[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03188108A - Method for polymerizing alpha-olefin - Google Patents

Method for polymerizing alpha-olefin

Info

Publication number
JPH03188108A
JPH03188108A JP32611489A JP32611489A JPH03188108A JP H03188108 A JPH03188108 A JP H03188108A JP 32611489 A JP32611489 A JP 32611489A JP 32611489 A JP32611489 A JP 32611489A JP H03188108 A JPH03188108 A JP H03188108A
Authority
JP
Japan
Prior art keywords
polymerization
catalyst
chromium
hydrocarbon
organomagnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32611489A
Other languages
Japanese (ja)
Inventor
Yukitoshi Iwashita
岩下 幸年
Shigeo Tsuyama
津山 重雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP32611489A priority Critical patent/JPH03188108A/en
Publication of JPH03188108A publication Critical patent/JPH03188108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To inhibit the formation of by-products, such as oligomers, by polymerizing an olefin in the presence of a highly active catalyst which is obtd. by bringing a solid component comprising a chromium component carried by an inorg. oxide into contact with a specific inert hydrocarbon-sol. organomagnesium complex compd. CONSTITUTION:A solid component obtd. by baking a chromium compd. (e.g. chromium trioxide) carried by an inorg. oxide (e.g. silica) is brought into contact with an inert hydrocarbon-sol. organomagnesium complex compd. of formula I (wherein alpha, beta are each a number higher than 0; p+q+r+s+t=3alpha+2beta, and they satisfy formula II; R<1>, R<2>, and R<3> are each a 1-20C hydrocarbon group; X and Y are each OR<4>, OSiR<5>R<6>R<7>, NR<8>R<9>, etc.; and R<4> to R<9> are each H or a hydrocarbon group) (e.g. a compd. of formula III) in a molar ratio of (Al+ Mg)/Cr of 0.1-10. The resulting highly active Phillips process catalyst is used to polymerize an olefin (e.g. ethylene).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、オレフィン、とくにエチレンもしくはエチレ
ンと他のα−オレフィンの重合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a process for the polymerization of olefins, particularly ethylene or ethylene and other α-olefins.

詳しくは、本発明は、無機酸化物に担持されたクロム成
分からなる固体と、特定の有機マグネシウムを含む成分
とを予め接触処理して得た触媒を用いることを特徴とす
る、活性の高い改良されたオレフィンの重合方法に関す
る。
Specifically, the present invention is an improvement with high activity characterized by using a catalyst obtained by contacting a solid consisting of a chromium component supported on an inorganic oxide and a component containing a specific organomagnesium. The present invention relates to a method for polymerizing olefins.

(従来の技術) 酸化クロム等のクロム化合物をシリカ、シリカアルミナ
等の無機酸化物担体に担持させ、焼成することによって
得られるエチレン重合用触媒は、いわゆるフィリップス
型触媒として広く知られている。
(Prior Art) An ethylene polymerization catalyst obtained by supporting a chromium compound such as chromium oxide on an inorganic oxide carrier such as silica or silica alumina and firing it is widely known as a so-called Phillips type catalyst.

しかし、この触媒を使用する場合に、触媒の活性および
重合体の平均分子量は重合温度に大きく依存し、市販に
適した分子量数万〜数十万の重合体を十分な触媒活性の
もとで製造するためには、−船釣に重合温度を100〜
200 ’Cにする必要があった。
However, when using this catalyst, the activity of the catalyst and the average molecular weight of the polymer greatly depend on the polymerization temperature. In order to manufacture it, the polymerization temperature must be set at 100~
It needed to be 200'C.

このような温度範囲で重合を行う場合に、生成する重合
体は反応溶媒に溶解した状態となるため、反応系の粘度
が著しく上昇し、その結果として、生成重合体濃度を2
0%以上に上げることが困難であった。従って、重合が
いわゆるスラリー重合となる100°C以下の重合温度
において、高い触媒活性を示す触媒の開発が強く求めら
れていた。
When polymerization is carried out in such a temperature range, the produced polymer is dissolved in the reaction solvent, so the viscosity of the reaction system increases significantly, and as a result, the concentration of the produced polymer decreases by 2.
It was difficult to raise it above 0%. Therefore, there has been a strong demand for the development of a catalyst that exhibits high catalytic activity at a polymerization temperature of 100° C. or lower, at which polymerization becomes so-called slurry polymerization.

さらに加えて、生産コストの低減のために、重合後の工
程においての触媒除去工程を省略できることが重要であ
り、このためには、さらに高い活性を示す触媒の開発が
必要とされていた。
Furthermore, in order to reduce production costs, it is important to be able to omit the catalyst removal step in the post-polymerization process, and for this purpose, it has been necessary to develop a catalyst that exhibits even higher activity.

そこで、このフィリップス型触媒の重合活性を改良すべ
く、有機アルミニウム化合物や有機亜鉛化合物等を組み
合わせた触媒系が数多く提案され、(例えば、特公昭3
6−22144号公報、特公昭43−27415号公報
、特公昭47−23668号公報、特公昭49−347
59号公報など)、触媒活性の向上が計られてきた。
Therefore, in order to improve the polymerization activity of this Phillips-type catalyst, many catalyst systems were proposed that combined organoaluminum compounds, organozinc compounds, etc. (for example,
6-22144, Japanese Patent Publication No. 43-27415, Japanese Patent Publication No. 47-23668, Japanese Patent Publication No. 49-347
No. 59, etc.), efforts have been made to improve the catalytic activity.

