd resins, phenolic resins, amino resins, vinyl acetate diameter emulsion polymers, styrene, Examples include butadiene-based synthetic latex polymers, acrylic-based emulsion polymers, and natural and synthetic rubber-based emulsion polymers. These binders can be used alone or in combination of two or more, and are effective in closely fixing the chromium compound to the metal surface. The suitable content of these binders in the corrosion-resistant layer is such that the weight ratio of metallic chromium in the binder/chromium compound (A 1 +A 2 ) is 1/10 to 5/1.
If it is less than 1/10, the adhesion of the paint film after painting will decrease,
When it exceeds 5/1, corrosion resistance decreases. As already mentioned, the metal base material of the present invention is a cold-rolled steel sheet on which a Ni--Zn alloy plating layer consisting of a single γ phase is formed. As mentioned above, the plating layer itself exhibits a high degree of corrosion resistance, but because of this, the chromate film formed thereon cannot sufficiently react with the plating surface, resulting in a decrease in adhesion. In such a case, the processability of the coating film after painting is reduced. This is particularly noticeable in high-strength press working, such as the application of the coated steel sheet of the present invention, and this appears as a decrease in the corrosion resistance of the processed part, and the advantage of the high corrosion resistance of the metal material is not fully exhibited. In the present invention, in order to solve the above problem, a phosphoric acid compound is contained in the corrosion-resistant layer. The compound is added as phosphoric acid to a chemical solution for forming a corrosion-resistant layer. This phosphoric acid also reacts with the inert Ni--Zn alloy plating layer during the formation of the corrosion-resistant layer, improving the adhesion of the formed layer to the substrate. The content of the phosphoric acid compound in the corrosion-resistant layer is 2 to 6% by weight as phosphoric acid based on the total weight of the corrosion-resistant layer. 2
If it is less than 6% by weight, sufficient adhesion of the corrosion-resistant layer to the substrate cannot be obtained, and if it exceeds 6% by weight, the same problem occurs, and the corrosion resistance also decreases. In the method for forming a corrosion-resistant layer of the present invention, an aqueous chemical solution that satisfies the above conditions is prepared, applied in a predetermined amount onto the surface of a metal substrate by spraying, dipping, roll coating, etc., and then heated and dried. Heating is preferably carried out at a relatively high temperature in order to cause a sufficient reaction between the chemical solution and the metal base material. The temperature is preferably 150 to 250°C as the highest temperature reached by the metal base material. The laminate of the present invention has processability,
A specific conductive coating layer with excellent weldability, corrosion resistance, etc. is created. This coating layer is used as a binder resin, such as paint resins with aromatic ring content in the molecule of 0 or up to 50% by weight, such as epoxy resins, alkyd resins, acrylic resins, melamine resins, and urethane resins. resin, phenolic resin, vinyl resin,
It is characterized by using polyvinyl butyral resin, polyvinyl acetate resin, chlorinated rubber, oil-free polyester resin, phthalic acid resin, styrene resin, polyolefin resin, etc. in organic solvent type or water-based type. These resins can be used alone or in combination of two or more, but in the case of a combination, the aromatic ring content expressed as an average content is 50% by weight or less, most preferably not 0%, as described above. must not. The present inventors found that the aromatic ring content in the resin molecule is closely related to continuous spot weldability, and that when it exceeds 50%, the thermal decomposition rate is determined by the following measurement method. Previous resin weight) x 100 Resin weight after heating... Raise the temperature of the resin from room temperature to 550℃ at a rate of 20℃/min (in a N2 gas flow), and calculate the weight when the sample temperature reaches 550℃. Measurement with a gravimetric analyzer (sample amount: 5-10 mg) is significantly reduced, and continuous spot weldability is also significantly reduced. Aromatic ring content is 0-50
In weight percent, the weight loss rate due to pyrolysis of the resin is 70
It was found that at ~100%, it can sufficiently withstand continuous spot welding of up to 5,000 points. In addition, the content of the resin in the coating layer is 10 to 35% by weight,
