[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01255630A - Production of cutting tool made of diamond-coated tungsten carbide-based sintered hard alloy - Google Patents

Production of cutting tool made of diamond-coated tungsten carbide-based sintered hard alloy

Info

Publication number
JPH01255630A
JPH01255630A JP8282988A JP8282988A JPH01255630A JP H01255630 A JPH01255630 A JP H01255630A JP 8282988 A JP8282988 A JP 8282988A JP 8282988 A JP8282988 A JP 8282988A JP H01255630 A JPH01255630 A JP H01255630A
Authority
JP
Japan
Prior art keywords
diamond
tungsten carbide
substrate
sintered
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8282988A
Other languages
Japanese (ja)
Inventor
Noribumi Kikuchi
菊池 則文
Hiroaki Yamashita
山下 博明
Hiroshi Nakahara
中原 啓
Hironori Yoshimura
吉村 寛範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP8282988A priority Critical patent/JPH01255630A/en
Publication of JPH01255630A publication Critical patent/JPH01255630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To increase the diamond deposit forming velocity by reducing the Co content in a sintered hard alloy substrate to be coated with diamond, and uniformly dispersing Co in the substrate. CONSTITUTION:Powdery WC, Co, and C are mixed in a specified ratio under ordinary conditions to obtain raw powder, and the raw powder is compacted into a green compact. The green compact is primarily sintered in vacuum at 1400-1500 deg.C. Hot hydrostatic press is applied on the primarily sintered compact at 1300-1500 deg.C and 100-1000 atm pressure to eliminate bores. The pressed compact is secondarily sintered in vacuum at 1400-1500 deg.C to uniformly disperse the Co phase. Consequently, a sintered band alloy substrate consisting of 0.1-1% Co, a trace amt. of finely and uniformly dispersed free C corresponding to C01-C08 of the ISO standard, and the balance WC and having >=99% theoretical density ratio is obtained. An artificial diamond coating layer is formed on the surface of the substrate by low-pressure vapor phase synthesis.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、人工ダイヤモンド被覆層の析出形成速度が
速く、かつこれの密着性も良好なダイヤモンド被覆炭化
タングステン(以下WCで示す)基超硬合金製切削工具
の製造法に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to a diamond-coated tungsten carbide (hereinafter referred to as WC)-based cemented carbide which has a fast precipitation formation rate and good adhesion of the artificial diamond coating layer. This invention relates to a method of manufacturing an alloy cutting tool.

〔従来の技術〕[Conventional technology]

近年、A[合金やCu合金、さらに非金属などの切削に
すぐれた切削性能を発揮する切削工具として、ダイヤモ
ンド被mWC基超硬合金製切削工具が提案されている。
In recent years, diamond-coated mWC-based cemented carbide cutting tools have been proposed as cutting tools that exhibit excellent cutting performance for cutting A[alloys, Cu alloys, and nonmetals.

