[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01132573A - Propylene oxide manufacturing method - Google Patents

Propylene oxide manufacturing method

Info

Publication number
JPH01132573A
JPH01132573A JP62289266A JP28926687A JPH01132573A JP H01132573 A JPH01132573 A JP H01132573A JP 62289266 A JP62289266 A JP 62289266A JP 28926687 A JP28926687 A JP 28926687A JP H01132573 A JPH01132573 A JP H01132573A
Authority
JP
Japan
Prior art keywords
propylene oxide
acid
reaction
hydrogen peroxide
residence time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62289266A
Other languages
Japanese (ja)
Inventor
Kaoru Ueno
薫 上野
Keisuke Watanabe
渡邊 佳資
Takayoshi Masuda
増田 隆良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62289266A priority Critical patent/JPH01132573A/en
Publication of JPH01132573A publication Critical patent/JPH01132573A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプロピレンオキサイドの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing propylene oxide.

(従来の技術) 従来より提案されている、プロピレンと過酸化水素とか
らプロピレンオキサイドを製造する方法として、 (+)酸触媒、過酸化水素、プロピオン酸を10〜70
°Cで反応させ過プロピオン酸を製造し、得られた反応
混合物からベンゼン、二塩化プロパン等で過プロピオン
酸を抽出した後、40〜100″Cの温度及び2〜30
’kg/cdの圧力で過剰のプロピレンと反応させ、プ
ロピレンオキサイドを製造する方法(例えば特公昭59
−38231号、特公昭59−38232号、特公昭5
9−38951号、特開昭51−101906号、特開
昭53−59611号など)、 (2)水とヘテロ共沸物を形成しうる不活性有機溶媒の
存在下、過酸化水素とカルボン酸を反応させ、反応混合
物中に存在する水を共沸蒸留により除去して過カルボン
酸を得た後、(1)と同様にしてプロピレンオキサイド
を製造する方法(例えば、特開昭56−18973号)
、 (3)エポキシ化触媒として酸化ホウ素、ホウ素のオキ
シ酸、又は、ホウ素のオキシ酸エステルを使用し、過酸
化水素とプロピレンを0〜120°Cでエポキシ化する
方法であって、その際過酸化水素と共に導入した水、及
び反応により生成した水を反応媒体から連続的に除去す
る方法(例えば、特公昭5B−50990号)、 (4)砒素触媒の存在下においてプロピレンと過酸化水
素とを混和し、25〜200°Cの温度で反応させ、プ
ロピレンオキサイドを製造する方法、又は(3)と同様
に共沸脱水により連続的に水を除去する方法(例えば、
特公昭53−44442号、特開昭53−95901号
)などが知られている。
(Prior art) As a conventionally proposed method for producing propylene oxide from propylene and hydrogen peroxide, (+) an acid catalyst, hydrogen peroxide, and propionic acid are mixed at 10 to 70%
After producing perpropionic acid by reacting at °C and extracting perpropionic acid from the resulting reaction mixture with benzene, propane dichloride, etc.,
A method of producing propylene oxide by reacting with excess propylene at a pressure of 100 kg/cd (for example,
-38231, Special Publication No. 59-38232, Special Publication No. 597
(2) Hydrogen peroxide and a carboxylic acid in the presence of an inert organic solvent that can form a heteroazeotrope with water. The water present in the reaction mixture is removed by azeotropic distillation to obtain a percarboxylic acid, and then propylene oxide is produced in the same manner as in (1) (for example, according to JP-A-56-18973). )
(3) A method of epoxidizing hydrogen peroxide and propylene at 0 to 120°C using boron oxide, a boron oxyacid, or a boron oxyacid ester as an epoxidation catalyst; A method in which water introduced together with hydrogen oxide and water produced by the reaction are continuously removed from the reaction medium (for example, Japanese Patent Publication No. 5B-50990); (4) Propylene and hydrogen peroxide are removed in the presence of an arsenic catalyst; A method of mixing and reacting at a temperature of 25 to 200 ° C to produce propylene oxide, or a method of continuously removing water by azeotropic dehydration as in (3) (for example,
Japanese Patent Publication No. 53-44442, Japanese Unexamined Patent Application Publication No. 53-95901) are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記(1)の方法では反応液中から高収率
で過プロピオン酸を抽出するためには大量の溶剤と多(
の抽出段数を必要とする。またエポキシ化反応液よりプ
ロピレンオキサイドの分離精製、溶媒の回収、循環に多
大のエネルギーと装置を必要とする。また実用上過カル
ボン酸は20〜30%以上の濃度で使用されるため、非
常に爆発の危険性の高い、ジアシルパーオキサイドの副
生濃縮の可能性があり、安全上問題である。
However, in method (1) above, in order to extract perpropionic acid from the reaction solution in high yield, a large amount of solvent and a large amount of (
The number of extraction stages is required. Further, a large amount of energy and equipment are required to separate and purify propylene oxide from the epoxidation reaction solution, and to recover and circulate the solvent. Furthermore, since percarboxylic acid is practically used at a concentration of 20 to 30% or more, there is a possibility of concentration of diacyl peroxide as a by-product, which has a very high risk of explosion, which is a safety problem.