更に、フィリップス型触媒と有機マグネシウム錯化合物
と組み合わせてなる触媒系が開示されて(例えば、特公
昭59−5602号公報、特公昭59−5604号公報
、特公昭59−50242号公報など)、さらに、触媒
活性が改良されてきた。
Furthermore, a catalyst system comprising a combination of a Phillips-type catalyst and an organomagnesium complex compound has been disclosed (for example, Japanese Patent Publication No. 59-5602, Japanese Patent Publication No. 59-5604, Japanese Patent Publication No. 59-50242, etc.); , the catalytic activity has been improved.

(発明が解決しようとする諜B) しかしながら、前記特公昭59−5602号公報に記載
の発明は、確かに触媒活性は改良され優れた技術である
が、重合に際してオリゴマーやワックス分が多量に副生
ずる欠点があった。このことは、コストおよびプロセス
の安定運転という観点から解決すべき大きな課題であっ
た。
(Secret B to be solved by the invention) However, although the invention described in Japanese Patent Publication No. 59-5602 is an excellent technique with improved catalytic activity, a large amount of oligomers and wax components are added as by-products during polymerization. There were some drawbacks. This was a major problem to be solved from the viewpoint of cost and stable operation of the process.

(課題を解決するための手段) 本発明者らは、前記課題に対して種々検討を重ねた結果
、シリカ等の担体に担持されたクロム化合物を焼成活性
化した固体と、特定の有機マグネシウム化合物とを組ろ
合わせた前記特公昭595602号公報に記載の触媒系
において、特定モル比の範囲で予め両者を接触し、重合
に用いることで、オリゴマーおよびワックス分の発生を
著しく低減できることを見出し、本発明に到達した。
(Means for Solving the Problems) As a result of various studies regarding the above problems, the present inventors have developed a solid product obtained by calcination activation of a chromium compound supported on a carrier such as silica, and a specific organomagnesium compound. It has been discovered that in the catalyst system described in Japanese Patent Publication No. 595602, in which the two are combined, the generation of oligomer and wax components can be significantly reduced by contacting them in advance in a specific molar ratio range and using them for polymerization, We have arrived at the present invention.

すなわち、本発明は; (alクロム化合物を無機酸化物担体に担持し焼成した
固体成分と、 ■)一般式 (Al) で示される不活性炭化水素可溶有機マグネシウム諸化合
物(式中、α、βは0より大きい数であり、p、q、r
、sStは0またはOより大で、0< (s十t)/(
α+β)≦1.5かつp+q+r+s+t=3α+2β
の関係を有し、R’ 、R” 、R’は同一または異な
った炭素原子数1〜20の炭化水素基であり、 XSYは同一または異なったOR’、05iRs Rh
 R? 、NRI R9および5R16から選ばれた基
を表し、 R’、R’、R’、R’、R’、R中は水素原子または
炭化水素基であり、 R10は炭化水素基を表す)とから成る触媒を用いるオ
レフィン重合方法において、 予め(a)と(2)とをCAl+Mg)/Crモル比で
0.1〜10の範囲で接触させ、重合に用いることを特
徴とするオレフィンの重合方法に係わるものである。
That is, the present invention includes: (a solid component obtained by supporting an al chromium compound on an inorganic oxide carrier and firing it; β is a number greater than 0, p, q, r
, sSt is 0 or greater than O, and 0< (s +t)/(
α+β)≦1.5 and p+q+r+s+t=3α+2β
R', R'', R' are the same or different hydrocarbon groups having 1 to 20 carbon atoms, XSY is the same or different OR', 05iRs Rh
R? , NRI represents a group selected from R9 and 5R16, R', R', R', R', R', and R are hydrogen atoms or hydrocarbon groups, and R10 represents a hydrocarbon group). In the olefin polymerization method using a catalyst comprising: (a) and (2) are brought into contact in advance at a molar ratio of CA1+Mg)/Cr in the range of 0.1 to 10, and used for polymerization. It is related.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に用いる無機酸化物担体としては、シリカ、シリ
カ−アルミナ、ドリア、ジルコニア等を用いることがで
きるが、シリカ、シリカ−アルミナが特に好ましい。
As the inorganic oxide carrier used in the present invention, silica, silica-alumina, doria, zirconia, etc. can be used, but silica and silica-alumina are particularly preferred.

担持するクロム化合物としては、クロムの酸化物、ハロ
ゲン化物、オキシハロゲン化物、硝酸塩、硫酸塩、シュ
ウ酸塩、酢酸塩、アルコラード等が挙げられ具体的には
、三酸化クロム、塩化クロミル、重クロム酸カリウム、
クロム酸アンモニウム、硝酸クロム、酢酸クロム、クロ
ムアセチルアセトナート、ジ−t−ブチルクロメート等
焼成によって少なくとも部分的に二酸化クロムを形成す
る化合物が挙げられる。三酸化クロム、酢酸クロム、ク
ロムアセチルアセトナートは、特に好ましく用いられる
Examples of supported chromium compounds include chromium oxides, halides, oxyhalides, nitrates, sulfates, oxalates, acetates, alcoholades, etc. Specifically, chromium trioxide, chromyl chloride, dichromium acid potassium,
Compounds that at least partially form chromium dioxide upon calcination include ammonium chromate, chromium nitrate, chromium acetate, chromium acetylacetonate, and di-t-butylchromate. Chromium trioxide, chromium acetate, and chromium acetylacetonate are particularly preferably used.

