JPH0335538B2 - - Google Patents
Info
- Publication number
- JPH0335538B2 JPH0335538B2 JP60294473A JP29447385A JPH0335538B2 JP H0335538 B2 JPH0335538 B2 JP H0335538B2 JP 60294473 A JP60294473 A JP 60294473A JP 29447385 A JP29447385 A JP 29447385A JP H0335538 B2 JPH0335538 B2 JP H0335538B2
- Authority
- JP
- Japan
- Prior art keywords
- disk
- rotor
- pressure
- rotary valve
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 claims description 46
- 238000001179 sorption measurement Methods 0.000 description 30
- 238000004891 communication Methods 0.000 description 26
- 239000003463 adsorbent Substances 0.000 description 9
- 238000003795 desorption Methods 0.000 description 9
- 238000000605 extraction Methods 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Landscapes
- Multiple-Way Valves (AREA)
Description
【発明の詳細な説明】
<産業上の利用分野>
本発明は一つの流体を多方向に分配し、かつ多
方向からの流体を集合させる回転弁に関するもの
である。このような回転弁は、例えば多数の吸着
室から成る擬似移動床による吸着分離装置におけ
る吸着室への流体の分配と吸着室からの流体の集
合を同時に行うために用いられる。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a rotary valve that distributes one fluid in multiple directions and collects fluids from multiple directions. Such a rotary valve is used, for example, to simultaneously distribute fluid to the adsorption chambers and collect fluid from the adsorption chambers in an adsorption separation device using a simulated moving bed consisting of a large number of adsorption chambers.
<従来の技術>
上記擬似移動床による吸着分離技術は特公昭42
−15681号公報および特公昭49−27569号公報に代
表的に示されているが、以下に簡単に説明する。<Conventional technology> The adsorption separation technology using the above-mentioned simulated moving bed was published in
This is typically shown in Japanese Patent Publication No. 15681 and Japanese Patent Publication No. 49-27569, and will be briefly explained below.
上記吸着分離装置は基本的には脱着帯、濃縮
帯、および吸着帯の3帯から成つており、各帯は
各々吸着剤を充てんし、かつ連続的に連結された
1つ以上の吸着室で構成されている。 The adsorption separation device described above basically consists of three zones: a desorption zone, a concentration zone, and an adsorption zone. Each zone is filled with an adsorbent and consists of one or more adsorption chambers connected in series. It is configured.
各帯の機能は次のとおりである。 The functions of each band are as follows.
吸着帯:流体混合物を吸着剤と接触させ、強吸着
成分を選択的に吸着させるとともに、弱吸着成
分および後述の脱着剤を含むラフイネートを抜
き出す。Adsorption zone: A fluid mixture is brought into contact with an adsorbent to selectively adsorb strongly adsorbed components and extract roughinate containing weakly adsorbed components and a desorbent described below.
濃縮帯:吸着帯で強吸着成分を選択的に吸着した
吸着剤を脱着帯から抜き出されるエクストラク
トおよび/または高純度の強吸着成分に接着さ
せ、吸着剤上の強吸着成分の純度を向上させ
る。Concentration zone: The adsorbent that has selectively adsorbed strongly adsorbed components in the adsorption zone is attached to the extract and/or highly purified strongly adsorbed components extracted from the desorption zone, improving the purity of the strongly adsorbed components on the adsorbent. let
脱着帯:吸着剤上に濃縮された強吸着成分を脱着
剤で追い出し、強吸着成分および脱着剤を含む
エクストラクトを抜き出す。Desorption zone: The strongly adsorbed components concentrated on the adsorbent are expelled by the desorbent, and the extract containing the strongly adsorbed components and the desorbent is extracted.
上記各帯の操作を連続して繰返し、見掛上脱着
剤が流体の流れとは向流方向に移動させる擬似移
動床による吸着分離のシステムの例を第2図にし
たがつて説明する。 An example of an adsorption separation system using a pseudo moving bed in which the above-mentioned operations in each zone are repeated continuously and the desorbent is apparently moved in a direction countercurrent to the flow of the fluid will be described with reference to FIG.
吸着剤が充てんされた複数個の吸着室2から9
が連結管10から17によつて連続的に連結され
循環路を形成している。吸着室からの流体の抜き
出しおよび吸着室への流体の供給は吸着空間を結
ぶ連結管10から17と回転弁100を連結して
いる連結管18から25を通して行われ、回転弁
100が一定時間ごとに一定角度を回転すること
により回転弁内の流体の供給管(脱着剤の供給管
26、原料混合物の供給管28)および抜き出し
管(エクストラクトの抜き出し管27、ラフイネ
ートの抜き出し管29)が吸着室に沿つて順次移
行し、下方向への流体の流れに対し、見掛上、上
方向への吸着剤が移動する擬似移動床による吸着
分離が実施される。第2図の状態における各吸着
室は吸着室2,3が脱着帯、吸着室4,5が濃縮
帯、吸着室6,7が吸着帯を、それぞれ構成して
おり、吸着室8,9は脱着剤を回収し、脱着帯に
循環するための役割を演じている。 A plurality of adsorption chambers 2 to 9 filled with adsorbent
are continuously connected by connecting pipes 10 to 17 to form a circulation path. The extraction of fluid from the adsorption chamber and the supply of fluid to the adsorption chamber are performed through connecting pipes 10 to 17 that connect the adsorption spaces and connecting pipes 18 to 25 that connect the rotary valve 100. By rotating the rotary valve at a certain angle, the fluid supply pipes (desorbent supply pipe 26, raw material mixture supply pipe 28) and extraction pipes (extract extraction pipe 27, roughinate extraction pipe 29) are adsorbed. Adsorption separation is carried out using a pseudo-moving bed in which the adsorbent moves sequentially along the chamber and apparently moves upward in contrast to the downward flow of the fluid. In the state shown in Fig. 2, adsorption chambers 2 and 3 constitute a desorption zone, adsorption chambers 4 and 5 constitute a concentration zone, adsorption chambers 6 and 7 constitute an adsorption zone, and adsorption chambers 8 and 9 constitute a desorption zone. It plays the role of collecting the desorption agent and circulating it to the desorption zone.