このダイヤモンド被覆WC基超硬合金製切削工具は、例
えば特開昭83−45372号公報に記載されるように
、 原料粉末として、WC粉末、Co粉末、および炭素粉末
を用い、これら原料粉末を所定の配合組成に配合し、通
常の条件で、混合し、圧粉体にプレス成形した後、この
圧粉体を、 真空中、1400−1500℃の温度で焼結して、Co
al〜4%、 微細均一に分散する遊離炭素:l5O (International 5tandarlza
tlon Organizailon)規格でCOI〜
CO8に相当する微量、を含有し、残りがWCと不可避
不純物からなる組成(以上重量%、以下%は重量96を
示す)を有するWCC超超硬合金基体を製造し、 ついで、基体の表面に、CH4などのガスの熱分解によ
る化学蒸着法(CVD法)や、カーボンイオンを基体に
衝突させる物理蒸着法(PVD法)などの低圧気相合成
法により人工ダイヤモンド被覆層を形成することにより
製造されている。
This diamond-coated WC-based cemented carbide cutting tool uses WC powder, Co powder, and carbon powder as raw material powders, and these raw material powders are mixed in a predetermined manner, as described in, for example, Japanese Patent Application Laid-Open No. 83-45372. Co
al ~ 4%, finely and uniformly dispersed free carbon: 15O (International 5tandarlza
COI based on the tlon Organizailon) standard
A WCC cemented carbide substrate is manufactured which has a composition (the above weight %, the following % indicates weight 96) containing a trace amount corresponding to CO8, and the remainder consisting of WC and unavoidable impurities, and then applied to the surface of the substrate. Manufactured by forming an artificial diamond coating layer using low-pressure vapor phase synthesis methods such as chemical vapor deposition method (CVD method) using thermal decomposition of gases such as CH4, and physical vapor deposition method (PVD method) that bombards the substrate with carbon ions. has been done.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記の従来ダイヤモンド被覆WC基超硬合金製
切削工具の製造法においては、人工ダイヤモンド被覆層
の形成に比較的長時間を必要とするものであり、より速
い析出形成速度での人工ダイヤモンド被覆層の形成が望
まれている。
However, in the conventional method for manufacturing diamond-coated WC-based cemented carbide cutting tools described above, it takes a relatively long time to form the artificial diamond coating layer, and the artificial diamond coating layer can be formed at a faster precipitation rate. Formation of layers is desired.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、より速
い析出形成速度での人工ダイヤモンド被覆層の形成を可
能とすべく研究を行なった結果、WCC超超硬合金基体
結合相を構成するCo含有量を1%未満と少なくし、か
つこれを均一に分布させると、ダイヤモンドの析出形成
速度が一段と速くなり、一方Co含有量の低減によって
前記基体の強度は著しく低下するようになるが、WCC
超超硬合金基体製造に際して、その焼結を、(a)  
まず、圧粉体に、真空中、1400〜1500℃の温度
で1次焼結を施し、 (b)  ついで、この1次焼結材に、温度: 130
0〜1500℃、圧力:100〜1000気圧の条件で
熱間静水圧プレス(HI P)を施し、 (c)  さらに、このHIP材に、真空中、1400
〜1500℃の温度で2次焼結を施す、 以上(a)〜(C)の3段階によって行なうと、95〜
98%の理論密度比であった1次焼結材が上記(b)段
階のHIP処理でポアが消滅して、99%以上の理論密
度比をもつようになり、また1次焼結し、HIP処理し
た後でもCoが凝集している、すなわち多くのCoブー
ルが見られるが、上記(C)段階によってCOが均一に
分布するようになり、このような状態のWCC超超硬合
金基体、1〜4%の高含有Coの場合と同等の強度をも
つようになるほか、相対的に低含有のCOが均一に分布
した組織によってダイヤモンドの析出形成が著しく促進
されるようになり、さらに上記の通り微量の遊離炭素を
微細均一に分散含有させておくことによって人工ダイヤ
モンドの密着性が一段と向上するようになるという知見
を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to enable the formation of an artificial diamond coating layer at a faster precipitation formation rate. When the Co content is reduced to less than 1% and distributed uniformly, the rate of diamond precipitate formation becomes even faster, while the strength of the substrate decreases significantly due to the reduction of the Co content. W.C.C.
When manufacturing the cemented carbide substrate, the sintering is performed by (a)
First, a green compact is subjected to primary sintering in a vacuum at a temperature of 1400 to 1500°C, (b) This primary sintered material is then subjected to a temperature of 130°C.
Hot isostatic pressing (HIP) was applied under the conditions of 0 to 1500°C and pressure: 100 to 1000 atm.
If secondary sintering is performed at a temperature of ~1500°C, through the three steps (a) to (C) above, 95~
The pores of the primary sintered material, which had a theoretical density ratio of 98%, disappeared through the HIP treatment in step (b), and the material now had a theoretical density ratio of 99% or more, and the material was primary sintered again. Even after the HIP treatment, Co aggregates, that is, many Co boules are seen, but the above step (C) allows CO to be uniformly distributed, and the WCC cemented carbide substrate in this state, In addition to having a strength equivalent to that with a high Co content of 1 to 4%, the formation of diamond precipitates is significantly promoted due to the uniform distribution of relatively low CO content, and furthermore, the above-mentioned As shown in the figure, they discovered that the adhesion of artificial diamonds can be further improved by finely and uniformly dispersing minute amounts of free carbon.