It has been found that the content is preferably 15 to 25% by weight, and if it is less than 10% by weight, workability is significantly reduced, and if it exceeds 35% by weight, continuous spot weldability is reduced. The coating layer contains an organic lubricant as a second component. Organic lubricants are known as slip agents, which reduce the friction between the processing jig and the paint film, weaken the force applied to the paint film, and reduce damage to the paint film during processing. Not only is it an organic substance with a low specific gravity and a large volume fraction in the coating film, but it also has good thermal decomposition properties (decomposition temperature 300-500℃)
It is preferable to use a substance that exhibits an exothermic reaction in the welding process and promotes the thermal decomposition of the coexisting resin without leaving behind carbon that exerts most of its energy and adversely affects continuous spot welding.In this sense, polyolefin compounds such as polyethylene, Polymers of unsaturated aliphatic olefin hydrocarbons such as isotactic polypropylene and polybutene (preferably with a molecular weight of 1000
~10,000); Carboxylic acid ester compounds such as stearic acid, oleic acid, adipic acid, azelaic acid,
Carboxylic acids such as sebacic acid, n-butanol,
sec.-butanol, 3-methylbutanol, 2-
Mona-, di- or poly-esters with alcohols such as ethylhexanoate and neopentyl alcohol; polyalkylene glycol compounds such as polypropylene glycol and polyethylene glycol are particularly recommended. From the viewpoints of processability, thermal decomposition, corrosion resistance, adhesion of top coat, etc., polyethylene wax is particularly preferred, and the most preferred is polyethylene fine powder with a molecular weight of 1,000 to 10,000 and a particle size of 50 μm or less. Such organic lubricants can be used alone or in combination of two or more, and the amount added is 4 to 4 in the coating layer.
30% by weight, preferably 4-20% by weight, 4% by weight
If the weight is less than 30%, the processability decreases and no effect on promoting thermal decomposition of the resin is observed.On the other hand, if the weight exceeds 30%, no further improvement in processability is observed, and as the weight increases, corrosion resistance tends to decrease. is recognized. The coating layer of the present invention also contains a conductive pigment for the purpose of imparting conductivity, and such a conductive pigment has a stable and low electrical resistance, and a sufficient current carrying effect can be obtained with a small amount, and it is necessary to weld. It is a high melting point material that does not melt due to the heat generated during welding, and does not have disadvantages such as melting, increased contact area, reduced current density, and electrode adhesion contamination.It is also highly hard, and conductive particles are insulated by pressure during welding. It goes without saying that it is preferable that the material can destroy the body coating resin layer and improve the conductivity, and that it can be supplied in large quantities at as low a price as possible. The present inventors developed a pigment with iron phosphide (Fe 2 P) as a main component that has the above advantages and is also inert and has excellent corrosion resistance compared to other metal particles.
Hereinafter, it has been found that a pigment having an average particle size of preferably 10 μm or less is optimal. Various conductive pigments containing iron phosphide as a main component are commercially available as Ferrophos and the like, and these can be used alone or in combination. The conductive pigment containing iron phosphide as a main component is used in the coating layer in an amount of 15 to 85% by weight, preferably 30 to 70% by weight. I mean
If it is less than 30% by weight, the conductivity may be insufficient if the coating thickness is 10 μm or more, and if it is less than 15% by weight, the conductivity is clearly insufficient and spot welding cannot be performed. If it exceeds 70% by weight, the processability of the coating may deteriorate, and if it exceeds 85% by weight, the processability will clearly deteriorate and become impractical. As described above, one of the foundations of the present invention is the discovery that among the known conductive pigments, pigments mainly containing iron phosphide give the most excellent results for the purpose of the invention. It has been found that in a corrosive environment, particularly when a coating film is placed in an acidic atmosphere, iron phosphide decomposes and corrosion is accelerated by the decomposed products. Whether or not the coating film becomes an acidic atmosphere depends on the coating composition, base metal,
Although it depends on the corrosive environment conditions, Ni-