次に、クロム化合物の担持および焼成について説明する
Next, supporting and firing of the chromium compound will be explained.

担体にクロム化合物を担持させるには、含浸、溶媒留去
、昇華付着等の公知の方法によって行われる。担持する
クロムの量は、担体に対するクロム原子の重量%で、0
.05〜5%、好ましくは0.1〜3%の範囲である。
The chromium compound can be supported on the carrier by known methods such as impregnation, solvent distillation, and sublimation deposition. The amount of chromium supported is 0% by weight of chromium atoms relative to the support.
.. It ranges from 0.05 to 5%, preferably from 0.1 to 3%.

焼成活性化は、−Cに酸素の存在下で行うが、不活性ガ
スの存在下あるいは減圧下で行うことも可能である。好
ましくは、水分を実質的に含まない空気が用いられる。
The firing activation is carried out in the presence of -C and oxygen, but it can also be carried out in the presence of an inert gas or under reduced pressure. Preferably, air substantially free of moisture is used.

焼成温度は300 ”C以上、好ましくは400〜90
0°Cの範囲で数分〜数十時間、好ましくは30分〜1
0時間行われる。焼成時には充分乾燥空気を供給し、流
動状態下で焼成活性化を行うことが推奨される。
Firing temperature is 300"C or higher, preferably 400-90"C
Several minutes to several tens of hours, preferably 30 minutes to 1 hour in the range of 0°C
Runs for 0 hours. It is recommended to supply sufficient dry air during firing and to perform firing activation in a fluidized state.

なお、担持もしくは焼成時にチタネート類やフッ素含有
塩類等を添加して、活性や分子量等を調節する公知の方
法を併用することも勿論可能である。
Of course, it is also possible to use a known method of adjusting activity, molecular weight, etc. by adding titanates, fluorine-containing salts, etc. during the supporting or firing process.

次に、本発明に用いられる一般式: (Al3) で示される不活性炭化水素可溶有機マグネシウム錯化合
物について説明する。
Next, the inert hydrocarbon soluble organomagnesium complex compound represented by the general formula (Al3) used in the present invention will be explained.

上記式中、R1、R2、R3で表される炭化水素基は、
アルキル基、シクロアルキル基、またはアリール基であ
り、たとえば、メチル、エチル、プロピル、ブチル、ア
ミル、ヘキシル、オクチル、デシル、ドデシル、シクロ
ヘキシル、フェニル基等が挙げられ、アルキル基が好ん
で用いられる。
In the above formula, the hydrocarbon groups represented by R1, R2, and R3 are:
It is an alkyl group, a cycloalkyl group, or an aryl group, such as methyl, ethyl, propyl, butyl, amyl, hexyl, octyl, decyl, dodecyl, cyclohexyl, phenyl group, etc., and an alkyl group is preferably used.

XXYで表される極性基はアルコキシ基、シロキシ基、
アミノ基またはスルフィド基であり、好ましくはアルコ
キシ基もしくはシロキシ基である。
The polar group represented by XXY is an alkoxy group, a siloxy group,
It is an amino group or a sulfide group, preferably an alkoxy group or a siloxy group.

金属原子に対する極性基の比(s+t)/(α+β)は
、0より大で1.5以下、好ましくは0゜2以上、1.
0以下である。
The ratio of polar groups to metal atoms (s+t)/(α+β) is greater than 0 and less than or equal to 1.5, preferably greater than or equal to 0°2, and 1.
It is less than or equal to 0.

上記の不活性炭化水素可溶有機マグネシウム錯化合物は
、既に公表されている本出願人らの公開公報、公告公報
にしたがって合成される。(例えば特公昭52−367
91号公報、特公昭52−36796号公報、特公昭5
6−43046号公報など、) 不活性炭化水素媒体としては、ヘキサン、ヘプタンのご
とき脂肪族炭化水素:ベンゼン、トルエンのごとき芳香
族炭化水素二ジクロヘキサン、メチルシクロヘキサンの
ごとき脂環式炭化水素等が挙げられ、脂肪族炭化水素も
しくは脂環式炭化水素が好んで用いられる。
The above-mentioned inert hydrocarbon-soluble organomagnesium complex compound is synthesized according to the published publications and publications of the present applicants. (For example, Tokuko Sho 52-367
Publication No. 91, Special Publication No. 52-36796, Special Publication No. 52-36796
6-43046, etc.) Examples of the inert hydrocarbon medium include aliphatic hydrocarbons such as hexane and heptane; aromatic hydrocarbons such as benzene and toluene; and alicyclic hydrocarbons such as didichlorohexane and methylcyclohexane. aliphatic hydrocarbons or alicyclic hydrocarbons are preferably used.

次に、固体触媒成分(すなわち担体に担持され焼成活性
化されたクロム含有固体)と有機マグネシウム成分とを
接触する方法について説明する。
Next, a method of bringing the solid catalyst component (ie, the chromium-containing solid supported on a carrier and activated by firing) into contact with the organomagnesium component will be described.