したがって、この発明は、上記知見にもとづいてなされ
たものであって、 原料粉末として、WC粉末、Co粉末、および炭素粉末
を用い、これら原料粉末を所定の配合組成に配合し、通
常の条件で、混合し、圧粉体に成形した後、 (a)  この圧粉体に、真空中、1400〜1500
℃の温度で1次焼結を施し、 (b)  ついで、この1次焼結材に、温度: 130
0〜1500℃、圧力=100〜1000気圧の条件で
熱間静水圧プレスを施してポアの消滅をはかり、(C)
  さらに、この熱間静水圧プレス材に、真空中、温度
: 1400〜1500℃の温度で2次焼結を施してC
O相の均一分布をはかる、 以上(a)〜(C)の3段階焼結を施して、Co 二〇
、1〜1重量%未満、 微細均一に分散する遊離炭素:ISO規格でCOI〜C
O8に相当する微量、 を含有し、残りがWCと不可避不純物からなる組成を有
し、かつ9996以上の理論密度比を6するWCC超超
硬合金基体を製造し、 このWCC超超硬合金基体表面に、低圧気相合成法によ
り人工ダイヤモンド被覆層を形成することからなるダイ
ヤモンド被覆WC基超硬合金製切削工具の製造法に特徴
を有するものである。
Therefore, this invention has been made based on the above knowledge, and uses WC powder, Co powder, and carbon powder as raw material powders, blends these raw material powders into a predetermined composition, and under normal conditions. , mixed and formed into a green compact, (a) This green compact is heated to 1400 to 1500 in vacuum.
(b) This primary sintered material is then subjected to primary sintering at a temperature of 130 °C.
Hot isostatic pressing was performed under the conditions of 0 to 1500°C and pressure = 100 to 1000 atm to eliminate the pores, (C)
Furthermore, this hot isostatically pressed material is subjected to secondary sintering in vacuum at a temperature of 1400 to 1500°C to give carbon
Aiming for uniform distribution of O phase, performing the three-step sintering of (a) to (C) above to produce Co20, 1 to less than 1% by weight, and finely uniformly dispersed free carbon: COI to C according to ISO standards.
Producing a WCC cemented carbide substrate having a composition containing a trace amount corresponding to O8, with the remainder consisting of WC and unavoidable impurities, and having a theoretical density ratio of 9996 or more, the WCC cemented carbide substrate The present invention is characterized by a method for manufacturing a diamond-coated WC-based cemented carbide cutting tool, which comprises forming an artificial diamond coating layer on the surface by a low-pressure vapor phase synthesis method.

つぎに、この発明の方法において、製造条件を上記の通
りに限定した理由を説明する。
Next, the reason why the manufacturing conditions are limited as described above in the method of this invention will be explained.

(a)1次焼結温度 その温度が1400℃未満では焼結が不十分で、ポアや
Co相プールが多く存在するようになり、この結果後工
程のHIP処理でポアを消滅させる効果が十分に発揮さ
れず、一方その温度が1500℃を越えると、WC粒の
粗大化およびCoの蒸発飛散が起るようになり、所望の
強度を確保することができないことから、その温度を1
400〜1500℃と定めた。
(a) Primary sintering temperature If the temperature is lower than 1400°C, sintering will be insufficient and many pores and Co phase pools will exist, resulting in the HIP treatment in the post-process being effective in eliminating pores. On the other hand, if the temperature exceeds 1500°C, the WC grains become coarser and the Co evaporates and scatters, making it impossible to secure the desired strength.
The temperature was set at 400-1500°C.

(b)HIP条件 その温度が1300℃未満でも、その圧力が100気圧
未満でもポアの消滅を十分に行なうことができず、した
がって99%以上の理論密度比をもった基体を製造する
ことができず、一方その温度が1500℃を越えると、
WC粒が粗大化するようになって強度が低下し、またそ
の圧力が1000気圧を越えると、かえってガスのまき
込みが生じ、ポア発生の原因となることから、それぞれ
温度=1300〜1500℃、圧力:100〜1000
気圧とそれぞれ定めた。
(b) HIP conditions Even if the temperature is less than 1300°C or the pressure is less than 100 atm, pores cannot be sufficiently eliminated, and therefore a substrate with a theoretical density ratio of 99% or more cannot be manufactured. On the other hand, if the temperature exceeds 1500℃,
The WC grains become coarser and the strength decreases, and if the pressure exceeds 1000 atm, gas will be drawn in and cause pores. Pressure: 100-1000
The atmospheric pressure was determined respectively.

(c)2次焼結温度 その温度が1400℃未満では、Co相ブールの均一分
布が困難であり、一方その温度が1500℃を越えると
、同様にWC粒の粗大化並びにCoの蒸発飛散が発生す
るようになって強度低下をまねくことからその温度を1
400〜1500℃と定めた。
(c) Secondary sintering temperature If the temperature is less than 1400°C, it is difficult to uniformly distribute the Co phase boule, while if the temperature exceeds 1500°C, the WC grains will become coarser and the Co will evaporate and scatter. The temperature should be lowered to 1.
The temperature was set at 400-1500°C.