本発明は第2図で説明したような機能をもつ回
転弁の改良に関するものである。 The present invention relates to an improvement of a rotary valve having the function as explained in FIG.
上記技術を実施するための回転弁は特開昭58−
134286号公報により公知である。この回転弁につ
いて、第3図から第7図によつて説明する。 The rotary valve for implementing the above technology was published in Japanese Patent Application Laid-open No. 58-
It is known from the publication No. 134286. This rotary valve will be explained with reference to FIGS. 3 to 7.
第3図は公知の回転弁を回転軸に沿つて切り開
いた断面図、第4図は第3図におけるY−Y矢視
図、第5図は第3図におけるZ−Z矢視図、第6
図は第3図におけるY′−Y′矢視図、第7図は第
3図におけるZ′−Z′矢視図であり、回転弁100
は、その円筒90内に回転子40、第1の円盤4
1、および第2の円盤42を備えている。円盤4
1,42は円筒90に固定されている。、回転子
40は第1の円盤41と第2の円盤42の間に位
置し、回転軸39によつて一定時間ごとに間欠的
に一定角度づつ回転するようになつている。 FIG. 3 is a cross-sectional view of a known rotary valve cut along the rotation axis, FIG. 4 is a Y-Y arrow view in FIG. 3, and FIG. 5 is a Z-Z arrow view in FIG. 6
The figure is a Y′-Y′ arrow view in FIG. 3, and FIG. 7 is a Z′-Z′ arrow view in FIG.
has a rotor 40 and a first disk 4 in its cylinder 90.
1 and a second disk 42. Disc 4
1 and 42 are fixed to a cylinder 90. The rotor 40 is located between the first disk 41 and the second disk 42, and is intermittently rotated by a fixed angle by a rotating shaft 39 at fixed time intervals.
また、第2の円盤42と円筒90との間にコイ
ル状のスプリング91を回転軸39とほぼ同心状
に設けて回転子40と第2の円盤42とを第1の
円盤41側に押圧し、これらの接触面から流体の
漏れるのを防止するようにしている。さらに、第
2の円盤42に回転軸39の通る貫通孔92を設
けている。 Further, a coiled spring 91 is provided between the second disk 42 and the cylinder 90 substantially concentrically with the rotating shaft 39 to press the rotor 40 and the second disk 42 toward the first disk 41. , to prevent fluid from leaking from these contact surfaces. Further, the second disc 42 is provided with a through hole 92 through which the rotating shaft 39 passes.
上記回転子40の端面40a(第1の円盤41
の端面41aと接触する側の端面)に回転軸39
と同心状に環状溝50および51を設け、内側の
環状溝50に連通する開孔部60を第1の円盤4
1に設ける。また、外側の環状溝51に連通する
開孔部61を第1の円盤41に設けている。そし
て、開孔部60に原料混合物の供給管28が連結
し、また、開孔部61にラフイネートの抜き出し
管29が連結する。 End face 40a of the rotor 40 (first disk 41
A rotating shaft 39 is attached to the end surface (the end surface that contacts the end surface 41a)
Annular grooves 50 and 51 are provided concentrically with the inner annular groove 50, and an opening 60 communicating with the inner annular groove 50 is formed in the first disk 4.
1. Further, an opening 61 communicating with the outer annular groove 51 is provided in the first disk 41. A raw material mixture supply pipe 28 is connected to the opening 60, and a roughinate extraction pipe 29 is connected to the opening 61.
さらに、第1の円盤41には上記環状溝51の
外側に位置して複数(図示の場合、8個)の開孔
部70から77を設ける。これらの開孔部70か
ら77は回転軸39と同心状をなす円周上に等間
隔に配設される。そして、開孔部70,71,7
2,73,74,75,76,77には連結管1
8,19,20,21,22,23,24,25
が、それぞれ連結する(第4図参照)。また、第
1の円盤41の中心には回転軸39と同軸に開孔
部62を設け、この開孔部62にエクストラクト
の抜き出し管27が連結する。 Further, the first disk 41 is provided with a plurality of (eight in the illustrated case) apertures 70 to 77 located outside the annular groove 51 . These openings 70 to 77 are arranged at equal intervals on a circumference concentric with the rotating shaft 39. And the openings 70, 71, 7
Connecting pipe 1 for 2, 73, 74, 75, 76, 77
8, 19, 20, 21, 22, 23, 24, 25
are connected to each other (see Figure 4). Further, an opening 62 is provided at the center of the first disk 41 coaxially with the rotating shaft 39, and an extract extraction pipe 27 is connected to the opening 62.
他方、上記第2の円盤42の端面42a(回転
子40の端面40bと接触する側の面)に回転軸
39と同心状に環状溝52を設ける。また、第2
の円盤42には前記環状溝52に連通する開孔部
78を設け、この開孔部78に外殻90を貫通し
て脱着剤の供給管26が連絡する。 On the other hand, an annular groove 52 is provided on the end surface 42a of the second disk 42 (the surface that contacts the end surface 40b of the rotor 40) concentrically with the rotating shaft 39. Also, the second
The disk 42 is provided with an opening 78 that communicates with the annular groove 52, and a desorption agent supply pipe 26 communicates with the opening 78 through the outer shell 90.
上記回転子40には、さらに、複数の連通孔を
設ける。すなわち、回転子40には、第3図から
第7図に示す状態において、上記内側の環状溝5
0と第1の円盤の開孔部74とを連通するコ字形
状の連通孔80と、第1の円盤における開孔部6
2,72を連通するコ字形状の連通孔82(第6
図参照)と、外側の環状溝51と第1の円盤の開
孔部76とを連通するコ字形状の連通孔81(第
6図参照)と、第1の円盤の開孔部70と第2の
円盤に設けた環状溝52とを連通する連通孔85
とを設ける。 The rotor 40 is further provided with a plurality of communication holes. That is, in the states shown in FIGS. 3 to 7, the rotor 40 has the inner annular groove 5.