接触方法は、炭化水素媒体に懸濁した固体触媒成分に有
機マグネシウム錯体成分を添加してもよいし、有機マグ
ネシウム錯体成分に固体触媒成分を添加してもよい。
In the contact method, the organomagnesium complex component may be added to a solid catalyst component suspended in a hydrocarbon medium, or the solid catalyst component may be added to an organomagnesium complex component.

本発明においては、固体触媒成分と有機マグネシウム錯
体成分とを予め接触させ、かつその際の両者のモル比が
特定の範囲にあることが本発明の効果、即ちオリゴマー
・ワックス副生低減効果を得るために重要である。
In the present invention, the effect of the present invention, that is, the effect of reducing oligomer wax by-products, is obtained by bringing the solid catalyst component and the organomagnesium complex component into contact with each other in advance, and at that time, the molar ratio of the two is within a specific range. It is important for

(Mg+Ajり/Crとしての両者の金属モル比は、0
.1〜1oの範囲であり、好ましくは1〜5の範囲が用
いられる。
(The molar ratio of both metals as Mg+Aj/Cr is 0
.. The range is from 1 to 1o, preferably from 1 to 5.

接触濃度、接触温度については、特に限定はなく、温度
は通常用いられる室温から100″Cの範囲を用いるこ
とができる。また、接触媒体としては、ヘキサン、うブ
タンのごとき脂肪族炭化水素:ベンゼン、トルエンのご
とき芳香族炭化水素:ンクロヘキサン、メチルシクロヘ
キサンのごとき脂環式炭化水素等が挙げられ、脂肪族炭
化水素もしくは脂環式炭化水素が好んで用いられる。
There are no particular limitations on the contact concentration and contact temperature, and the temperature range can be from room temperature to 100"C. As the contact medium, aliphatic hydrocarbons such as hexane and butane, benzene, etc. , aromatic hydrocarbons such as toluene; alicyclic hydrocarbons such as cyclohexane and methylcyclohexane; aliphatic hydrocarbons or alicyclic hydrocarbons are preferably used.

次に、本発明の触媒を用いてオレフィンを重合する方法
に関して説明する。
Next, a method for polymerizing olefin using the catalyst of the present invention will be explained.

本発明の触媒を用いて重合しうるオレフィンはα−オレ
フィンであり、特にエチレンである。さらに本発明の触
媒はエチレンとプロピレン、ブテン−1、ヘキセン−1
等のモノオレフィンとの共重合、あるいはさらにブタジ
ェン、イソプレン等のジエンの共存下での重合に用いる
ことも可能である。
Olefins that can be polymerized using the catalysts of the invention are alpha-olefins, especially ethylene. Furthermore, the catalyst of the present invention is ethylene, propylene, butene-1, hexene-1
It is also possible to use it for copolymerization with monoolefins such as, or in the presence of dienes such as butadiene and isoprene.

本発明の触媒を用い、共重合を実施することによって密
度0. 91〜0. 97 g/cdの範囲の重合体を
製造することが可能である。重合方法としては、通常の
懸濁重合、溶液重合、気相重合が可能である。懸濁重合
、溶液重合の場合は、触媒を重合溶媒、例えば、プロパ
ン、ブタン、ペンタン、ヘキサン、ヘプタンのごとき脂
肪族炭化水素:ベンゼン、トルエン、キシレンのごとき
芳香族炭化水素二ジクロヘキサン、メチルシクロヘキサ
ンのごとき脂環式炭化水素と共に反応器に導入し、不活
性雰囲気下にエチレンを1〜200 kg/ct!に圧
入して、室温〜320°Cの温度で重合を進めることが
できる。
By carrying out copolymerization using the catalyst of the present invention, the density is 0. 91-0. It is possible to produce polymers in the range of 97 g/cd. As the polymerization method, usual suspension polymerization, solution polymerization, and gas phase polymerization are possible. In the case of suspension polymerization and solution polymerization, the catalyst is a polymerization solvent, such as an aliphatic hydrocarbon such as propane, butane, pentane, hexane, or heptane; an aromatic hydrocarbon such as benzene, toluene, or xylene; didiclohexane, or methylcyclohexane. Ethylene was introduced into the reactor together with alicyclic hydrocarbons such as 1 to 200 kg/ct of ethylene under an inert atmosphere. The polymerization can be carried out at a temperature of room temperature to 320°C.

一方、気相重合は、エチレンを1〜50kg/cJの圧
力で室温〜120°Cの温度条件下で、エチレンと触媒
の接触が良好となるよう流動床、移動床、あるいは撹拌
によって混合を行う等の手段を講じて重合を行うことが
可能である。
On the other hand, in gas phase polymerization, ethylene is mixed at a pressure of 1 to 50 kg/cJ at a temperature of room temperature to 120°C using a fluidized bed, moving bed, or stirring to ensure good contact between the ethylene and the catalyst. Polymerization can be carried out by taking the following measures.