(d)  Co含有量 Co含有量が0.1%未満では、所望の強度を確保する
ことができないばかりでなく、靭性も低く、切削時に切
刃に欠損が発生し易く、一方Co 含(−j量が1%以
上になると、ダイヤモンドの析出形成速度が急激に低下
するようになることから、その含有量を0.1〜1%未
満を定めた。
(d) Co content If the Co content is less than 0.1%, it is not only impossible to secure the desired strength, but also the toughness is low, and the cutting edge is easily damaged during cutting. When the amount of j becomes 1% or more, the rate of diamond precipitation formation decreases rapidly, so the content was determined to be 0.1 to less than 1%.

(c)  遊離炭素含有量 遊離炭素には、基体表面に析出したダイヤモンドの黒鉛
化を阻止すると共に、これの基体への密着性を一段と向
上させる作用があるが、その含有割合がISO規格でC
01未満では前記作用に所望の効果が得られず、一方そ
の含有割合が同CO8を越えると、基体の強度が低下す
るようになることから、その含有割合をISO規格でC
01〜C08に相当する微量とした。
(c) Free carbon content Free carbon has the effect of preventing the graphitization of diamond deposited on the surface of the substrate and further improving its adhesion to the substrate, but its content is C
If the content is less than 01, the desired effect cannot be obtained, while if the content exceeds CO8, the strength of the substrate will decrease.
The amount was set to be a trace amount corresponding to 01 to C08.

(「)理論密度比 この発明のWCC超超硬合金基体、Co含有量が1%未
満と低いので、HIP処理では基体が99%以上の理論
密度比をもつようにして、Co:1〜4%を含有し、か
つ95〜98%程度の理論密度比を有する従来WCC超
超硬合金基体同等の強度をもつようにする必要があり、
したがって9996未満の理論密度比では所定の強度を
確保することができないものである。
(') Theoretical density ratio Since the Co content of the WCC cemented carbide substrate of this invention is low at less than 1%, the substrate is made to have a theoretical density ratio of 99% or more in the HIP treatment, Co: 1 to 4. % and has a theoretical density ratio of about 95 to 98%.
Therefore, with a theoretical density ratio of less than 9996, it is not possible to secure a predetermined strength.

〔実 施 例〕〔Example〕

つぎに、この発明の方法を実施例により具体的に説明す
る。
Next, the method of the present invention will be specifically explained using examples.

原料粉末として、いずれも1〜3.2μsの範囲内の所
定の平均粒径を有するWC粉末、CoメツキWC粉末、
およびCo粉末、さらに微細なカーボンブラックを用意
し、これら原料粉末を所定の配合組成に配合し、ボール
ミルにて72時時間式混合し、乾燥した後、1.5to
n/c−の圧力で圧粉体にプレス成形し、ついで、この
圧粉体をそれぞれ第1表に示される条件で焼結して、同
じく第1表に示される組成、抗折力(強度評価)、およ
び理論密度比を有するWCC超超硬合金基体を製造し、
この基体を、研磨してCIS (超硬工具協会)規格5
PP422のスローアウェイチップ形状とした状態で、
これの表面に、CVD法の1種である熱電子放射法を用
い、 反 応 容 器:直径120mmの石英管、使用フィラ
メント:金属タングステン、フィラメント温度: 20
00℃、 基  体  温  度=700 ℃、 雰   囲   気: 10torrのCH4+H2、
反応ガス割合: CH4/H2−0,005、反  応
  時  間=12時間、 の条件でダイヤモンド被覆を行ない、同じく第1表に示
される平均層厚のダイヤモンド被覆層を形成することに
よって本発明法1〜lOおよび従来法1〜4をそれぞれ
実施し、ダイヤモンド被覆WC基超硬合金製切削工具(
以下、被覆切削工具という)を製造した。
As the raw material powder, WC powder, Co-plated WC powder, each having a predetermined average particle size within the range of 1 to 3.2 μs,
, Co powder, and finer carbon black are prepared, these raw material powders are blended into a predetermined composition, mixed for 72 hours in a ball mill, dried, and then 1.5 to
It is press-formed into a green compact at a pressure of n/c-, and then the green compact is sintered under the conditions shown in Table 1. evaluation), and manufacturing a WCC cemented carbide substrate having a theoretical density ratio,
This base was polished to meet CIS (Cemented Carbide Tools Association) standard 5.
With the shape of a PP422 indexable tip,
Thermionic radiation method, which is a type of CVD method, was applied to the surface of this, using a reaction vessel: a quartz tube with a diameter of 120 mm, a filament used: metallic tungsten, and a filament temperature: 20 mm.
00℃, substrate temperature = 700℃, atmosphere: 10torr CH4+H2,
The method of the present invention was performed by performing diamond coating under the following conditions: reaction gas ratio: CH4/H2-0,005, reaction time = 12 hours, and forming a diamond coating layer with the average layer thickness shown in Table 1. 1 to 1O and conventional methods 1 to 4 were carried out, respectively, and diamond-coated WC-based cemented carbide cutting tools (
A coated cutting tool (hereinafter referred to as a coated cutting tool) was manufactured.