RCOOOH+ RCOOH→RCOO−00CR+ 
HxO上記(2)の方法では反応混合物中の水を有機溶
媒との共沸により除去するため、過酸化水素に基づく過
プロピオン酸の収率という点では優れているが、上記(
1)と同様プロピレンオキサイドの精製、溶媒の回収、
ジアシルパーオキサイドの副生等の問題が残る。
RCOOOH+ RCOOH→RCOO-00CR+
HxOThe above method (2) removes water in the reaction mixture by azeotroping with the organic solvent, so it is superior in terms of the yield of perpropionic acid based on hydrogen peroxide.
Similar to 1), purification of propylene oxide, recovery of solvent,
Problems such as by-product of diacyl peroxide remain.

上記(3)、(4)の方法では触媒に強酸を使用しない
ため、生成したエポキシドの開環などの副反応は(1)
、(2)の方法に比べて低く抑えられるという利点を有
するが、過酸化水素自身のエポキシ化力が過カルボン酸
に比べて極めて弱いため上記(1)、(2)の方法と同
条件では過酸化水素の転化率は低い、−方反応温度、圧
力等を上げると過酸化水素の転化率は向上するが、プロ
ピレンオキサイドの開環によりプロピレンオキサイドの
選択率は逆に低下してしまう、また経済性、安全性の問
題から触媒の回収が必要であり、プロセスが煩雑になる
、等の問題がある。
In methods (3) and (4) above, strong acids are not used as catalysts, so side reactions such as ring-opening of the generated epoxide are prevented as described in (1).
, has the advantage that it can be kept low compared to method (2), but since the epoxidation power of hydrogen peroxide itself is extremely weak compared to percarboxylic acid, it cannot be used under the same conditions as methods (1) and (2) above. The conversion rate of hydrogen peroxide is low. - The conversion rate of hydrogen peroxide improves by increasing the reaction temperature, pressure, etc., but the selectivity of propylene oxide decreases due to ring opening of propylene oxide. There are problems such as the need to recover the catalyst due to economic efficiency and safety issues, and the process becomes complicated.

本発明の目的は、過カルボン酸の濃縮の起こらない、安
全性の高いプロピレンオキサイドの直接製造法を提供す
ることにある。
An object of the present invention is to provide a highly safe method for directly producing propylene oxide that does not cause concentration of percarboxylic acid.

〔問題点を解決するための手段及び作用〕本発明者らは
、上記問題を解決するため種々検討した結果、遂に本発
明を完成するに至った。
[Means and effects for solving the problems] The present inventors have made various studies to solve the above problems, and as a result, have finally completed the present invention.

すなわち本発明は、溶媒として水とヘテロ共沸物を形成
するとともに、過酸化水素及びプロピレンオキサイドと
は不活性な溶媒を使用し、かつ有機モノカルボン酸の存
在下に、プロピレンと過酸化水素とからプロピレンオキ
サイドを製造するに際して、 ■反応塔として多段反応塔を使用し、 ■反応塔内に導入された水及び反応により生成した水を
、゛上記溶媒及び生成したプロピレンオキサイドと共に
反応塔上部より連続的に取り出すことを特徴とするプロ
ピレンオキサイドの製造方法である。
That is, the present invention uses a solvent that forms a heteroazeotrope with water as a solvent and is inert to hydrogen peroxide and propylene oxide, and in the presence of an organic monocarboxylic acid, propylene and hydrogen peroxide are mixed together. When manufacturing propylene oxide from This is a method for producing propylene oxide, which is characterized by the step of extracting propylene oxide.