本発明の触媒は高性能であり、85゛C110kg/c
d程度の比較的低温、低圧の重合条件下においても充分
に高い活性を示し、かつ重合に際してのオリゴマーやワ
ックス分の副生が少ない、この場合に生成する重合体は
重合系にスラリー状態で存在するため、重合系の粘度上
昇もきわめて少ない。
The catalyst of the present invention has a high performance, and is rated at 85゛C110kg/c.
It exhibits sufficiently high activity even under relatively low temperature and low pressure polymerization conditions such as d, and there are few oligomer and wax by-products during polymerization.The polymer produced in this case exists in the polymerization system in the form of a slurry. Therefore, the increase in viscosity of the polymerization system is extremely small.

従って、重合系の重合体濃度を30%以上にすることが
でき、かつオリゴマーやワックス分の副生も少ないこと
から、製造コストの低減、生産効率間上等の利点が大き
い。また高活性のため、生成ポリマーからの触媒残渣除
去工程は省略できる。
Therefore, the polymer concentration in the polymerization system can be increased to 30% or more, and the amount of by-products such as oligomers and wax components is small, so there are great advantages such as reduction in manufacturing costs and improvement in production efficiency. Furthermore, due to its high activity, the step of removing catalyst residue from the produced polymer can be omitted.

重合は1反応帯を用いる通常の1段重合で行ってもよい
し、または複数個の反応帯を用いる、いわゆる多段重合
で行ってもよい。
The polymerization may be carried out by conventional one-stage polymerization using one reaction zone, or by so-called multi-stage polymerization using a plurality of reaction zones.

本発明の触媒を用いて重合したポリマーは、通常の1段
重合でも広い分子量分布をもち、分子量も比較的高く、
吹込成形やフィルム成形の用途に極めて適している。
The polymer polymerized using the catalyst of the present invention has a wide molecular weight distribution even in normal one-stage polymerization, and has a relatively high molecular weight.
Extremely suitable for blow molding and film forming applications.

2個以上の異なった反応条件下で重合を行う多段重合で
は、さらに広い分子量分布のポリマーの製造が可能であ
る。
Multi-stage polymerization, in which polymerization is carried out under two or more different reaction conditions, makes it possible to produce polymers with a wider molecular weight distribution.

ポリマーの分子量を1Plfiffするために、重合温
度の調節、重合系への水素の添加、あるいは連鎖移動を
起こしやすい有機金属化合物の添加等の公知の技術を用
いることも勿論可能である。さらに、チタン酸エステル
を添加して密度調節、分子量調節を行う等の方法を組合
せて重合を実施することもまた可能である。
It is of course possible to use known techniques such as adjusting the polymerization temperature, adding hydrogen to the polymerization system, or adding an organometallic compound that tends to cause chain transfer in order to increase the molecular weight of the polymer by 1 Pliff. Furthermore, it is also possible to carry out polymerization by combining methods such as adding a titanate ester to control density and molecular weight.

以下、本発明の実施例゛を示すが、本発明は、これらの
実施例によって何ら制限されるものではない。
Examples of the present invention will be shown below, but the present invention is not limited to these Examples in any way.

なお、■ 実施例中の触媒活性とは、モノマー圧力10
kg/aJにおいて、固体触媒中のクロム1g・1時間
当たりのポリマー生成量(g)を表す。
Note that ■catalytic activity in the examples refers to monomer pressure of 10
In kg/aJ, it represents the amount of polymer produced (g) per gram of chromium in the solid catalyst per hour.

■ Mlはメルトインデックスを表し、ASTM−D−
1238に従い、温度190°C1荷重2゜16kgに
て測定したものである。
■ Ml represents melt index, ASTM-D-
1238, at a temperature of 190°C and a load of 2° and 16kg.

■ FRは温度190°C1荷重21.6kgにて測定
した値をMlで除した商であり、分子量分布の広さを表
す指標として当業者に知られているものである。
(2) FR is the quotient obtained by dividing the value measured at a temperature of 190° C. and a load of 21.6 kg by Ml, and is known to those skilled in the art as an index representing the breadth of molecular weight distribution.

■ 副生するオリゴマー量は、副生ずるオリゴマー〇内
1−ヘキセンを代表として選び、重合後反応器内に生成
したポリマーに対する量比(wt%)をもって表し、1
−ヘキセンはガスクロマトグラフによって分析したもの
である。
■ The amount of by-produced oligomers is expressed by selecting 1-hexene as a representative of the by-produced oligomers, and expressing it as a ratio (wt%) to the polymer produced in the reactor after polymerization.
-Hexene was analyzed by gas chromatography.

■ ワックス量は、ポリマー中の熱へキサン可溶分(w
t%)を表したものである。
■ The amount of wax is the thermal hexane soluble content (w
t%).

(実施例1) (1)  固体成分(a)の合成: :酸化クロム0.4gを茎留水80dに溶解し、この溶
液中にシリカ(富士デヴイソン社Grade952)2
0gを浸漬し、室温にて1時間撹拌した。このスラリー
を加熱して水を溜去し、続いて120°Cにて10時間
減圧乾燥を行った。この固体を乾燥空気流下、600°
Cで5時間焼成して固体成分(a)を得た。得られた固
体成分(a)はクロムを1重量%含有し、窒素雰囲気上
室温にて貯蔵した。
(Example 1) (1) Synthesis of solid component (a): 0.4 g of chromium oxide was dissolved in 80 d of distilled water, and silica (Fuji Davison Grade 952) 2 was added to this solution.
0 g was immersed and stirred at room temperature for 1 hour. This slurry was heated to distill off water, and then dried under reduced pressure at 120°C for 10 hours. This solid was heated at 600° under a stream of dry air.
C. for 5 hours to obtain solid component (a). The obtained solid component (a) contained 1% by weight of chromium and was stored at room temperature under a nitrogen atmosphere.