ついで、この結果得ら、れた各種の被覆切削工具につい
て、 被削材:AΩ−18%S1合金の丸棒、切削速度: 1
00 m/min 。
Next, regarding the various coated cutting tools obtained as a result, Work material: AΩ-18% S1 alloy round bar, Cutting speed: 1
00 m/min.

送  リ: 0.15關/刃、 切込み=1關、 の条件で旋削切削試験を行ない、切刃の逃げ面摩耗幅が
0.3mmに至るまでの切削時間を測定した。
A lathe cutting test was conducted under the following conditions: feed rate: 0.15 mm/tooth, depth of cut = 1 mm, and the cutting time until the flank wear width of the cutting edge reached 0.3 mm was measured.

この結果を第1表に示した。The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明法1〜10により製
造された被覆切削工具は、基体のCo含有量が低いにも
かかわらず、従来法1〜4で製造された被覆切削工具に
おける高Co含有の基体とほぼ同等の強度を示し、かつ
本発明法1〜lOにおいては、同一の人工ダイヤモンド
被覆層形成条件にもかかわらず、従来法1〜4における
場合よりも一段と速い析出形成速度での人工ダイヤモン
ド被覆層の形成が可能であり、この当然の結果として切
削試験では相対的に長い切削時間を示すことが明らかで
ある。
From the results shown in Table 1, it can be seen that the coated cutting tools manufactured by the methods 1 to 10 of the present invention have a higher Co content than the coated cutting tools manufactured by the conventional methods 1 to 4, although the Co content in the substrate is low. It exhibits almost the same strength as the Co-containing substrate, and in Methods 1 to 1 of the present invention, the precipitate formation rate is much faster than in Conventional Methods 1 to 4 despite the same artificial diamond coating layer formation conditions. It is clear that it is possible to form an artificial diamond coating layer of 300 mL, and that a corollary of this is that the cutting tests show relatively long cutting times.

上述のように、この発明の方法によれば、人工ダイヤモ
ンド被覆層の析出形成が速(、かつこれの密着性も良好
なダイヤモンド被覆WC基超硬合金製切削工具を製造す
ることができるのである。
As described above, according to the method of the present invention, it is possible to manufacture a diamond-coated WC-based cemented carbide cutting tool in which the artificial diamond coating layer is rapidly formed (and has good adhesion). .

Claims (1)

【特許請求の範囲】[Claims] (1)原料粉末として、炭化タングステン粉末、Co粉
末、および炭素粉末を用い、これら原料粉末を所定の配
合組成に配合し、通常の条件で、混合し、圧粉体に成形
した後、 (a)この圧粉体に、真空中、1400〜1500℃の
温度で1次焼結を施し、 (b)ついで、この1次焼結材に、温度:1300〜1
500℃、圧力:100〜1000気圧の条件で熱間静
水圧プレスを施してポアの消滅をはかり、 (c)さらに、この熱間静水圧プレス材に、真空中、温
度:1400〜1500℃の温度で2次焼結を施してC
o相の均一分布をはかる、 以上(a)〜(c)の3段階焼結を施して、Co:0.
1〜1重量%未満、 微細均一に分散する遊離炭素:ISO規格でC01〜C
08に相当する微量、 を含有し、残りが炭化タングステンと不可避不純物から
なる組成を有し、かつ99%以上の理論密度比を有する
炭化タングステン基超硬合金の基体を製造し、 この炭化タングステン基超硬合金基体の表面に、低圧気
相合成法により人工ダイヤモンド被覆層を形成すること
を特徴とするダイヤモンド被覆炭化タングステン基超硬
合金製切削工具の製造法。
(1) Tungsten carbide powder, Co powder, and carbon powder are used as raw material powders. These raw material powders are blended into a predetermined composition, mixed under normal conditions, and formed into a green compact. (a ) This green compact is subjected to primary sintering at a temperature of 1400 to 1500°C in vacuum, (b) This primary sintered material is then subjected to primary sintering at a temperature of 1300 to 1500°C.
Hot isostatic pressing was performed at 500°C and a pressure of 100 to 1000 atm to eliminate pores. Perform secondary sintering at temperature C
Co:0.
1 to less than 1% by weight, finely and uniformly dispersed free carbon: C01 to C according to ISO standards
A substrate of a tungsten carbide-based cemented carbide having a composition of tungsten carbide and unavoidable impurities and a theoretical density ratio of 99% or more is manufactured, and the tungsten carbide-based A method for manufacturing a diamond-coated tungsten carbide-based cemented carbide cutting tool, which comprises forming an artificial diamond coating layer on the surface of a cemented carbide base by a low-pressure vapor phase synthesis method.
JP8282988A 1988-04-04 1988-04-04 Production of cutting tool made of diamond-coated tungsten carbide-based sintered hard alloy Pending JPH01255630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8282988A JPH01255630A (en) 1988-04-04 1988-04-04 Production of cutting tool made of diamond-coated tungsten carbide-based sintered hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8282988A JPH01255630A (en) 1988-04-04 1988-04-04 Production of cutting tool made of diamond-coated tungsten carbide-based sintered hard alloy