The above-mentioned phenomenon is likely to occur when a Zn alloy plating layer or corrosion-resistant layer is provided under the coating. Therefore, it is necessary to suppress the decomposition of iron phosphide or to render the decomposed products harmless, and for this purpose, the present inventors have investigated the coexistence of pigments whose suspended water pH is 6 to 13, preferably 7 to 11. It has been found that this is an extremely effective means as it allows the coating film to be kept on the neutral or alkaline side continuously. Therefore, the coating composition of the present invention contains an iron phosphide decomposition inhibitor as an essential component along with a conductive pigment mainly composed of iron phosphide. Specific examples of such decomposition inhibitors include the following compounds. Alkaline earth metal petroleum sulfonates Chromate pigments such as zinc chromate, potassium zinc chromate, barium chromate, basic lead chromate, calcium chromate, strontium chromate, etc. Zinc phosphate, iron phosphate, aluminum tripolyphosphate, etc. Phosphate pigments Lead compound pigments such as calcium leadate and lead silicate Extender pigments such as talc, calcium carbonate, and silica Zinc dust (less than the same amount as iron phosphide) However, this pigment should be used at a content of less than 1% by weight in the coating film. The amount shall not exceed the total amount of inorganic pigments described below. Although these compounds are sometimes classified as antirust pigments or extender pigments, they are recognized as iron phosphide decomposition inhibitors in the present invention in terms of the pH of suspended water. The coating layer of the present invention may optionally contain other inorganic pigments, such as chromium pigments (zinc chromate, lead chromate, calcium chromate, strontium chromate pigments, etc.) for improving corrosion resistance.
Phosphate pigments (zinc phosphate, iron phosphate, aluminum tripolyphosphate pigments, etc.), lead compound pigments (calcium leadate, lead silicate, etc.): Adjustment of resin amount,
Extender pigments (silica, calcium carbonate, talc, alumina, etc.) and coloring pigments (chromium oxide, iron oxide, lead oxide, etc.) can be added to adjust the pH of the paint film. When adding such inorganic pigments, the total amount of inorganic pigments listed below must not be exceeded. That is, in the coating layer used in the present invention, the total amount of the conductive pigment mainly composed of iron phosphide, the iron phosphide decomposition inhibitor, and other inorganic pigments added as desired is 35-86% by weight, preferably is 35
It is important that the content be within the range of -70% by weight. This is because when the total amount is less than 35% by weight, the processability of the coating film decreases, and even when it exceeds 70% by weight, a decrease in processability may be observed, and when it exceeds 86% by weight, there is a clear decline in the processability. This is because a decrease in mechanical properties is observed. The thickness of the coating layer is 1-20μ, preferably 2-20μ.
It is 10μ. If the thickness is less than 1μ, corrosion resistance will be insufficient, and if it exceeds 20μ, continuous spot weldability will deteriorate. The coating layer is formed by baking, and the conditions are appropriately selected depending on the type of resin, and the maximum board temperature is 100-300°C for about 20 seconds to 5 minutes. The laminate of the present invention exhibits extremely excellent workability, corrosion resistance, continuous spot weldability, and coating adhesion, and is particularly useful for use in industrial production lines for automobiles and the like. The present invention will be explained below with reference to Examples. In the following examples, the following metal substrates were used. Except for Comparative Examples 1 and 2, a plating bath in which 70% of the Zn content of a generally known electrolytic galvanizing bath was replaced with nickel sulfate was used on a surface-cleaned cold-rolled steel plate (plate thickness 0.8 mm). Ni11wt%, Zn89wt% basis weight 20
A single - phase γ-phase Ni-Zn alloy plated steel sheet was obtained. In Comparative Example 1, a cold-rolled steel sheet was used as it was, and in Comparative Example 2, an electrolytic galvanized steel sheet having a basis weight of 40 g/m 2 obtained using the above-mentioned known electrolytic galvanizing bath was used. Example 1 The above Ni-Zn alloy plated steel sheet was treated with alkaline degreasing, washed with water, dried, coated with the following chromate treatment solution by roll coating, and then heated to the highest temperature in a gas furnace.
It was dried for 1 minute at 150°C to form a corrosion-resistant layer with a chromium content of 200 mg/m 2 . The chromate treatment solution is a chromate anhydride aqueous solution reduced with formalin.