(2)有機マグネシウム成分Φ)の合成ニジ−n−ブチ
ルマグネシウム13.80gとトリエチルアルミニウム
2.85gとを、n−へブタン200mと共に500d
のフラスコに入れ、80°Cにて2時間攪拌下で反応さ
せることにより、組成: AI)、Mga<Ct Hs)s(n  Ca Hq)
sに相当する有機マグネシウム錯体を、(A2十Mg)
基準で125mmol含有する溶液として得た。
(2) Synthesis of organomagnesium component
By reacting with stirring at 80 °C for 2 hours, the composition: AI), Mga<Ct Hs)s(n Ca Hq)
Organomagnesium complex corresponding to s, (A20Mg)
It was obtained as a solution containing 125 mmol on a standard basis.

続いて、この溶液を10℃に冷却し、n−オクタツール
50mmolを含有するn−へブタン溶液50dを、反
応混合物を冷却しつつ1時間かけて滴下し、アルコキシ
含有有機マグネシウム錯体溶液を得た。この溶液の一部
分を分取し、乾燥空気で酸化し、次いで加水分解するこ
とにより、アルキル基およびアルコキシ基を全てアルコ
ールとし、ガスクロマトグラフにて分析した。
Subsequently, this solution was cooled to 10° C., and 50 d of n-hebutane solution containing 50 mmol of n-octatool was added dropwise over 1 hour while cooling the reaction mixture to obtain an alkoxy-containing organomagnesium complex solution. . A portion of this solution was taken, oxidized with dry air, and then hydrolyzed to convert all alkyl groups and alkoxy groups into alcohols, which was analyzed using a gas chromatograph.

エタノール、n−ブタノール、n−オクタツールの分析
値から、上記錯体の組成は、 AIMga(Ct Hs)z、t。(n  Cm Hv
)i、zs(On  Cs Hqt)x、ezであるこ
とが判明した。
From the analytical values of ethanol, n-butanol, and n-octatool, the composition of the complex is as follows: AIMga(Ct Hs)z,t. (n Cm Hv
)i,zs(On Cs Hqt)x,ez.

(3)固体成分(a)と有機マグネシウム成分(2)と
の接触: (1)で得た固体成分(a)5 g (Cr : 0.
 96mmo1)をn−へブタン100dに懸濁し室温
攪拌のもと、(2)で得た有機マグネシウム錯体溶液を
(Al+Mg)基準で2.94mmol、即ち(A/!
+Mg)/Crモル比で3.0相当分滴下し、室温で1
時間反応させた。
(3) Contact between solid component (a) and organomagnesium component (2): 5 g of solid component (a) obtained in (1) (Cr: 0.
96 mmol 1) was suspended in 100 d of n-hebutane and stirred at room temperature, the organomagnesium complex solution obtained in (2) was 2.94 mmol based on (Al+Mg), that is, (A/!
+Mg)/Cr molar ratio equivalent to 3.0, and at room temperature 1
Allowed time to react.

(4)重合二 (3)で得た固体20■を、脱水脱酸素したベキサン0
.8Nと共に、内部を真空脱気し窒素置換した1、51
の反応器に入れた。反応器の内温を85°Cに保ち、エ
チレンを10kg/cd加え、水素で全圧を14kg/
c−とした、エチレンを補給することで全圧を14kg
/cdに保ちつつ2時間重合を行い240gのポリマー
を得た。
(4) Polymerization 2 20μ of the solid obtained in (3) was dehydrated and deoxidized to form bexane 0
.. 1,51 with 8N, the inside was vacuum degassed and replaced with nitrogen.
into a reactor. The internal temperature of the reactor was maintained at 85°C, ethylene was added at 10 kg/cd, and the total pressure was increased to 14 kg/cd with hydrogen.
c-, the total pressure was increased to 14 kg by replenishing ethylene.
Polymerization was carried out for 2 hours while maintaining the temperature at /cd to obtain 240 g of polymer.

触媒活性は、600,000gポリマー/gCr−hr
であり、 オリゴマー量は0,1wt%であり、 ワックス量は3.2wt%であり、 ポリマーのMlは0.09、FRは130であった。
Catalyst activity is 600,000g polymer/gCr-hr
The amount of oligomer was 0.1 wt%, the amount of wax was 3.2 wt%, the Ml of the polymer was 0.09, and the FR was 130.

(比較例) 実施例1の(1)で合成した固体成分20■と(2)に
て合成した有機マグネシウム成分0.1mmol〔これ
は(Af+Mg)/Crモル比26に相当する〕とを予
め接触させることなく反応器に入れる以外、すべて実施
例1と同様に重合を行った。
(Comparative Example) 20 mmol of the solid component synthesized in (1) of Example 1 and 0.1 mmol of the organomagnesium component synthesized in (2) [this corresponds to a (Af+Mg)/Cr molar ratio of 26] were prepared in advance. Polymerization was carried out in the same manner as in Example 1 except that the components were placed in the reactor without contact.