0 and the opening 74 of the first disk, and a U-shaped communication hole 80 that communicates with the opening 6 of the first disk.
A U-shaped communication hole 82 (sixth
), a U-shaped communication hole 81 (see FIG. 6) that communicates between the outer annular groove 51 and the aperture 76 of the first disk, and the aperture 70 of the first disk and the aperture 76 of the first disk. A communication hole 85 that communicates with the annular groove 52 provided in the second disk.
and.
しかして、第3図から第7図に示す状態におい
ては、回転弁100内に、流体の通過する四つの
通路が形成される。すなわち、
(a) 開孔部78−環状溝52−連通孔85−開孔
部70による通路A、
(b) 開孔部72−連通孔82−開孔部62による
通路B、
(c) 開孔部60−環状溝50−連通孔80−開孔
部74による通路C、
(d) 開孔部76−連通孔81−環状溝51−開孔
部61による通路D、
が上記四つの通路である。 Thus, in the states shown in FIGS. 3 to 7, four passages through which fluid passes are formed within the rotary valve 100. That is, (a) passage A by opening 78 - annular groove 52 - communication hole 85 - opening 70; (b) passage B by opening 72 - communication hole 82 - opening 62; (c) passage B by opening 72 - communication hole 82 - opening 62; The above four passages are: hole 60 - annular groove 50 - communication hole 80 - aperture 74 (d) a passage D (aperture 76 - communication hole 81 - annular groove 51 - aperture 61). be.
そこで、上記回転子40を矢印(第2図および
第3図参照)の方向に1/8回転させると、上記通
路A,B,C,Dが、それぞれ切替り、下記のよ
うな通路が新たに形成される。 Therefore, when the rotor 40 is rotated 1/8 turn in the direction of the arrow (see Figures 2 and 3), the passages A, B, C, and D are switched, and the following passages are created. is formed.
(a) 開孔部78−環状溝52−連通孔85−開孔
部71による通路、
(b) 開孔部73−連通孔82−開孔部62による
通路、
(c) 開孔部60−環状溝50−連通孔80−開孔
部75による通路、
(d) 開孔部77−連通孔81−環状溝51−開孔
部61による通路。(a) Passage by opening 78 - annular groove 52 - communication hole 85 - opening 71, (b) Passage by opening 73 - communication hole 82 - opening 62, (c) Opening 60 - Passage by annular groove 50 - communicating hole 80 - opening part 75; (d) Passage by opening part 77 - communicating hole 81 - annular groove 51 - opening part 61.
以下、同様にして、回転子40を矢印の方向に
間欠的に1/8回転させると、その都度回転弁内の
通路が切替わり吸着室2から8に対する流体の供
給および抜出しが順次移行し、下方向への流体の
流れに対し、見掛上、上方向への吸着剤が移動す
る擬似移動床による吸着分離が実施される。 Thereafter, in the same manner, when the rotor 40 is intermittently rotated by 1/8 rotation in the direction of the arrow, the passage in the rotary valve is switched each time, and the supply and extraction of fluid to and from the adsorption chambers 2 to 8 are sequentially transferred. Adsorption separation is carried out using a pseudo moving bed in which the adsorbent apparently moves upward while the fluid flows downward.
そして、これらを効率よく繰返すために、回転
子と円盤との接触面から流体の漏れるのを極力少
なくする努力がはらわれる。すなわち前述のスプ
リング91をより強力に回転子40と第2の円盤
42とを第1の円盤41側に押圧する。 In order to repeat these processes efficiently, efforts are made to minimize fluid leakage from the contact surface between the rotor and the disc. That is, the aforementioned spring 91 is pressed more strongly against the rotor 40 and the second disk 42 toward the first disk 41 side.
<発明が解決しようとする問題点>
しかしながら、かかる従来の回転弁は実用上ま
だ不十分な点がある。すなわち、第2の円盤と外
殻との間にコイル状のスプリングを回転軸とほぼ
同心状に設けて回転子と第2の円盤とを第1の円
盤側に押圧し、これらの接触面から流体の漏れる
のを防止するようにしているのであるが、それで
もなお漏れが防ぎきれないのが実情である。<Problems to be Solved by the Invention> However, such conventional rotary valves still have disadvantages in practical use. That is, a coiled spring is provided between the second disk and the outer shell almost concentrically with the rotating shaft to press the rotor and the second disk toward the first disk, and from the contact surface of these. Although attempts are made to prevent fluid from leaking, the reality is that leakage cannot be prevented.
その原因としてまず第1の問題点は接触面の大
気圧開放構造があげられる。例えば、吸着剤の充
てんされた吸着室1室につき内部圧損2Kg/cm2の
吸着室8室を流体が通過する場合、圧力損失が累
積されるため第2図に示す連結管18には通常18
Kg/cm2以上の圧力を加えることになり、仮に18
Kg/cm2の圧力を加えた場合一巡後の連結管17に
は2Kg/cm2が加わつている。したがつて第4図に
示す回転弁の開孔部70,71,72,73,7
4,75,76,77には18、16、14、12、10、
8、6、4Kg/cm2の各圧力が発生していることに
なる。これは回転しながらその接触面で流体の漏
れるのを防ぐという主旨からははなはだ不都合で
あり可能なかぎりより低圧にしたい圧力である。
しかしながら、このような擬似移動床による吸着
分離において液流形成のため流体の加圧は不可欠
である。 The first problem is that the contact surface is open to atmospheric pressure. For example, when a fluid passes through eight adsorption chambers with an internal pressure drop of 2 kg/cm 2 per adsorption chamber filled with adsorbent, the pressure loss accumulates, so the connecting pipe 18 shown in FIG.