Publications (1)

Publication Number Publication Date
JPH01255630A true JPH01255630A (en) 1989-10-12

Family

ID=13785287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8282988A Pending JPH01255630A (en) 1988-04-04 1988-04-04 Production of cutting tool made of diamond-coated tungsten carbide-based sintered hard alloy

Country Status (1)

Country Link
JP (1) JPH01255630A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000454A1 (en) * 1991-06-24 1993-01-07 Idemitsu Petrochemical Company Limited Diamond-covered member and production thereof
US5585176A (en) * 1993-11-30 1996-12-17 Kennametal Inc. Diamond coated tools and wear parts
US5716170A (en) * 1996-05-15 1998-02-10 Kennametal Inc. Diamond coated cutting member and method of making the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000454A1 (en) * 1991-06-24 1993-01-07 Idemitsu Petrochemical Company Limited Diamond-covered member and production thereof
US5585176A (en) * 1993-11-30 1996-12-17 Kennametal Inc. Diamond coated tools and wear parts
US5648119A (en) * 1993-11-30 1997-07-15 Kennametal Inc. Process for making diamond coated tools and wear parts
US6287682B1 (en) 1993-11-30 2001-09-11 Kennametal Pc Inc. Diamond coated tools and process for making
US5716170A (en) * 1996-05-15 1998-02-10 Kennametal Inc. Diamond coated cutting member and method of making the same

Similar Documents

Publication Publication Date Title
EP0374923B2 (en) Diamond-coated tool member, substrate thereof and method for producing same
EP0685572A2 (en) Coated hard-alloy blade member
CN106232846B (en) The manufacturing method of cermet, cutting element and cermet
JPH05239585A (en) Wear resistant material and its production
JPH0674462B2 (en) Manufacturing method of cemented carbide tools
JPS6353269A (en) Cutting tool tip made of diamond coated tungsten carbide-base sintered hard alloy
JPH0568548B2 (en)
JPH01255630A (en) Production of cutting tool made of diamond-coated tungsten carbide-based sintered hard alloy
JP2775298B2 (en) Cermet tool
JP2917555B2 (en) Hard layer coated cemented carbide cutting tool and its manufacturing method
JPS62119B2 (en)
JPH024933A (en) Manufacture of cutting tool made of diamond-coated tungsten carbide base sintered hard alloy
JP2800571B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JPH024932A (en) Manufacture of cutting tool made of diamond-coated tungsten carbide base sintered hard alloy
JP2910293B2 (en) Manufacturing method of tungsten carbide based cemented carbide cutting tool coated with hard layer
JP2001179508A (en) Cutting tool
JPH024934A (en) Manufacture of cutting tool made of diamond coated tungsten carbide base sintered hard alloy
JPH01228703A (en) Surface coated cutting tip provided with al or al alloy cutting breaker
JPH08260129A (en) Cubic boron nitride composite cermet tool and its production
JP3525359B2 (en) Surface coated cemented carbide cutting tool
JP2000080432A (en) Coated cemented carbide
JPH0657429A (en) Cutting tool made of surface coated titanium carbon nitride base cermet excellent in chipping resistance
JP2970016B2 (en) Hard layer coated cemented carbide cutting tool
JP3199400B2 (en) Coated cemented carbide for cutting tools
JPH04231469A (en) Coated ticn-base cermet