本発明に使用する多段反応塔は、棚段塔、充填塔など通
常の蒸留塔型式のものが使用し得る。多段反応塔内の反
応液滞留時間T、とボトムにおける反応液滞留時間T!
との関係は次式を満足することが望ましく、 R−T、/ (T、+Tオ) 、R≧0.2T1:多段
反応塔内における反応液滞留時間T!:ボトムにおける
反応液滞留時間 より好ましくはR≧0.4である。Rが0.2未満では
プロピレンオキサイドの生成が低下する。
The multistage reaction column used in the present invention may be a conventional distillation column type such as a plate column or a packed column. Reaction liquid residence time T in the multi-stage reaction tower and reaction liquid residence time T at the bottom!
It is desirable that the relationship between the two satisfies the following formula: RT, / (T, +T), R≧0.2T1: Reaction liquid residence time in the multistage reaction tower T! : R≧0.4 is more preferable than the residence time of the reaction liquid in the bottom. When R is less than 0.2, the production of propylene oxide decreases.

T + + T zは1〜2時間以内が望ましく、1時
間未満では過酸化水素の反応効率が劣る。2時間を越え
ると過酸化水素の分解損失が大きくなると共に、生産効
率が悪くなる。
T + + T z is desirably within 1 to 2 hours, and if it is less than 1 hour, the reaction efficiency of hydrogen peroxide will be poor. If the time exceeds 2 hours, the decomposition loss of hydrogen peroxide increases and the production efficiency deteriorates.

本発明に使用するカルボン酸としては、酢酸、プロピオ
ン酸、酪酸、イソ酪酸、安息香酸等の炭素数2〜8個の
有機モノカルボン酸が適当である。
As the carboxylic acid used in the present invention, organic monocarboxylic acids having 2 to 8 carbon atoms such as acetic acid, propionic acid, butyric acid, isobutyric acid, and benzoic acid are suitable.

反応温度は、使用するを機モノカルボン酸によって異な
るが、40〜120°C1好ましくは50〜90°Cで
ある。40°C未満ではプロピレンのエポキシ化速度が
遅く、プロピレンオキサイドの生成が不充分であり、1
20″Cを越えると過酸化水素が反応に関与せずに分解
したり、生成したプロピレンオキサイドが開環してプロ
ピレングリコール等になる副反応が促進され、プロピレ
ンオキサイド選択率が低下するので好ましくない0反応
圧力は特に制約されないが、常圧ないし若干加圧が好ま
しい。
The reaction temperature varies depending on the monocarboxylic acid used, but is 40 to 120°C, preferably 50 to 90°C. Below 40°C, the propylene epoxidation rate is slow and propylene oxide is insufficiently produced;
If the temperature exceeds 20"C, hydrogen peroxide may decompose without participating in the reaction, or the generated propylene oxide may open its ring to promote side reactions to form propylene glycol, etc., which is undesirable because propylene oxide selectivity decreases. The zero reaction pressure is not particularly limited, but normal pressure to slightly increased pressure is preferred.

溶媒としては水とヘテロ共沸物を形成し、水と容易に二
層分離し得る溶剤が使用される。かかる溶剤としては例
えば、1.2−ジクロルエタン、1.2−ジクロルプロ
パン等の塩素系溶剤、シクロヘキサン、ベンゼン、トル
エン等の炭化水素系溶剤を挙げることが出来る。
As the solvent, a solvent that forms a heteroazeotrope with water and can be easily separated into two layers from water is used. Examples of such solvents include chlorine solvents such as 1,2-dichloroethane and 1,2-dichloropropane, and hydrocarbon solvents such as cyclohexane, benzene and toluene.