Prepare a solution with a total chromium content of 20 g/Cr 6+ /Cr 3+ = 7/3, add Aerosil 300 (manufactured by Nippon Aerosil Co., Ltd., Huumed Silica) to a concentration of 20 g/g/, and add chromium with a solubility of 10 to 10 -1 . Zinc chromate C, an acid zinc potassium pigment (manufactured by Kikuchi Shiki Kogyo Co., Ltd., abbreviated as ZPC)
was added in an amount of 15g/converted to Cr, and further phosphoric acid was added in an amount of 3% based on the solid content of the chromate treatment solution, and 15g was added using a paint shaker.
A solution obtained by dispersing glass beads for a period of time was used. The following coating composition was also prepared separately. As resin B, 16 parts by weight (in terms of solid content) of urethane-modified epoxy resin (prepared according to JP-A-57-30717, Example 3, benzene ring content in molecule 45 wt%), and as resin C, resol type phenol resin ( 4 parts by weight (in terms of solid content) of BKS-316 (manufactured by Showa Union Gosei Co., Ltd., benzene ring content in the molecule: 55 wt%) was melted in cyclohexanone, and Ferrophos HRS2132 (manufactured by Hooker Chemicals and Plastics Co., Ltd., mainly made of iron phosphide) was dissolved in cyclohexanone. 60 parts by weight of strontium chromate N (conductive pigment), strontium chromate N (Kikuchi pigment products,
Add 5 parts by weight of chromate pigment, an iron phosphide decomposition inhibitor, and disperse with steel beads for 2 hours using a paint shaker. Filter the paint and seli dust
Add 15 parts by weight of 3620 (manufactured by Hoechst, micronized polyethylene wax), mix uniformly with a disper, and reduce the non-volatile content to approximately 60 wt% with cyclohexanone.
Adjust so that it becomes. The coating composition was applied to the chromate-treated steel plate by a roll coating method, and baked in a gas furnace at a maximum plate temperature of 200°C for 1 minute to form a film with a coating thickness of 7 μm to obtain a corrosion-resistant painted laminate. Ta. Examples 2 to 6 and Comparative Examples 1 to 11 Painted laminates were obtained in the same manner as in Example 1, except that the metal base material, corrosion-resistant layer composition, and paint composition were changed as shown in Table 1 below. In Table 1, yellow lead 5G-DH, lead chromate pigment with solubility of 10 -1 to 10 -5 , zinc powder manufactured by Kikuchi Shiki Kogyo Co., Ltd. zinc powder for paints, Sicor Zmp/manufactured by Mitsui Kinzoku Kogyo Co., Ltd. S Zinc phosphate pigment Resin D manufactured by BASF Co. Epoxy resin with an epoxy equivalent of 950 and a benzene ring content of 54% in the molecule Epototo YD-D14 manufactured by Toto Kasei Co., Ltd. For the layered bodies obtained in each example and comparative example, The following performance tests were conducted for each, and the results shown in Table 2 were obtained. Test method and evaluation criteria 1 Continuous spot welding Spot welding was carried out under the conditions of an electrode diameter of 5 mm, a pressing force of 200 Kg, a current application time of 10 cycles, and a current of 8000 A, and the number of continuous spots that could be made was determined. Evaluation ◎: 5000 points or more, little electrode dirt ○: 5000 points or more, a lot of electrode dirt △: 3000 points to 5000 points ×: Less than 3000 points 2 Cylindrical deep drawing processability Cylindrical deep drawing tester (manufactured by Eriksen, model
B1-142 type), wrinkle presser pressure 3 tons, punch diameter 50mmφ, die diameter 52.4mmφ, drawing depth 40
mm, blank diameter 95 mm), scratches on the paint film,
Checked for peeling. Evaluation ◎: No abnormality on the painted surface ○: There are scratches on the painted surface (not reaching the base metal) (10% or less) △: There are scratches that reach the base metal, and there are many scratches on the painted surface ×: Original plate crack 3 Corrosion resistance Combined corrosion test (1) Cycle = salt spray (5
%NaCl, 35℃), 2 hours → drying (60℃), 2
Time → Humidity (98%RH≦, 50℃) 4 hours 200
We investigated the occurrence of red rust and white rust on the flat surface after cycling. Evaluation ◎: No white rust, no red rust ○: Less than 5% white rust, no red rust △: 6% or more, ×: 1% or more red rust Salt water spray resistance (according to JIS-Z2371) 2500
After some time, the state of red rust and white rust on the flat surface was examined. Evaluation ◎: No white rust, no red rust ○: Less than 5% white rust, no red rust △: 6% or more, ×: 1% or more red rust Salt water spray resistance after cylindrical processing Item 2 After cylindrical deep drawing under the following conditions, it was kept indoors for 2 months and then subjected to a salt spray test (JIS-Z-
2371) for a period of time, the state of rust occurrence on the machined surface was examined and evaluated using a 3- standard.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 冷延鋼板にγ相単相からなるニツケル含有電
気亜鉛メツキ層を形成し、さらに溶解度20〜10-5
の6価クロムを含むクロム化合物の少なくとも1
種と水性シリカおよび/または水性樹脂バインダ
ー、溶解度が20より大なる水溶性クロム化合物、
さらに2〜6重量%のりん酸化合物を含む組成物
の耐食層ならびに導電塗料層が順次積層されてな
り、該塗膜層が、 分子中の芳香族環含有率が0〜50重量%の 塗料用樹脂 10〜35重量% 有機潤滑剤 4〜30重量% リン酸鉄主成分の導電顔料 15〜85重量% リン化鉄分解抑制剤 1〜71重量% その他の無機顔料 0〜70重量% 但し、導電顔料、リン化鉄分解抑制剤およびそ
の他の無機顔料の合計量が35〜86重量%の組成を
含んでなる層であることを特徴とする耐食性塗装
積層体。 2 ニツケル含有電気亜鉛メツキ層がCo含有量
重量%以下又は鉄含有量3重量%以下含有した特
許請求の範囲第1項記載の積層体。 3 耐食層がクロム化合物を金属クロム換算で
0.01〜1g/m2含む特許請求の範囲第1項記載の
積層体。 4 耐食層中、溶解度が20より大なるクロム化合
物の全クロムの10〜90重量%を6価クロムが占め
る特許請求の範囲第1項記載の積層体。 5 塗料層膜厚が1〜20μである特許請求の範囲
第1項記載の積層体。 6 塗料用樹脂がエポキシ樹脂、アルキド樹脂、
アクリル樹脂、メラミン樹脂、ウレタン樹脂、フ
エノール樹脂、ビニル樹脂、ポリビニルブチラー
ル樹脂、ポリビニルアセテート樹脂、塩素化ゴ
ム、オイルフリーポリエステル樹脂、フタル酸樹
脂、スチレン樹脂、ポリオレフイン樹脂である特
許請求の範囲第1項記載の積層体。 7 有機潤滑剤がポリオレフイン系化合物、カル
ボン酸エステル系化合物、ポリアルキレングリコ
ール系化合物から選ばれる化合物である特許請求
の範囲第1項記載の積層体。 8 有機潤滑剤が300〜500℃で発熱的分解を示す
化合物である特許請求の範囲第6項記載の積層
体。 9 リン化鉄分解抑制剤がPH6〜13懸濁PHを示す
顔料である特許請求の範囲第1項記載の積層体。 10 その他の無機顔料がクロム顔料、リン酸塩
顔料、鉛顔料あるいは着色顔料である特許請求の
範囲第1項記載の積層体。 11 導電顔料、リン化鉄分解抑制剤およびその
他の無機顔料の合計量が塗料固形分中35〜70重量
%である特許請求の範囲第1項記載の積層体。
[Claims] 1. A nickel-containing electrogalvanized layer consisting of a single γ phase is formed on a cold-rolled steel sheet, and the solubility is 20 to 10 -5 .