重合結果は、ポリマー収量280gであり、触媒活性は
700,000であり、 オリゴマー量 2.0wt%であり、 ワックス量 10.0wt%であり、 Mlo、30であり、FR140であった。
The polymerization results were as follows: polymer yield: 280 g, catalyst activity: 700,000, oligomer amount: 2.0 wt%, wax amount: 10.0 wt%, Mlo: 30, and FR: 140.

(実施例2) ジ−n−ブチルマグネシウム13.80g、組成: AN (Cz Hs)+、se (O3i H−CH3
・C!HS) 1. sll の有機アルミニウム化合物6.81gとをn−へブタン
200Idと共に50(ldのフラスコに入れ、80°
Cにて2時間反応させることにより、組成:Aj!  
Mgs、e(C1Hs)+、so (n  Cm HJ
i。
(Example 2) 13.80 g of di-n-butylmagnesium, composition: AN (Cz Hs)+, se (O3i H-CH3
・C! HS) 1. 6.81 g of organoaluminum compound of sll was placed in a flask of 50 (ld) with 200 Id of n-hebutane, and the mixture was heated at 80°
By reacting at C for 2 hours, composition: Aj!
Mgs, e (C1Hs) +, so (n Cm HJ
i.

。(○S i H−CHz  ・Cz  Hs>+、、
. (○S i H-CHz ・Cz Hs>+,,
.

のシロキシ含有有機マグネシウム錯体溶液を合成した。A siloxy-containing organomagnesium complex solution was synthesized.

有機マグネシウム成分として、このシロキシ含有有機マ
グネシウム錯体溶液を用い、その他はすべて実施例1と
同様にして重合を行った。
Polymerization was carried out in the same manner as in Example 1 except that this siloxy-containing organomagnesium complex solution was used as the organomagnesium component.

重合結果はポリマー収量210gであり、触媒活性52
5,000であり、 オリゴマーM O02wL%であり、 ワンクスii3.1wL%であり、 MIo、12であり、FR140であった。
The polymerization result was a polymer yield of 210 g and a catalyst activity of 52
5,000, Oligomer M O02wL%, Wanks II 3.1wL%, MIo, 12, and FR140.

(実施例3〜8) 実施例1および実施例2における有機マグネシウム錯体
の成分ならびに量を変えた他、すべて実施例1と同様に
してエチレンの重合を1テっだ、その結果は、第1表に
示した。
(Examples 3 to 8) One cycle of ethylene polymerization was carried out in the same manner as in Example 1 except that the components and amounts of the organomagnesium complexes in Examples 1 and 2 were changed. Shown in the table.

(実施例9) 固体生物の合成において、英国CrosfieId  
Cata1ysts社製GradeEP200 (Cr
  0.6wt%、AJ!0,9wt%含有シリカ)を
用い、焼成温度を800″Cにした以外、実施例1と同
様にして触媒合成および重合を行った。
(Example 9) In the synthesis of solid-state organisms, the UK CrosfieId
Grade EP200 (Cr
0.6wt%, AJ! Catalyst synthesis and polymerization were carried out in the same manner as in Example 1, except that silica containing 0.9 wt% was used and the calcination temperature was 800''C.

重合結果は、ポリマー収1200 gであり、触媒活性
830,000であり、 オリゴマー量 0.2wL%であり、 ワックス量 3.8wt%であり、 ポリマーのMIO,15であり、FR120であった。
The polymerization results were as follows: polymer yield was 1200 g, catalyst activity was 830,000, oligomer amount was 0.2 wL%, wax amount was 3.8 wt%, polymer MIO was 15, and FR was 120.

(実施例10) エチレンの代わりに1−ブテンを15mo 1%含有す
るエチレンおよび1−ブテンの混合ガスを用い、ヘキサ
ンの代わりにイソブタンを重合溶媒として用い、80’
Cにて混合ガス分圧10kg/cj、水素分圧1kg/
cj、溶媒蒸気圧を含め23kg/cdとし、その他は
、実施例9の触媒を用い、実施例1と同様にして重合し
た。
(Example 10) A mixed gas of ethylene and 1-butene containing 15 mo 1% of 1-butene was used instead of ethylene, and isobutane was used as the polymerization solvent instead of hexane.
Mixed gas partial pressure 10 kg/cj, hydrogen partial pressure 1 kg/c at C
Polymerization was carried out in the same manner as in Example 1 except that cj and solvent vapor pressure were set to 23 kg/cd, and the catalyst of Example 9 was used in other respects.

重合結果はポリマー収1230 gであり、触媒活性9
60,000であり、 オリゴマーil 003wt%であり、ポリマーのMI
o、80であり、密度 0゜928であった。
The polymerization result was a polymer yield of 1230 g and a catalyst activity of 9.
60,000, oligomer IL 003 wt%, polymer MI
o, 80, and density 0°928.