過酸化水素と共に導入した水及び反応により生成した水
の除去は、上記した水とヘテロ共沸物を形成する溶媒と
の共沸蒸留による方法、プロピレン及び必要に応じて窒
素ガス等の不活性ガスによる随伴脱水法が用いられる。
The water introduced together with hydrogen peroxide and the water produced by the reaction can be removed by azeotropic distillation with a solvent that forms a heteroazeotrope with water, propylene, and if necessary an inert gas such as nitrogen gas. A concomitant dehydration method is used.

反応を効率的に進めるためには、通常知られている酸触
媒を使用することが好ましい、酸触媒としては、例えば
硫酸、燐酸、陽イオン交換樹脂、オルト又はメタ硼酸等
である。これら触媒は単独または混合で使用することが
出来る。生成したプロピレンオキサイドの開環を抑制す
るためには、オルト又はメタ硼酸のような弱酸が好まし
い。
In order to proceed with the reaction efficiently, it is preferable to use commonly known acid catalysts, such as sulfuric acid, phosphoric acid, cation exchange resins, ortho- or meta-boric acid, and the like. These catalysts can be used alone or in combination. In order to suppress ring opening of the produced propylene oxide, a weak acid such as ortho or metaboric acid is preferred.

本発明で用いる過酸化水素及び有機モノカルボン酸は市
販のものが支障なく使用できる。特に過酸化水素は30
〜60重量%水溶液が市販品として入手でき好ましい、
有機モノカルボン酸の使用量は特に限定されないが、過
酸化水素を効率良く反応させるためには、有機モノカル
ボン酸を過酸化水素の2〜5モル倍使用することが望ま
しい。
As the hydrogen peroxide and organic monocarboxylic acid used in the present invention, commercially available products can be used without any problem. Especially hydrogen peroxide is 30
~60% by weight aqueous solution is available as a commercial product and is preferred.
The amount of the organic monocarboxylic acid to be used is not particularly limited, but in order to react efficiently with hydrogen peroxide, it is desirable to use the organic monocarboxylic acid in an amount of 2 to 5 times the mole of hydrogen peroxide.

また、過酸化水素を有効に反応させるためには、同様に
プロピレンを過酸化水素の1.5〜10モル倍使用する
ことが望ましい、また経済上から未反応過酸化水素、プ
ロピレンは循環使用することが好ましい。
In addition, in order to react effectively with hydrogen peroxide, it is desirable to use propylene 1.5 to 10 times the mole of hydrogen peroxide, and for economic reasons, unreacted hydrogen peroxide and propylene should be recycled. It is preferable.

生成したプロピレンオキサイドは水、溶媒、未反応プロ
ピレン、又は必要に応じて窒素ガス等の不活性ガスと共
に反応器上部より反応系外に取り出され、通常の方法で
分離、精製される。
The produced propylene oxide is taken out of the reaction system from the upper part of the reactor together with water, solvent, unreacted propylene, or if necessary an inert gas such as nitrogen gas, and is separated and purified by a conventional method.

〔実施例〕〔Example〕

以下実施例により本発明をさらに詳細に説明する。但し
、本発明は以下の実施例に限定されるものではない。
The present invention will be explained in more detail with reference to Examples below. However, the present invention is not limited to the following examples.

実施例−1〜5 常圧下、塔頂部に40°Cの温水を循環した分縮コンデ
ンサ及び10段オルダグーツウ蒸留塔(内径3011+
1)を設け、その下に多段反応塔としてパイレックスガ
ラス製、内径50+am、段間隔120mm、多孔板の
開孔率1.5%、内径5++mの溢流管付10段棚段塔
、及びボトムとして1000tdパイレツクスガラス製
フラスコより成る反応器を用いた。
Examples 1 to 5 A decomposition condenser and a 10-stage Oldagutz distillation column (inner diameter 3011+
1), and below it a multi-stage reaction tower made of Pyrex glass, inner diameter 50+ am, stage interval 120 mm, perforated plate porosity 1.5%, inner diameter 5++ m, 10-stage tray tower with overflow pipe, and as a bottom. A reactor consisting of a 1000 td Pyrex glass flask was used.

多段反応塔内の反応液滞留時間は、各段の溢流管高さ(
堰高)を変えることにより調整出来るように設計した。
The residence time of the reaction liquid in the multistage reaction tower is determined by the height of the overflow tube of each stage (
It was designed to be adjustable by changing the weir height.