A pressure of more than Kg/cm 2 will be applied, so if 18
When a pressure of Kg/cm 2 is applied, 2 Kg/cm 2 is applied to the connecting pipe 17 after one cycle. Therefore, the openings 70, 71, 72, 73, 7 of the rotary valve shown in FIG.
4, 75, 76, 77 have 18, 16, 14, 12, 10,
This means that pressures of 8, 6, and 4 Kg/cm 2 are generated. This is extremely inconvenient from the point of view of preventing fluid from leaking at the contact surface during rotation, and it is desirable to keep the pressure as low as possible.
However, in adsorption separation using such a simulated moving bed, pressurization of the fluid is essential to form a liquid flow.
ついで第2の問題点として接触面の面圧がたえ
ず一定であることがあげられる。静止していると
きも回転しているときも強力なスプリングで押圧
を続けながら回転子を回転させれば回転子や円盤
の接触面が早期に損耗し漏れが発生する。この場
合も可能なかぎり接触面の面圧は低圧にしたい圧
力である。しかしながら、接触面の面圧を低圧に
すると漏れが防ぎきれない。 The second problem is that the contact pressure on the contact surface remains constant. If the rotor is rotated while being continuously pressed by a strong spring both when it is stationary and when it is rotating, the contact surfaces of the rotor and disk will wear out quickly and leaks will occur. In this case as well, the surface pressure on the contact surfaces is desired to be as low as possible. However, if the surface pressure of the contact surface is made low, leakage cannot be prevented.
<問題点を解決するための手段>
そこで本発明者らは上記の欠点を克服すべく改
良された回転弁を提供することを目的として鋭意
研究した結果本発明に到達した。<Means for Solving the Problems> The inventors of the present invention have conducted extensive research aimed at providing an improved rotary valve to overcome the above-mentioned drawbacks, and as a result, have arrived at the present invention.
すなわち本発明の回転弁は加圧された流体の通
過する通路をもつ回転弁であつて、該回転弁内の
通路の一部を備えかつ回転不能の複数の円盤およ
び該円盤の間に回転自在に配設した通路切替用の
小径の回転子を円筒内に設けた回転弁において、
前記円盤を前記円筒内側面に密着状にかつ前記円
盤の少なくとも1つが前記円筒内を微小往復可能
に設けるとともに、前記円筒の前記回転子間で形
成されかつ加圧によつて前記円盤の少なくとも1
つと前記回転子の密着を弱める中空円柱状の空間
を圧力室とし、さらに前記円筒の末端開口部分を
閉じることにより前記円盤と前記円筒間で形成さ
れる中空円柱状の空間および/または円柱状の空
間を圧力室とすることを特徴とする。 That is, the rotary valve of the present invention is a rotary valve having a passage through which pressurized fluid passes, and includes a plurality of non-rotatable discs that include a part of the passage in the rotary valve, and a rotary valve that is rotatable between the discs. In a rotary valve in which a small diameter rotor for passage switching is installed in a cylinder,
The disks are provided in close contact with the inner surface of the cylinder, and at least one of the disks is provided so as to be able to reciprocate minutely within the cylinder, and is formed between the rotors of the cylinder and is pressed against the inner surface of the cylinder.
A hollow cylindrical space that weakens the adhesion of the rotor is used as a pressure chamber, and a hollow cylindrical space and/or a cylindrical space formed between the disk and the cylinder by closing the end opening of the cylinder. It is characterized in that the space is a pressure chamber.
以下、本発明を図面により説明する。 Hereinafter, the present invention will be explained with reference to the drawings.
第1図は本発明の回転弁の一態様を示す断面図
である。第1図におけるY−Y矢視図、Z−Z矢
視図、Y′−Y′矢視図、Z′−Z′矢視図は第4図、第
5図、第6図、第7図と同じであるので、以下、
第4図から第7図も参照して説明する。 FIG. 1 is a sectional view showing one embodiment of the rotary valve of the present invention. The Y-Y arrow view, Z-Z arrow view, Y'-Y' arrow view, and Z'-Z' arrow view in Figure 1 are shown in Figures 4, 5, 6, and 7. Since it is the same as the figure, below,
The explanation will be made with reference also to FIGS. 4 to 7.
回転弁100は円筒90内に円盤41,42お
よび回転子40を設けて構成される。円盤41,
42には各々回転弁内の通路の一部、すなわち開
孔部60〜62,70〜78、環状溝52が設け
られ、それらは回転子40に設けられた環状溝5
0,51および連通孔80〜82および85とそ
れぞれ連通可能となつている。 The rotary valve 100 is configured by providing disks 41 and 42 and a rotor 40 within a cylinder 90. Disk 41,
42 are each provided with a portion of the passage in the rotary valve, that is, openings 60 to 62, 70 to 78, and an annular groove 52, which are connected to the annular groove 5 provided in the rotor 40.
0, 51 and communicating holes 80 to 82 and 85, respectively.
回転子40は円盤41,42の間に設けられ、
回転軸39に連結され、回転軸39によつて定時
間毎に間欠的に回転自在に配設されている。回転
軸39の一端は回転子40に連結し、他端は駆動
源に連結する。回転軸39の駆動源側の円筒の末
端開口部分は、隔壁101により閉じて設けられ
る。 A rotor 40 is provided between disks 41 and 42,
It is connected to a rotating shaft 39 and is arranged so as to be rotatable intermittently by the rotating shaft 39 at regular intervals. One end of the rotating shaft 39 is connected to the rotor 40, and the other end is connected to a drive source. The end opening portion of the cylinder on the driving source side of the rotating shaft 39 is closed by a partition wall 101 .