(発明の効果) 本発明においては、α−オレフィン重合用触媒として、
無機化合物に担持されたクロム成分と、特定の有機マグ
ネシウム化合物とを予め接触処理させて得た高活性のフ
ィリップス型触媒を用いることにより、オリゴマー等の
副生物の生成が少ない効果が得られる。
(Effect of the invention) In the present invention, as a catalyst for α-olefin polymerization,
By using a highly active Phillips-type catalyst obtained by contacting a chromium component supported on an inorganic compound with a specific organomagnesium compound in advance, the effect of reducing the production of by-products such as oligomers can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の!fA、様を示す概略フローチャー
トである。 89−
Figure 1 shows the features of the present invention! It is a schematic flowchart showing fA. 89-

Claims (2)

【特許請求の範囲】[Claims] (1)(a)クロム化合物を無機酸化物担体に担持し焼
成した固体成分と、
(1) (a) A solid component obtained by supporting and firing a chromium compound on an inorganic oxide carrier,
(2)一般式 (Al)α(Mg)β(R^1)_p(R^2)_q(
R^3)_rX_sY_t で示される不活性炭化水素可溶有機マグネシウム錯化合
物(式中、α、βは0より大きい数であり、p、q、r
、s、tは0または0より大で、0<(s+t)/(α
+β)≦1.5かつ p+q+r+s+t=3α+2βの関係を有し、R^1
、R^2、R^3は同一または異なった炭素原子数1〜
20の炭化水素基であり、 X、Yは同一または異なったOR^4、OSiR^5R
^6R^7、NR^8R^9およびSR^1^0から選
ばれた基を表し、 R^4、R^5、R^6、R^7、R^8、R^9は水
素原子または炭化水素基であり、 R^1^0は炭化水素基を表す)とから成る触媒を用い
るオレフィン重合方法において、 予め(a)と(b)とを(Al+Mg)/Crモル比で
0.1〜10の範囲で接触させ、重合に用いることを特
徴とするオレフィンの重合方法。 (2)(b)の有機マグネシウム錯化合物において、X
、YがOR^4、OSiR^5R^6R^7から選ばれ
た基である請求項(1)記載のオレフィンの重合方法。
(2) General formula (Al)α(Mg)β(R^1)_p(R^2)_q(
R^3) An inert hydrocarbon soluble organomagnesium complex compound represented by _rX_sY_t (wherein α, β are numbers larger than 0, p, q, r
, s, t are 0 or greater than 0, and 0<(s+t)/(α
+β)≦1.5 and p+q+r+s+t=3α+2β, R^1
, R^2, R^3 are the same or different numbers of carbon atoms from 1 to
20 hydrocarbon groups, X and Y are the same or different OR^4, OSiR^5R
Represents a group selected from ^6R^7, NR^8R^9 and SR^1^0, where R^4, R^5, R^6, R^7, R^8, and R^9 are hydrogen atoms or a hydrocarbon group, and R^1^0 represents a hydrocarbon group), in which (a) and (b) are mixed in advance at a (Al+Mg)/Cr molar ratio of 0. A method for polymerizing olefins, characterized in that contact is carried out in the range of 1 to 10, and used for polymerization. (2) In the organomagnesium complex compound of (b), X
, Y is a group selected from OR^4, OSiR^5R^6R^7, the method for polymerizing olefins according to claim (1).
JP32611489A 1989-12-18 1989-12-18 Method for polymerizing alpha-olefin Pending JPH03188108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32611489A JPH03188108A (en) 1989-12-18 1989-12-18 Method for polymerizing alpha-olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32611489A JPH03188108A (en) 1989-12-18 1989-12-18 Method for polymerizing alpha-olefin

Publications (1)

Publication Number Publication Date
JPH03188108A true JPH03188108A (en) 1991-08-16

Family

ID=18184243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32611489A Pending JPH03188108A (en) 1989-12-18 1989-12-18 Method for polymerizing alpha-olefin

Country Status (1)

Country Link
JP (1) JPH03188108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080521A (en) * 2000-07-07 2002-03-19 Japan Polyolefins Co Ltd Ethylenic polymer and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080521A (en) * 2000-07-07 2002-03-19 Japan Polyolefins Co Ltd Ethylenic polymer and method for producing the same

Similar Documents

Publication Publication Date Title
JPH0327564B2 (en)
US4454242A (en) Catalyst for polymerization of olefins
US5232999A (en) Olefin polymerization catalyst and process
US4110522A (en) Manufacture of olefin polymers
CN101824104B (en) Catalyst component for vinyl polymerization and preparation method thereof
JP2003096127A (en) Production method for ethylene polymer
JPH03188108A (en) Method for polymerizing alpha-olefin
US5155187A (en) Polymerization method
US8846834B2 (en) Chromium catalysts for olefin polymerization
JPH03190909A (en) Polymerization of alpha-olefin
JPS5915407A (en) Polymerization of 1-olefin
JPS595602B2 (en) Catalyst for polymerization of olefins
JPS648645B2 (en)
JPS63145306A (en) Preparation of ethylene polymer
EP0030438B1 (en) Olefin polymerization catalyst and olefin polymerization method and products using such catalyst
JPH03192104A (en) Polymerization of alpha-olefin
KR840001486B1 (en) Catalyst for polymerizing olefins
KR840001487B1 (en) High activity catalyst for the polymerization olefins
JPS5950242B2 (en) Highly active catalyst for olefin polymerization
JPS595604B2 (en) Swash plate type axial plunger type hydraulic actuator
US5001099A (en) Polymerization catalyst
JPH0242085B2 (en)
JPH07678B2 (en) Method for producing ethylene copolymer
KR100619153B1 (en) Catalyst for producing polyolefin having broad molecular weight distribution and method for producing polyolefin using the same
JPS62116608A (en) Polymerization of alpha-olefin