多段反応塔最上段よりプロピオン酸168.7g/hr
(2,′280mol/hr) 、1.2−ジクロルエ
タン765.0g/hr(7,727mol/hr) 
、60重量%過酸化水素水43.1g/hr(0,76
0+*ol/hr) 、触媒としてオルト硼酸3.0g
/hrを70°Cに加熱して装入した。
Propionic acid 168.7g/hr from the top of the multistage reaction tower
(2,'280 mol/hr), 1,2-dichloroethane 765.0 g/hr (7,727 mol/hr)
, 60% by weight hydrogen peroxide solution 43.1g/hr (0,76
0+*ol/hr), 3.0g of orthoboric acid as catalyst
/hr was heated to 70°C and charged.

一方反応器ボトムよりプロピレンをガス状で63.8g
/hr (1,520mol/hr ) 、窒素ガスを
1204!/hr装入し、反応器ボトムをオイルバスに
より70℃に加熱した。
On the other hand, 63.8g of propylene was extracted from the bottom of the reactor in gaseous form.
/hr (1,520mol/hr), nitrogen gas 1204! /hr, and the reactor bottom was heated to 70°C using an oil bath.

プロピレンオキサイド、未反応プロピレン、窒素、1.
2−ジクロルエタンを含むガス相は分縮コンデンサを経
て反応系外へ、また未反応過酸化水素、プロピオン酸、
触媒等を含む液相は反応器ボトムより連続的に抜き出さ
れた。
Propylene oxide, unreacted propylene, nitrogen, 1.
The gas phase containing 2-dichloroethane passes through a partial condensation condenser to the outside of the reaction system, and unreacted hydrogen peroxide, propionic acid,
The liquid phase containing the catalyst etc. was continuously extracted from the bottom of the reactor.

多段反応塔各段の溢流管高さ(堰高)を、多段反応塔内
滞留時間及びボトム滞留時間が表−1に示す様に調整し
た。
The overflow pipe height (weir height) of each stage of the multistage reaction tower was adjusted so that the residence time in the multistage reaction tower and the residence time at the bottom were as shown in Table 1.

反応を開始してから10時間後に分縮コンデンサ出のガ
ス組成をガスクロマトグラフィーにより[した、生成プ
ロピレンオキサイドの測定結果及びプロピレンオキサイ
ド収率を表−1に示す。
Ten hours after the start of the reaction, the composition of the gas discharged from the partial condenser was analyzed by gas chromatography. The results of measuring the propylene oxide produced and the yield of propylene oxide are shown in Table 1.

実施例−6 プロピオン酸168.7g/hr(2,280mol/
hr)のかわりに酢酸138.1g/hr(2,302
mol/hr)を使用する以外は実施例−1と同様の方
法で実施した。
Example-6 Propionic acid 168.7g/hr (2,280mol/
hr) instead of acetic acid 138.1g/hr(2,302
It was carried out in the same manner as in Example-1 except that mol/hr) was used.

生成プロピレンオキサイドの測定結果及びプロピレンオ
キサイド収率を表−1に示す。
Table 1 shows the measurement results of the propylene oxide produced and the propylene oxide yield.

実施例−7 プロピオン酸168.7g/hr(2,280mol/
hr)のかわりに酪酸220.3g/hr(2,501
mol/hr)を使用する以外は実施例−1と同様の方
法で実施した。
Example-7 Propionic acid 168.7g/hr (2,280mol/
butyric acid 220.3g/hr (2,501
The procedure was carried out in the same manner as in Example-1, except that mol/hr) was used.

生成プロピレンオキサイドの測定結果及びプロピレンオ
キサイド収率を表−1に示す。
Table 1 shows the measurement results of the propylene oxide produced and the propylene oxide yield.