円盤41,42は円筒90の内側面に密着状に
かつ円盤42が円筒内を微小往復可能に設けるこ
とが必要である。すなわち円盤42が円筒内をピ
ストンのように円盤42側面と円筒90内側面と
の間の密着状態を保ちつつ、回転軸の長手方向に
沿つて微小に動くことが可能なようにゴムOリン
グ104を介して設ける。 It is necessary that the disks 41 and 42 are provided in close contact with the inner surface of the cylinder 90, and that the disk 42 can be reciprocated minutely within the cylinder. That is, the rubber O-ring 104 is installed so that the disk 42 can move minutely along the longitudinal direction of the rotating shaft while maintaining close contact between the side surface of the disk 42 and the inner surface of the cylinder 90 inside the cylinder like a piston. Provided via.
かくして円盤42、円筒90および隔壁101
により形成される中空円柱状の空間は密封性の高
い空間となり、これを圧力室102とする。圧力
室102には圧力調節口105が設けられ、圧力
調節口105を介して圧力源に連結されている。
圧力室102にはオイルが満たされ油圧により、
圧力調整を行ない、圧力を瞬時に変更可能となつ
ている。 Thus, the disk 42, cylinder 90 and bulkhead 101
The hollow cylindrical space formed by this is a highly sealed space, and is referred to as the pressure chamber 102. The pressure chamber 102 is provided with a pressure adjustment port 105 and is connected to a pressure source via the pressure adjustment port 105.
The pressure chamber 102 is filled with oil, and due to hydraulic pressure,
The pressure can be adjusted and the pressure can be changed instantly.
回転子40は円盤41,42よりも小径に構成
する。回転子40と円筒90によつて中空円柱状
の空間が形成される。この空間は円盤41,42
の側面が、ゴムOリング104により、円筒90
の密着状にシールして設けられているため、密封
性の高い空間となり、これを圧力室103とす
る。圧力室103には排出口106が設けられて
いる。圧力室103は吸着室2〜9を流れる流体
の混合液で満たされている。 The rotor 40 is configured to have a smaller diameter than the disks 41 and 42. A hollow cylindrical space is formed by the rotor 40 and the cylinder 90. This space is disk 41, 42
The side surface of the cylinder 90 is fixed by the rubber O-ring 104.
Since the pressure chamber 103 is provided in a tightly sealed manner, it becomes a highly hermetically sealed space, which is referred to as a pressure chamber 103. A discharge port 106 is provided in the pressure chamber 103 . The pressure chamber 103 is filled with a mixture of fluids flowing through the adsorption chambers 2-9.
回転弁100内を流通する流体は加圧されてい
るため、圧力室103内に円盤と回転子の接触面
から若干量漏れ出る。その漏れ液により圧力室1
03は絶えず加圧状態に保持される。圧力室10
3を加圧することによつて円盤41と円盤42を
押し広げる方向に力がかかり、円盤41と回転子
40間に密着および円盤42と回転子40間の密
着を弱める方向に力が加えられる。圧力室103
の圧力をほぼ一定値に保つため、排出口106を
介して、圧力計、リリーフ弁(ともに図示せず)
が連結され、リリーフ弁の自動開閉により圧力室
103の圧力が調整できる。圧力室103内の混
合液が開孔部内に逆流することを防止するため
に、圧力室103の圧力は、回転弁内の開孔部に
流通または到達する流体のうち圧損が累積して最
も低い圧力の流体と同じ圧力またはそれ以下の圧
力に調整することが必要である。例えば、吸着室
1室につき内部圧損2Kg/cm2の吸着室を流体が通
過する場合、連結管18に18Kg/cm2の圧力を加え
た場合、回転弁の開孔部に流通または到達する流
体のうち最も低い圧力の流体は連結管25を通過
する4Kg/cm2の圧力の流体であるので、圧力室1
03はそれより若干低圧の3.5Kg/cm2の圧力に調
整し維持する。 Since the fluid flowing through the rotary valve 100 is pressurized, some amount leaks into the pressure chamber 103 from the contact surface between the disc and the rotor. Due to the leaked liquid, pressure chamber 1
03 is constantly kept under pressure. Pressure chamber 10
By pressurizing 3, a force is applied in the direction of pushing the disks 41 and 42 apart, and a force is applied in the direction of weakening the close contact between the disk 41 and the rotor 40 and the close contact between the disk 42 and the rotor 40. Pressure chamber 103
In order to maintain the pressure at a substantially constant value, a pressure gauge and a relief valve (both not shown) are connected via the discharge port 106.
are connected, and the pressure in the pressure chamber 103 can be adjusted by automatically opening and closing the relief valve. In order to prevent the mixed liquid in the pressure chamber 103 from flowing back into the opening, the pressure in the pressure chamber 103 is set so that the pressure in the pressure chamber 103 has the lowest cumulative pressure loss among the fluids that flow or reach the opening in the rotary valve. It is necessary to adjust the pressure to the same pressure as the fluid or to a lower pressure. For example, when fluid passes through an adsorption chamber with an internal pressure drop of 2 Kg/cm 2 per adsorption chamber, and when a pressure of 18 Kg/cm 2 is applied to the connecting pipe 18, the fluid flows or reaches the opening of the rotary valve. The fluid with the lowest pressure among them is the fluid with a pressure of 4Kg/cm 2 that passes through the connecting pipe 25, so the pressure chamber 1
03 is adjusted to and maintained at a slightly lower pressure of 3.5 Kg/cm 2 .
円盤41に設けられた開孔部は回転軸39と同
心状をなす円周上に等間隔に配設される。そし
て、開孔部70,71,72,73,74,7
5,76,77には連結管18,19,20,2
1,22,23,24,25が、それぞれ連結す
る(第2図参照)。また、第1の円盤41の中心
には回転軸39と同軸に開孔部62を設け、この
開孔部62にエクストラクトの抜出し管27が連
結する。 The openings provided in the disk 41 are arranged at equal intervals on a circumference concentric with the rotating shaft 39. And the openings 70, 71, 72, 73, 74, 7
Connecting pipes 18, 19, 20, 2 are connected to 5, 76, 77.