At least one chromium compound containing hexavalent chromium of
seeds and an aqueous silica and/or aqueous resin binder, a water-soluble chromium compound with a solubility greater than 20,
Furthermore, a corrosion-resistant layer and a conductive paint layer of a composition containing 2 to 6% by weight of a phosphoric acid compound are laminated in sequence, and the coating layer is a paint having an aromatic ring content in the molecule of 0 to 50% by weight. Resin for use 10-35% by weight Organic lubricant 4-30% by weight Conductive pigment mainly composed of iron phosphate 15-85% by weight Iron phosphide decomposition inhibitor 1-71% by weight Other inorganic pigments 0-70% by weight However, A corrosion-resistant painted laminate, characterized in that the layer comprises a conductive pigment, an iron phosphide decomposition inhibitor, and other inorganic pigments in a total amount of 35 to 86% by weight. 2. The laminate according to claim 1, wherein the nickel-containing electrogalvanized layer contains a Co content of 3% by weight or less or an iron content of 3% by weight or less. 3 Corrosion-resistant layer contains chromium compound in terms of metallic chromium
The laminate according to claim 1, containing 0.01 to 1 g/m 2 . 4. The laminate according to claim 1, wherein hexavalent chromium accounts for 10 to 90% by weight of the total chromium in the chromium compound having a solubility of more than 20 in the corrosion-resistant layer. 5. The laminate according to claim 1, wherein the paint layer has a thickness of 1 to 20 μm. 6 Paint resins include epoxy resins, alkyd resins,
Claim 1: Acrylic resin, melamine resin, urethane resin, phenolic resin, vinyl resin, polyvinyl butyral resin, polyvinyl acetate resin, chlorinated rubber, oil-free polyester resin, phthalic acid resin, styrene resin, polyolefin resin The described laminate. 7. The laminate according to claim 1, wherein the organic lubricant is a compound selected from polyolefin compounds, carboxylic acid ester compounds, and polyalkylene glycol compounds. 8. The laminate according to claim 6, wherein the organic lubricant is a compound that exhibits exothermic decomposition at 300 to 500°C. 9. The laminate according to claim 1, wherein the iron phosphide decomposition inhibitor is a pigment exhibiting a suspension pH of 6 to 13. 10. The laminate according to claim 1, wherein the other inorganic pigment is a chromium pigment, a phosphate pigment, a lead pigment, or a colored pigment. 11. The laminate according to claim 1, wherein the total amount of the conductive pigment, iron phosphide decomposition inhibitor, and other inorganic pigments is 35 to 70% by weight based on the solid content of the paint.
JP21586485A 1985-09-27 1985-09-27 Corrosion-resistant coated laminate Granted JPS6273938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21586485A JPS6273938A (en) 1985-09-27 1985-09-27 Corrosion-resistant coated laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21586485A JPS6273938A (en) 1985-09-27 1985-09-27 Corrosion-resistant coated laminate

Publications (2)

Publication Number Publication Date
JPS6273938A JPS6273938A (en) 1987-04-04
JPH0376828B2 true JPH0376828B2 (en) 1991-12-06

Family

ID=16679533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21586485A Granted JPS6273938A (en) 1985-09-27 1985-09-27 Corrosion-resistant coated laminate

Country Status (1)

Country Link
JP (1) JPS6273938A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68911991T2 (en) * 1988-05-31 1994-04-21 Kawasaki Steel Co Steel strips coated with a lubricating resin, which have improved ductility and corrosion resistance.
JPH06102773B2 (en) * 1988-12-07 1994-12-14 日本パーカライジング株式会社 Surface treatment method of plated steel sheet
DE69230737D1 (en) * 1991-03-29 2000-04-13 Sumitomo Metal Ind Corrosion-preventing coating compound
JP2690629B2 (en) * 1991-04-12 1997-12-10 川崎製鉄株式会社 Organic composite coated steel sheet with excellent corrosion resistance and spot weldability
JP2617835B2 (en) * 1991-08-27 1997-06-04 新日本製鐵株式会社 Manufacturing method of lubricated plated steel sheet with excellent paint adhesion
JP2617834B2 (en) * 1991-08-27 1997-06-04 新日本製鐵株式会社 Manufacturing method of lubricated plated steel sheet with excellent surface properties
JP2617837B2 (en) * 1991-09-06 1997-06-04 新日本製鐵株式会社 Method for producing lubricated plated steel sheet with excellent slidability and press workability
JP2617838B2 (en) * 1991-09-09 1997-06-04 新日本製鐵株式会社 Manufacturing method of high performance lubricated steel sheet
JP2816076B2 (en) * 1993-01-21 1998-10-27 日本ペイント株式会社 Dispersion of colloidal particles and aqueous coating composition
US5674627A (en) 1994-08-19 1997-10-07 Kawasaki Steel Corporation Aluminum alloy sheet having excellent press formability and spot weldability
EP1195416A3 (en) * 2000-10-05 2005-12-28 Degussa AG Polymerisable silicone-organic nanocapsules
JP4551786B2 (en) * 2004-02-17 2010-09-29 株式会社神戸製鋼所 Resin-coated metal plate excellent in workability, weldability and corrosion resistance, processed product using the resin-coated metal plate, and production method thereof
JP2018119242A (en) * 2017-01-26 2018-08-02 新日鐵住金株式会社 Steel cord and rubber-steel cord composite
JP2018119243A (en) * 2017-01-26 2018-08-02 新日鐵住金株式会社 Steel cord and rubber-steel cord composite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147674A (en) * 1983-02-10 1984-08-24 Sumitomo Metal Ind Ltd Highly corrosion-resistant steel sheet and its manufacture
JPS60105535A (en) * 1983-11-14 1985-06-11 川崎製鉄株式会社 Coated steel plate having excellent weldability, workabilityand corrosion resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147674A (en) * 1983-02-10 1984-08-24 Sumitomo Metal Ind Ltd Highly corrosion-resistant steel sheet and its manufacture
JPS60105535A (en) * 1983-11-14 1985-06-11 川崎製鉄株式会社 Coated steel plate having excellent weldability, workabilityand corrosion resistance

Also Published As

Publication number Publication date
JPS6273938A (en) 1987-04-04

Similar Documents

Publication Publication Date Title
US4853285A (en) Corrosion resistant, coated metal laminate, its preparation and coating materials
AU2003224094B2 (en) Mixture for applying a non-corrosive, thin polymer coating which can be shaped in a low-abrasive manner, and method for producing the same
CA1329071C (en) Resistance welding of galvanized steel
JPH0376828B2 (en)
KR890004045B1 (en) Coated metal substrate having anhanced corrosion resistance and process thereof
JPS6383172A (en) Weldable rust-inhibiting lubricating film-forming composition and production of surface-treated steel sheet using the same
EP0557928B1 (en) Surface-treated aluminum material having improved spot resistance weldability, workability, and corrosion resistance
JPH0418541B2 (en)
JP4123702B2 (en) Organic coated steel plate with excellent corrosion resistance
JP2002012983A (en) Steel sheet coated with composite phosphate film superior in corrosion resistance, lubricity, and coating material adhesiveness
JP3276565B2 (en) Weldable organic composite plated steel sheet with excellent corrosion resistance and press formability
JPS60203677A (en) Coating compound composition for precoating of metallic material
JPH01301332A (en) Lubricating resin treated steel plate excellent in moldability
JP2002012982A (en) Steel sheet coated with composite phosphate film superior in corrosion resistance, lubricity, and coating material adhesiveness
JP2004183054A (en) High strength coated steel sheet for automotive use
JP3305565B2 (en) Weldable organic composite plated steel sheet with excellent corrosion resistance and press workability
JP2000038683A (en) Treated aluminum alloy plate and production of the same
JP3200223B2 (en) Surface treated aluminum material with excellent spot resistance weldability, workability and corrosion resistance
JPH09276790A (en) Weldable organic composite plated steel sheet excellent in corrosion resistance
JPH0474872A (en) Organic composite coated steel sheet having excellent corrosion resistance
JP3129635B2 (en) Aluminum alloy plate with excellent press workability and spot weldability
JPH0741962A (en) Lubricating resin-treated steel sheet excellent in press forming property and corrosion resistance
WO1999042639A1 (en) Anticorrosive coating material and method of rust prevention
JPH08281209A (en) Aluminum material excellent in press formability and spot weldability
JPH09276786A (en) Weldable organic composite plated steel sheet excellent in corrosion resistance of cut face