比較例−1 常圧下、塔頂部に40″Cの温水を循環した分縮コンデ
ンサを付けた、30段オルダグー可つ蒸留塔付パイレッ
クスガラス製1000m反応器の塔頂より5段目に、プ
ロピオン酸168.7g/hr  (2,280111
ol/hr ) 、1.2−ジクロルエタン765.0
g/hr(7,727mol/hr)′、60重量%過
酸化水素43.1g/hr (0,760WAol/h
r)、触媒としてオルト硼酸3.0g/hrを70℃に
加熱して装入した。
Comparative Example-1 Under normal pressure, propionic acid was added to the fifth stage from the top of a 1000 m Pyrex glass reactor equipped with a 30-stage Oldagout distillation column and equipped with a partial condensation condenser that circulated 40"C hot water at the top of the tower. 168.7g/hr (2,280111
ol/hr), 1,2-dichloroethane 765.0
g/hr (7,727 mol/hr)', 60 wt% hydrogen peroxide 43.1 g/hr (0,760 WAol/h
r) 3.0 g/hr of orthoboric acid was heated to 70° C. and charged as a catalyst.

一方反応器ボトムよりプロピレンをガス状で63.8g
/hr (1,520wol/hr ) 、窒素ガスを
120ffi/hr装入し、反応器ボトムをオイルバス
により70℃に加熱した。この時のオルグーショウ蒸留
塔内の反応液滞留時間は10分、ボトム滞留時間は80
分であった。
On the other hand, 63.8g of propylene was extracted from the bottom of the reactor in gaseous form.
/hr (1,520wol/hr), nitrogen gas was charged at 120ffi/hr, and the reactor bottom was heated to 70°C using an oil bath. At this time, the residence time of the reaction liquid in the Orgusho distillation column was 10 minutes, and the residence time at the bottom was 80 minutes.
It was a minute.

プロピレンオキサイド、未反応プロピレン、窒素、1.
2−ジクロルエタンを含むガス相は分縮コンデンサを経
て反応系外へ、また未反応過酸化水素、プロピオン酸、
触媒等を含む液相は反応器ボトムより連続的に抜き出さ
れた。
Propylene oxide, unreacted propylene, nitrogen, 1.
The gas phase containing 2-dichloroethane passes through a partial condensation condenser to the outside of the reaction system, and unreacted hydrogen peroxide, propionic acid,
The liquid phase containing the catalyst etc. was continuously extracted from the bottom of the reactor.

反応を開始してから10時間後に分縮コンデンサ出のガ
ス組成をガスクロマトグラフィーにより測定した。
Ten hours after starting the reaction, the composition of the gas coming out of the partial condenser was measured by gas chromatography.

生成プロピレンオキサイドの測定結果及びプロピレンオ
キサイド収率を表−1に示す。
Table 1 shows the measurement results of the propylene oxide produced and the propylene oxide yield.

〔発明の効果〕〔Effect of the invention〕

本発明は実施例において明らかなように、過酸化水素と
プロピレンとから効率よく直接プロピレンオキサイドを
製造でき、過カルボン酸の濃縮が回避され安全性が大幅
に向上するとともに、装置の小型化が可能になるため経
済性に優れ、その産業上の利用価値は大きい。
As is clear from the examples, the present invention enables efficient direct production of propylene oxide from hydrogen peroxide and propylene, avoids concentration of percarboxylic acid, greatly improves safety, and enables miniaturization of equipment. Therefore, it is highly economical and has great industrial value.

Claims (1)

【特許請求の範囲】 1 溶媒として水とヘテロ共沸物を形成するとともに、
過酸化水素及びプロピレンオキサイドとは不活性な溶媒
を使用し、かつ有機モノカルボン酸の存在下に、プロピ
レンと過酸化水素とからプロピレンオキサイドを製造す
るに際して、 (1)反応塔として多段反応塔を使用し、 (2)反応塔内に導入された水及び反応により生成した
水を、上記溶媒及び生成したプロピレンオキサイドと共
に反応塔上部より連続的に取り出すことを特徴とするプ
ロピレンオキサイドの製造方法。 2 上記多段反応塔内における反応液滞留時間T_1と
ボトムにおける反応液滞留時間T_2の関係が次式で示
される特許請求の範囲第1項記載の方法。R=T_1/
(T_1+T_2)、R≧0.2T_1:多段反応塔内
における反応液滞留時間T_2:ボトムにおける反応液
滞留時間 3 有機モノカルボン酸が、酢酸、プロピオン酸、酪酸
またはイソ酪酸である特許請求の範囲第1項記載の方法
[Claims] 1. Forms a heteroazeotrope with water as a solvent, and
Hydrogen peroxide and propylene oxide When producing propylene oxide from propylene and hydrogen peroxide using an inert solvent and in the presence of an organic monocarboxylic acid, (1) A multistage reaction tower is used as the reaction tower. (2) A method for producing propylene oxide, characterized in that the water introduced into the reaction tower and the water produced by the reaction are continuously taken out from the upper part of the reaction tower together with the solvent and the produced propylene oxide. 2. The method according to claim 1, wherein the relationship between the residence time T_1 of the reaction liquid in the multistage reaction tower and the residence time T_2 of the reaction liquid at the bottom is expressed by the following equation. R=T_1/
(T_1+T_2), R≧0.2T_1: Reaction liquid residence time in the multistage reaction tower T_2: Reaction liquid residence time at the bottom 3 The organic monocarboxylic acid is acetic acid, propionic acid, butyric acid, or isobutyric acid. The method described in Section 1.
JP62289266A 1987-11-18 1987-11-18 Propylene oxide manufacturing method Pending JPH01132573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62289266A JPH01132573A (en) 1987-11-18 1987-11-18 Propylene oxide manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62289266A JPH01132573A (en) 1987-11-18 1987-11-18 Propylene oxide manufacturing method