1, 22, 23, 24, and 25 are connected, respectively (see FIG. 2). Further, an opening 62 is provided at the center of the first disc 41 coaxially with the rotating shaft 39, and an extract extraction pipe 27 is connected to this opening 62.
他方、上記第2の円盤42の端面42a(回転
子40の端面40bと接続する側の面)に回転軸
39と同心状に環状溝52を設ける。また、第2
の円盤42には前記環状溝52に連通する開孔部
78を設け、この開孔部78に外殻90を貫通し
て脱着剤の供給管26が連絡する。 On the other hand, an annular groove 52 is provided in the end surface 42a of the second disk 42 (the surface connected to the end surface 40b of the rotor 40) concentrically with the rotating shaft 39. Also, the second
The disk 42 is provided with an opening 78 that communicates with the annular groove 52, and a desorption agent supply pipe 26 communicates with the opening 78 through the outer shell 90.
上記回転子40には、さらに、複数の連通孔を
設ける。すなわち、回転子40には第1図および
第4図から第7図に示す状態において、上記内側
の環状溝50と第1の円盤の開孔部74とを連通
するコ字形状の連通孔80と、第1の円盤におけ
る開孔部62,72を連通するコ字形状の連通孔
82(第6図参照)と、外側の環状溝51と第1
の円盤の開孔部76とを連通するコ字形状の連通
孔81(第6図参照)と、第1の円盤の開孔部7
0と第2の円盤に設けた環状溝52とを連通する
連通孔85とを設ける。 The rotor 40 is further provided with a plurality of communication holes. That is, in the state shown in FIGS. 1 and 4 to 7, the rotor 40 has a U-shaped communication hole 80 that communicates the inner annular groove 50 with the opening 74 of the first disk. , a U-shaped communication hole 82 (see FIG. 6) that communicates the openings 62 and 72 in the first disk, and an annular groove 51 on the outside and the first
A U-shaped communication hole 81 (see FIG. 6) that communicates with the aperture 76 of the first disk and the aperture 7 of the first disk.
0 and the annular groove 52 provided in the second disk are provided.
しかして、第1図および第3図から第7図に示
す状態においては、回転弁100内に、流体の通
過する四つの通路が形成される。すなわち、
(a) 開孔部78−環状溝52−連通孔85−開孔
部70による通路A、
(b) 開孔部72−連通孔82−開孔部62による
通路B、
(c) 開孔部60−環状溝50−連通孔80−開孔
部74による通路C、
(d) 開孔部76−連通孔81−環状溝51−開孔
部61による通路D、
が上記四つの通路である。この四つの通路が形成
されている間、圧力室102を加圧状態(例えば
14Kg/cm2)に保持する。 Thus, in the states shown in FIGS. 1 and 3 to 7, four passages through which fluid passes are formed within the rotary valve 100. That is, (a) passage A by opening 78 - annular groove 52 - communication hole 85 - opening 70; (b) passage B by opening 72 - communication hole 82 - opening 62; (c) passage B by opening 72 - communication hole 82 - opening 62; The above four passages are: hole 60 - annular groove 50 - communication hole 80 - aperture 74 (d) a passage D (aperture 76 - communication hole 81 - annular groove 51 - aperture 61). be. While these four passages are being formed, the pressure chamber 102 is kept in a pressurized state (for example,
14Kg/cm 2 ).
次いで、上記回転子40を矢印(第1図および
第2図参照)の方向に1/8回転させると、上記通
路A,B,C,Dが、それぞれ切替る。この回転
の間のみ、圧力室102の加圧状態を緩和し、
(例えば10Kg/cm2)、回転子40の回転をし易くす
る。 Next, when the rotor 40 is rotated 1/8 turn in the direction of the arrow (see FIGS. 1 and 2), the passages A, B, C, and D are switched, respectively. Only during this rotation, the pressurized state of the pressure chamber 102 is relaxed,
(for example, 10 Kg/cm 2 ), making it easier for the rotor 40 to rotate.
回転が終了して新たに別の四つの通路が形成さ
れると同時に圧力室102の加圧状態を回転前と
同程度に強化し(例えば14Kg/cm2)、静止時の漏
れを防止する。このように、通路の形成と回転を
順次繰返し、その都度、圧力室102の圧力を瞬
時に変更せしめることにより、有効に流体の漏れ
を防止しながら回転子を回転せしめることができ
る。 At the same time when the rotation ends and four other passages are newly formed, the pressurization state of the pressure chamber 102 is strengthened to the same degree as before the rotation (for example, 14 kg/cm 2 ), thereby preventing leakage when at rest. In this way, by sequentially repeating the formation and rotation of the passage and instantaneously changing the pressure in the pressure chamber 102 each time, the rotor can be rotated while effectively preventing fluid leakage.
本発明の回転弁の材質は特に限定されないが、
回転子自身または回転子の接触面は自己潤滑性を
有する材質が良い。これに適する材質としては、
例えばテフロン、テフロン含浸ガラス綿、弗化炭
化黒鉛、ポリアセタール樹脂、ポリアミドイミド
樹脂、またはナイロンあるいはポリエステル樹脂
も含まれる。さらにはセラミツク類で回転子およ
び/または円盤をつくつてもよい。 The material of the rotary valve of the present invention is not particularly limited, but
The rotor itself or the contact surface of the rotor is preferably made of a material that has self-lubricating properties. Materials suitable for this are:
Examples include Teflon, Teflon-impregnated glass cotton, fluorinated graphite, polyacetal resin, polyamideimide resin, or nylon or polyester resin. Furthermore, the rotor and/or disk may be made of ceramics.
上述説明においては、円筒の末端開口部分を隔
壁101により閉じて設けることにより隔壁10
1、円盤42および円筒90間で形成される中空
円柱状の空間を圧力室102とする場合について
説明したが、第8図に示すように隔壁101を使
用せず、円筒の末端開口部分をそれ自身でシール
可能に設けて形成される中空円柱状の空間を圧力
室としたものも本発明の範囲に含まれる。 In the above description, the partition wall 10 is provided by closing the end opening portion of the cylinder with the partition wall 101.