Publications (1)

Publication Number Publication Date
JPH01132573A true JPH01132573A (en) 1989-05-25

Family

ID=17740934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62289266A Pending JPH01132573A (en) 1987-11-18 1987-11-18 Propylene oxide manufacturing method

Country Status (1)

Country Link
JP (1) JPH01132573A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0659473A1 (en) * 1993-12-20 1995-06-28 ARCO Chemical Technology, L.P. Catalytic converter and method for highly exothermic reactions
CN1095464C (en) * 1998-12-09 2002-12-04 中国石油化工集团公司 Technological process of oxidizing propylene with hydrogen peroxide solution to produce epoxy propane continuously
CN103880783A (en) * 2012-12-20 2014-06-25 中国科学院大连化学物理研究所 Method for preparing epoxypropane by catalyzing propylene epoxidation with phase-transfer catalyst under reaction control

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0659473A1 (en) * 1993-12-20 1995-06-28 ARCO Chemical Technology, L.P. Catalytic converter and method for highly exothermic reactions
CN1095464C (en) * 1998-12-09 2002-12-04 中国石油化工集团公司 Technological process of oxidizing propylene with hydrogen peroxide solution to produce epoxy propane continuously
CN103880783A (en) * 2012-12-20 2014-06-25 中国科学院大连化学物理研究所 Method for preparing epoxypropane by catalyzing propylene epoxidation with phase-transfer catalyst under reaction control

Similar Documents

Publication Publication Date Title
EP2981528B1 (en) Process for the preparation of 2,5-furan-dicarboxylic acid
JPH11228555A (en) Product consisting mainly of epichlorohydrin and production of the product
CS203917B2 (en) Process for continuous preparing propylenoxide
USRE31381E (en) Process for the preparation of propylene oxide
US3284491A (en) Preparation of a peracid in a single liquid phase
US4308409A (en) Preparation of propylene glycol from propylene
KR20020084899A (en) Process for producing methyl methacrylate
JPH0333718B2 (en)
JPH01132573A (en) Propylene oxide manufacturing method
JP2001039913A (en) Purification method of binaphthol
CA1097367A (en) Process for the preparation of propylene oxide
JPH0180A (en) Propylene oxide manufacturing method
JPH01139574A (en) Propylene oxide manufacturing method
JPS5833207B2 (en) Nikafuenoru no seizouhouhou
JPH0665149A (en) Production of usable compound from michael reactional adduct of acrylic acid ester
JPH0179A (en) Propylene oxide manufacturing method
JPH1087552A (en) Method for producing high-purity acrylic acid
JPH0316937B2 (en)
US4162268A (en) Process for preparing diacetylbenzene
JPH0784449B2 (en) Propylene oxide production method
JPH0784448B2 (en) Propylene oxide production method
JPH0784450B2 (en) Propylene oxide production method
JP2952027B2 (en) Method for producing cyclohexene oxide
JPH07116096B2 (en) Method for producing high-purity 0-toluic acid
JPH0784451B2 (en) Propylene oxide production method