1. Although the case where the hollow cylindrical space formed between the disk 42 and the cylinder 90 is used as the pressure chamber 102 has been described, as shown in FIG. The scope of the present invention also includes a pressure chamber that is a hollow cylindrical space that is self-sealable.
また、第9図および第10図に示すように円柱
状の空間を圧力室102とするものおよび圧力室
102を2個有するものも本発明の範囲に含まれ
る。 Furthermore, as shown in FIGS. 9 and 10, a device in which the pressure chamber 102 is a cylindrical space and a device in which there are two pressure chambers 102 are also included within the scope of the present invention.
<作用>
本発明においては、円筒90内に円盤41,4
2をピストン状に回転子40を間に挟んで挿入す
る構成としたので、円筒90の一方の圧力室10
2へ油圧シリンダのように流体を押込めて円盤4
2を加圧できる。<Function> In the present invention, the disks 41 and 4 are placed inside the cylinder 90.
2 is inserted like a piston with the rotor 40 sandwiched between them, so that one pressure chamber 10 of the cylinder 90
Press fluid into disk 2 like a hydraulic cylinder to create disk 4.
2 can be pressurized.
このため、円盤41,42と回転子40との接
触面の面圧が均一に加わるようになつて、流体の
漏れに対する不安を大巾に解消できる。また、加
圧の度合いもスプリングよりも飛躍的に迅速かつ
容易に調整でき、回転子を間欠回転する際に回転
中のみ低圧、それ以外は高圧にすることも瞬時に
行うことさえできる。 Therefore, the contact pressure between the disks 41 and 42 and the rotor 40 is uniformly applied, and concerns about fluid leakage can be largely eliminated. In addition, the degree of pressurization can be adjusted much more quickly and easily than with springs, and when the rotor is intermittently rotated, it can even be instantaneously set to low pressure only during rotation, and high pressure at other times.
さらに、小径と回転子40と円筒90間で中空
円柱状の圧力室103を設ける構成としたので圧
力室103を使用流体と同一のもので満たして加
圧すれば、接触面からにじみ出ようとする流体の
漏れを効果的に阻止することができる。 Furthermore, since a hollow cylindrical pressure chamber 103 is provided between the small diameter rotor 40 and the cylinder 90, if the pressure chamber 103 is filled with the same fluid as the fluid used and pressurized, the fluid tends to ooze out from the contact surface. Fluid leakage can be effectively prevented.
また、円盤41,42内の複数の連通路がそれ
ぞれ圧力が少しづつ異なる場合、しかもそれらを
流れる流体が混じり合わないようにするには、圧
力室103を最も低い流通路の圧力に設定するだ
けでも、接触面からにじみ出ようとする流体の漏
れを効率的に阻止することができると同時に連通
路間の流体の混合も防ぐことができる。 Furthermore, if the pressures of the plural communication passages in the disks 41 and 42 are slightly different, and in order to prevent the fluids flowing through them from mixing, simply set the pressure chamber 103 to the pressure of the lowest passage. However, it is possible to efficiently prevent fluid from leaking from the contact surface, and at the same time to prevent fluid from mixing between the communication paths.
<実施例>
以下、実施例をもつて本発明を具体的に説明す
る。<Examples> The present invention will be specifically described below with reference to Examples.
実施例 1
第1図において円盤41,42の直径をともに
420mm、回転子40の直径を365mm、円盤41,4
2の開孔部と連通路の共通の中心円直径を300mm、
開孔径および連通路直径を40mmとして回転子40
の中心円径上に8個等配して設けた。Example 1 In Fig. 1, the diameters of disks 41 and 42 are both
420mm, diameter of rotor 40 is 365mm, disk 41,4
The common center circle diameter of the opening part and the communication path in 2 is 300 mm,
Rotor 40 with opening hole diameter and communicating path diameter of 40 mm
Eight pieces were arranged equally on the center circle diameter.
8個の連通路に流体を36.4m3/h流した。最初
の連通路を通る流体の圧力は18Kg/cm2で、次々に
2Kg/cm2の圧損を生じながら最後の連通路を通る
流体の圧力は4Kg/cm2となつた。そこで円筒90
と回転子40の圧力室103にリリーフ弁を接続
して3.5Kg/cm2が常時加わるように圧力を調整し
た。また、圧力室102には、油圧により、回転
子の回転時には10Kg/cm2に静止時には14Kg/cm2に
瞬時に圧力変更が可能なように圧力調整装置に連
結させた。その結果、流量36.4m3/hで流体を流
通させた場合、漏れ量は14.2ml/hでありほぼ漏
れが防止できた。 36.4 m 3 /h of fluid was allowed to flow through the eight communicating passages. The pressure of the fluid passing through the first communication passage was 18Kg/cm 2 , and the pressure of the fluid passing through the last communication passage became 4Kg/cm 2 while successively causing a pressure loss of 2Kg/cm 2 . So the cylinder 90
A relief valve was connected to the pressure chamber 103 of the rotor 40, and the pressure was adjusted so that 3.5 kg/cm 2 was constantly applied. Further, the pressure chamber 102 was connected to a pressure regulating device so that the pressure could be changed instantaneously from 10 kg/cm 2 when the rotor was rotating to 14 kg/cm 2 when the rotor was stationary using hydraulic pressure. As a result, when fluid was circulated at a flow rate of 36.4 m 3 /h, the amount of leakage was 14.2 ml/h, and leakage could almost be prevented.
一方、第3図に記載された従来の大気圧開放型
の回転弁を用いると、流量3.2m3/hで流体を流
通させた場合の漏れ量は1500ml/hであつた。す
なわち、本発明の回転弁を使用することにより漏
れ量を1/1200に減少することができた。 On the other hand, when the conventional atmospheric pressure open rotary valve shown in FIG. 3 was used, the amount of leakage was 1500 ml/h when fluid was passed at a flow rate of 3.2 m 3 /h. That is, by using the rotary valve of the present invention, the amount of leakage could be reduced to 1/1200.
<発明の効果>
本発明の回転弁によれば、回転子のスムーズな
回転を阻害することなくかつ円盤と回転子の接触
面の損傷も生じることなく、円盤と回転子の接触
面からの流体の漏れをほとんど完全に防止するこ
とができる。<Effects of the Invention> According to the rotary valve of the present invention, fluid can be removed from the contact surface between the disk and the rotor without interfering with the smooth rotation of the rotor and without causing damage to the contact surface between the disk and the rotor. leakage can be almost completely prevented.
第1図は本発明の回転弁の一態様を示す断面
図、第2図は吸着分離装置の概略図、第3図は従
来の回転弁の断面図、第4図は第1図および第3
図のY−Y矢視図、第5図は第1図および第3図
のZ−Z矢視図、第6図は第1図および第3図の
Y′−Y′矢視図、第7図は第1図および第3図の
Z′−Z′矢視図、第8図〜第10図はそれぞれ本発
明の回転弁の他の態様を示す断面図である。
FIG. 1 is a sectional view showing one embodiment of the rotary valve of the present invention, FIG. 2 is a schematic diagram of an adsorption separation device, FIG. 3 is a sectional view of a conventional rotary valve, and FIG.
Figure 5 is a Y-Y arrow view in the figure, Figure 5 is a Z-Z arrow view in Figures 1 and 3, and Figure 6 is a Z-Z arrow view in Figures 1 and 3.
Y'-Y' arrow view, Figure 7 is the same as Figures 1 and 3.
The Z'-Z' arrow view and FIGS. 8 to 10 are sectional views showing other embodiments of the rotary valve of the present invention, respectively.
Claims (1)
であつて、該回転弁内の通路の一部を備えかつ回
転不能の複数の円盤および該円盤の間に回転自在
に配設した通路切替用の小径の回転子を円筒内に
設けた回転弁において、前記円盤を前記円筒内側
面に密着状にかつ前記円盤の少なくとも1つが前
記円筒内を微小往復可能に設けるとともに、前記
円筒と前記回転子間で形成されかつ加圧によつて
前記円盤の少なくとも1つと前記回転子の密着を
弱める中空円柱状の空間を圧力室とし、さらに前
記円筒の末端開口部分を閉じることにより、前記
円盤と前記円筒間で形成される中空円柱状の空間
および/または円柱状の空間を圧力室とすること
を特徴とする回転弁。1 A rotary valve having a passage through which a pressurized fluid passes, including a plurality of non-rotatable discs that include a part of the passage in the rotary valve, and a passage switch rotatably disposed between the discs. In a rotary valve in which a small-diameter rotor for use is provided in a cylinder, the disk is provided in close contact with the inner surface of the cylinder, and at least one of the disks is provided so as to be able to reciprocate minutely within the cylinder. A hollow cylindrical space formed between the rotors and which weakens the close contact between at least one of the disks and the rotor by pressurization is used as a pressure chamber, and by closing the end opening of the cylinder, the disk and the rotor are closed. A rotary valve characterized in that a hollow cylindrical space and/or a cylindrical space formed between cylinders is used as a pressure chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29447385A JPS62155380A (en) | 1985-12-26 | 1985-12-26 | Rotary valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29447385A JPS62155380A (en) | 1985-12-26 | 1985-12-26 | Rotary valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62155380A JPS62155380A (en) | 1987-07-10 |
JPH0335538B2 true JPH0335538B2 (en) | 1991-05-28 |
Family
ID=17808227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29447385A Granted JPS62155380A (en) | 1985-12-26 | 1985-12-26 | Rotary valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62155380A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5168201B2 (en) * | 2009-03-19 | 2013-03-21 | 東レ株式会社 | Pressurized fluid passage switching method and separation method |
KR101506663B1 (en) * | 2013-10-18 | 2015-03-30 | 주식회사 에스에프이 | Apparatus for supplying fluid |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5017087U (en) * | 1973-06-11 | 1975-02-24 |
-
1985
- 1985-12-26 JP JP29447385A patent/JPS62155380A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5017087U (en) * | 1973-06-11 | 1975-02-24 |
Also Published As
Publication number | Publication date |
---|---|
JPS62155380A (en) | 1987-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1420197B1 (en) | Rotary sequencing valve with flexible port plate | |
EP1238219B1 (en) | Fluid-directing multiport rotary valve | |
US6311719B1 (en) | Rotary valve assembly for pressure swing adsorption system | |
US3192954A (en) | Distributing valve | |
AU647617B2 (en) | Gas separation system and gas recovery system | |
AU2011302622B2 (en) | Fluid-directing multiport rotary valve | |
EP0760919B1 (en) | Sanitizable slider diaphragm valve | |
US4228007A (en) | Chromatographic cartridge and holder | |
US4625763A (en) | Disc-axial multiport valve | |
JPH0325674B2 (en) | ||
JPH0335538B2 (en) | ||
JPS58134286A (en) | Rotary valve | |
JP5168201B2 (en) | Pressurized fluid passage switching method and separation method | |
EP0231568B1 (en) | Multiport axial valve with balanced rotor | |
JPS6354150B2 (en) | ||
JP3346770B2 (en) | Continuous chromatography | |
US11953104B2 (en) | Rotary multi-way distributor with plural port tracks | |
US7022229B1 (en) | Adsorption separation system | |
JPS5947570A (en) | Cam working pressure balance type duplex sleeve valve | |
GB2110951A (en) | Improvements in chromatography | |
JP2971202B2 (en) | Gas recovery device | |
CA1158894A (en) | Chromatographic cartridge and holder | |
JPS58187666A (en) | Rotary valve | |
JPH06327925A (en) | Rotary gas separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |