[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0954155A - Distance-measuring apparatus - Google Patents

Distance-measuring apparatus

Info

Publication number
JPH0954155A
JPH0954155A JP7204782A JP20478295A JPH0954155A JP H0954155 A JPH0954155 A JP H0954155A JP 7204782 A JP7204782 A JP 7204782A JP 20478295 A JP20478295 A JP 20478295A JP H0954155 A JPH0954155 A JP H0954155A
Authority
JP
Japan
Prior art keywords
circuit
signal
distance
output
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7204782A
Other languages
Japanese (ja)
Inventor
Jun Nishino
潤 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansei Corp filed Critical Kansei Corp
Priority to JP7204782A priority Critical patent/JPH0954155A/en
Publication of JPH0954155A publication Critical patent/JPH0954155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Emergency Alarm Devices (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely measure distance to a front object over a wide range of distances with uniform accuracy, by controlling an emission output so that a peak value is normally within a predetermined range, reducing the emission output to the lowest level in a short time when an object is suddenly detected within a point-blank range, and gradually increasing the emission output afterwards. SOLUTION: A peak detection circuit 22 outputs a control signal C' of an H level to a filter circuit 23 when a peak of a receiving signal (b) from an amplifier circuit 17 exceeds a reference voltage V0 , V0 +α (α is a minute voltage), thereby to control an output voltage a' of an LD-switching driver 12' so that the peak of the signal (b) is not saturated and always a predetermined size. If a vehicle interrupts immediately in front of one's own vehicle and an operation circuit 41' suddenly operates a point-blank distance, a control signal (e) of a single pulse is sent to the circuit 23 to reduce the output of a light- emitting element 13 to the lowest level. The emission output is gradually increased afterwards by a filter function of the circuit 23. The signal C' to the circuit 23 is subsequently turned to H and L levels alternately repeatedly, thereby, the emission output is maintained constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えばレーザ光線を
車両前方に発して前方車両との車間距離を測定して前方
車両に自車が接近した場合に警報を発することにより、
その前方車両との衝突を防止する衝突防止装置等に用い
られる距離測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, for example, emits a laser beam to the front of the vehicle to measure the distance between the vehicle and the front vehicle and issues an alarm when the vehicle approaches the front vehicle.
The present invention relates to a distance measuring device used for a collision prevention device or the like for preventing a collision with a vehicle in front of it.

【0002】[0002]

【従来の技術】従来の距離測定装置を、図4に示す障害
物検出装置を例にとって説明する。同図において、1は
レーザダイオード(以下、LDという)の発光するレー
ザビームを用いて、自車両と障害物との間の距離を検出
する距離検出部であり、2は自車速度等の自車両の走行
状態を検知する走行状態検知部である。
2. Description of the Related Art A conventional distance measuring device will be described by taking an obstacle detecting device shown in FIG. 4 as an example. In the figure, reference numeral 1 is a distance detection unit that detects a distance between a vehicle and an obstacle by using a laser beam emitted from a laser diode (hereinafter referred to as LD), and 2 is a vehicle speed such as a vehicle speed. It is a running state detection unit that detects a running state of the vehicle.

【0003】3は距離検出部1に距離の検出指令を行っ
て、それに応答して返送される距離情報と、走行状態検
知部2で検知された自車速度情報を元に、自車両と、前
方車両等の障害物との相対速度を算出して障害物が停止
物か移動物かの判断を行い、また、自車速度、相対速
度、運転者がブレーキをかけるまでの空走時間の個人差
に応じて設定する距離設定などに応じて自車両と障害物
との衝突の可能性を判断する信号処理部である。
Reference numeral 3 designates a vehicle based on the distance information sent back to the distance detection unit 1 in response to the distance detection command and the own vehicle speed information detected by the traveling state detection unit 2; It calculates the relative speed with the obstacle such as the vehicle in front and judges whether the obstacle is a stationary object or a moving object, and also the individual vehicle speed, relative speed, and the free running time until the driver brakes. It is a signal processing unit that determines the possibility of collision between the host vehicle and an obstacle according to the distance setting or the like set according to the difference.

【0004】4は信号処理部3からの情報に基づいて、
自車両と障害物との距離を表示するとともに、信号処理
部3によって障害物との衝突の可能性があると判断され
た場合には、警報を発生する警報報知部である。
4 is based on the information from the signal processing unit 3,
This is an alarm notification unit that displays the distance between the host vehicle and the obstacle and issues an alarm when the signal processing unit 3 determines that there is a possibility of collision with the obstacle.

【0005】次に上記構成の作用を説明する。走行状態
検知部2は車速センサ31を備え、信号処理部3は演算
回路(距離算出手段)41および距離設定スイッチ42
を備えている。車速センサ31にて検知された自車両の
車速信号は演算回路41に送られ、演算回路41は当該
車速信号に基づいて算出した車速が35Km/h以上で
あると、距離検出部1に距離検出指令信号を送出する。
Next, the operation of the above configuration will be described. The traveling state detection unit 2 includes a vehicle speed sensor 31, and the signal processing unit 3 includes an arithmetic circuit (distance calculation means) 41 and a distance setting switch 42.
It has. The vehicle speed signal of the own vehicle detected by the vehicle speed sensor 31 is sent to the arithmetic circuit 41, and the arithmetic circuit 41 detects the distance to the distance detecting unit 1 when the vehicle speed calculated based on the vehicle speed signal is 35 Km / h or more. Send a command signal.

【0006】距離検出部1ではその距離検出指令信号を
駆動信号発生回路11で受け、駆動信号発生回路11は
図5(a)に示す一定周波数のLD発光信号をLD切換
ドライバ12に送出する。LD切換えドライバ12は受
け取ったLD発光信号(a)に基づいて、図5(b),
(c),(d)に示す信号を送出し、発光手段としての
LDアレイ(発光素子)13のLD−L,LD−C,L
D−Rを、常時同一強度で順次発光させる。
In the distance detecting section 1, the drive signal generating circuit 11 receives the distance detection command signal, and the drive signal generating circuit 11 sends an LD light emission signal having a constant frequency shown in FIG. Based on the received LD light emission signal (a), the LD switching driver 12 performs the operation shown in FIG.
The signals shown in (c) and (d) are transmitted, and LD-L, LD-C, and L of the LD array (light emitting element) 13 as a light emitting means.
D-R are made to sequentially emit light with the same intensity at all times.

【0007】LDアレイ13のLD−Lからのレーザビ
ームは自車両前方左寄りに、LD−Cからのレーザビー
ムは前方に、LD−Rからのレーザビームは前方右寄り
に、それぞれ投光レンズ14を介して出射され、LD−
Cのレーザビームは前方障害物を、LD−Lのレーザビ
ームは左車線からの割り込み車両を、LD−Rのレーザ
ビームは右車線からの割り込み車両を検出するのに用い
られる。
The laser beam from the LD-L of the LD array 13 is directed to the front left of the vehicle, the laser beam from the LD-C is directed to the front, and the laser beam from the LD-R is directed to the front right by the light projecting lens 14. Is emitted through LD-
The laser beam of C is used to detect an obstacle ahead, the laser beam of LD-L is used to detect an interrupting vehicle from the left lane, and the laser beam of LD-R is used to detect an interrupting vehicle from the right lane.

【0008】障害物からの反射光は受光レンズ15で集
光され、フォトダイオード(受光素子)16で受光され
る。この受光信号は増幅回路17に送られ、増幅回路1
7はそれを増幅して、図5(e)の信号Bを出力する。
The reflected light from the obstacle is condensed by the light receiving lens 15 and received by the photodiode (light receiving element) 16. This received light signal is sent to the amplifier circuit 17, and the amplifier circuit 1
7 amplifies it and outputs the signal B of FIG.

【0009】基準値発生回路18は、図5(e)に示す
基準電圧V0 を比較回路19に出力する。比較回路19
は増幅回路17の出力信号(e)と、この基準電圧V0
とのレベル比較を行なう事によって、障害物からの反射
信号を抽出し、図5(f)に示す障害物検出パルス信号
を出力する。
The reference value generation circuit 18 outputs the reference voltage V0 shown in FIG. 5 (e) to the comparison circuit 19. Comparison circuit 19
Is the output signal (e) of the amplifier circuit 17 and this reference voltage V0
The reflected signal from the obstacle is extracted by performing a level comparison with and the obstacle detection pulse signal shown in FIG. 5 (f) is output.

【0010】カウンタ20は図5(g)に示すようにL
D発光信号(a)の立上りで、基準パルス発生回路21
から供給されるクロックパルス信号のカウントを開始
し、障害物からの反射信号に基づく障害物検出パルス信
号(f)の立上りでカウントを停止して、そのカウント
アップ時間と光速度から障害物までの距離情報を求め、
それを信号処理部3の演算回路41に送出する。
The counter 20 has an L level as shown in FIG.
At the rise of the D light emission signal (a), the reference pulse generation circuit 21
Starts counting the clock pulse signal supplied from the obstacle, stops counting at the rising edge of the obstacle detection pulse signal (f) based on the reflection signal from the obstacle, and counts from the count-up time and the speed of light to the obstacle. Seeking distance information,
It is sent to the arithmetic circuit 41 of the signal processing unit 3.

【0011】次に信号処理部3の演算回路41における
衝突の可能性の判断方法について図6に示すフローチャ
ートを参照して説明する。まず電源が投入されると、S
TARTステップに進み、演算回路41を構成するCP
U,RAM等の初期設定が行われる。次に、ステップS
T11で所定の周期毎に距離検出部1のカウンタ20か
ら障害物との距離Rの情報を示す距離信号、及び走行状
態検知部2の車速センサ31から自車速度Vf の情報を
示す車速信号を演算回路41内に取り込む。
Next, a method of determining the possibility of collision in the arithmetic circuit 41 of the signal processing unit 3 will be described with reference to the flowchart shown in FIG. First, when the power is turned on, S
Proceeding to the TART step, the CP forming the arithmetic circuit 41
U, RAM, etc. are initialized. Next, step S
At T11, a distance signal indicating information on the distance R to the obstacle from the counter 20 of the distance detecting unit 1 and a vehicle speed signal indicating information on the own vehicle speed V f from the vehicle speed sensor 31 of the traveling state detecting unit 2 at predetermined intervals. Are taken into the arithmetic circuit 41.

【0012】そしてステップST12で距離信号Rを表
示信号に変換して、距離表示器51に送出し表示する。
次に、ステップST13で車間距離Rを微分して先行車
両などの障害物と自車両との相対速度(d/dt)Rを
最小二乗法などの演算手法を用いて算出し、また先行車
の車速Va を自車速度Vf と相対速度(d/dt)Rと
の和によって算出する。
Then, in step ST12, the distance signal R is converted into a display signal, which is sent to the distance display 51 and displayed.
Next, in step ST13, the inter-vehicle distance R is differentiated to calculate the relative velocity (d / dt) R between the obstacle such as the preceding vehicle and the host vehicle using a calculation method such as the least square method, and The vehicle speed V a is calculated by the sum of the vehicle speed V f and the relative speed (d / dt) R.

【0013】なお、この演算の中で(d/dt)R<0
の場合には距離が減少し、障害物に接近していること
を、また(d/dt)R>0の場合には距離が増加して
いることを、さらに(d/dt)R=0の場合には距離
に変化がないことをそれぞれ示している。
In this calculation, (d / dt) R <0
In the case of (d / dt) R> 0, the distance is decreasing, and the distance is decreasing, and (d / dt) R = 0. In the case of, it shows that there is no change in the distance.

【0014】障害物との衝突の可能性を判断する上で自
車の初期速度をVf (m/s)、障害物(先行車)の初
期速度をVa (m/s)、双方の減速度性能をα(m/
2)とすると、自車の停止距離Vf 2/2αと先行車の
停止距離Va 2/2αとの差に、距離設定スイッチ42で
設定された自車がブレーキをふむまでの時間Td による
空走距離Vf ・Td を加えた、数1に示す距離Rが衝突
判断の基準となる。
In determining the possibility of collision with an obstacle, the initial speed of the vehicle is V f (m / s) and the initial speed of the obstacle (preceding vehicle) is V a (m / s). Deceleration performance is α (m /
s 2 ), the difference between the stop distance V f 2 / 2α of the host vehicle and the stop distance V a 2 / 2α of the preceding vehicle is set to the time T until the host vehicle sets the brake by the distance setting switch 42. The distance R shown in the equation 1, which is the sum of the free running distance V f · T d due to d , becomes the reference for collision judgment.

【0015】[0015]

【数1】 [Equation 1]

【0016】そこで、まずステップST14にて相対速
度(d/dt)Rと自車速度Vf を比較して、−(d/
dt)R≒Vf の場合、即ち障害物が路上停止物とみな
される場合にはステップST15に進み、数1において
a =0であることから、次の数2による運転の法則に
より衝突の危険性を判定する。
Therefore, first, in step ST14, the relative speed (d / dt) R and the vehicle speed Vf are compared, and-(d /
dt) In the case of R≈V f , that is, when the obstacle is regarded as a road stop, the process proceeds to step ST15, and since V a = 0 in Formula 1, the collision law is calculated according to the following formula 2 Determine the risk.

【0017】[0017]

【数2】 [Equation 2]

【0018】数2が成立する場合には、障害物に対して
衝突する危険が発生しており、ステップST18に進ん
で警報信号を発生して警報報知部4に送り、その警報器
52から危険回避のための警報を発する。
When the equation 2 is satisfied, there is a risk of collision with an obstacle, and the process proceeds to step ST18 to generate an alarm signal and send it to the alarm notifying unit 4, and the alarm device 52 causes a danger. A warning for avoidance is issued.

【0019】一方、ステップST14での判定の結果、
−(d/dt)R≒Vf でない場合には障害物は前方の
路上を走行する先行車であり、本来数1に従って危険判
断を行なうべきである。しかしながら、相対速度(d/
dt)Rの算出精度が厳密にとれないこともあって算出
誤差に誤警報の恐れがあるため、障害物が移動する先行
車の場合にはステップST16にて相対速度(d/d
t)Rが所定の速度C(m/sec)以上かどうかの判
定をまず行う。
On the other hand, as a result of the judgment in step ST14,
When − (d / dt) R≈V f is not satisfied, the obstacle is a preceding vehicle traveling on the road ahead, and the danger judgment should be originally made according to Equation 1. However, the relative velocity (d /
Since the calculation accuracy of dt) R may not be strict, the calculation error may give an erroneous alarm. Therefore, in the case of a preceding vehicle in which an obstacle moves, the relative speed (d / d) is calculated in step ST16.
t) First, it is determined whether R is equal to or higher than a predetermined speed C (m / sec).

【0020】その結果、(d/dt)R≧Cの場合には
相対速度が速く、急接近中であることから、先行車は限
りなく停止物に近いとみなして、ステップST15に進
み、以下停止障害物と同じ論理で、数2の判別式による
警報出力判断を行なう。
As a result, when (d / dt) R ≧ C, the relative speed is fast and the vehicle is approaching rapidly. Therefore, the preceding vehicle is regarded as infinitely close to the stopped object, and the process proceeds to step ST15. With the same logic as that of the stop obstacle, the warning output judgment is performed by the discriminant of the equation (2).

【0021】また、ステップST16の判定結果が(d
/dt)R<Cの場合には、相対速度が遅く、一定車間
距離での通常の追従走行中であるとみなし、自車速Vf
と先行車速Va がほぼ等しいことから、数1は以下に示
す数3となり、ステップST17ではこの数3により衝
突の危険性を判定し、以下同様にこの数3が成立する場
合にはST18において警報を発する。
Further, the determination result of step ST16 is (d
/ Dt) R <In the case of C, the slow relative speed, regarded as being the normal follow-up running at a constant inter-vehicle distance, vehicle speed V f
Since the preceding vehicle speed V a is almost equal, the equation 1 becomes the equation 3 shown below. In step ST17, the danger of a collision is determined by the equation 3, and if the equation 3 is satisfied similarly, in step ST18. Give an alarm.

【0022】[0022]

【数3】 (Equation 3)

【0023】[0023]

【発明が解決しようとする課題】しかしながら、このよ
うな衝突防止装置に用いられている距離測定装置にあっ
ては、前方物体との距離が近い場合には光ビームの反射
が強いために振幅の大きな受光波形を得られるが、遠い
場合には光ビームの反射が弱いために振幅の小さな受光
波形しか得られないので、受光波形が基準値を越えるタ
イミングが異なるために測定誤差を発生してしまうこと
が考えられる。そのために、光ビームが強く設定されて
いる場合において、自車両前方の至近距離に割り込み車
両が現れた場合には、光ビームの反射が非常に強くなり
受光波形が飽和してしまい、さらに上記問題点、即ち測
定誤差が顕著となり、実際より近い距離として測定され
るため、自車両より走行速度の速い割り込み車両に対し
ても不必要に警報を発してしまうという問題点があっ
た。
However, in the distance measuring device used for such a collision preventing device, when the distance to the front object is short, the reflection of the light beam is strong and the amplitude of the light beam is large. A large received light waveform can be obtained, but when it is far, only a received light waveform with a small amplitude can be obtained due to weak reflection of the light beam, so a measurement error occurs because the timing at which the received light waveform exceeds the reference value is different. It is possible. Therefore, when the light beam is set to be strong, and when an interrupting vehicle appears at a close range in front of the own vehicle, the reflection of the light beam becomes extremely strong and the received light waveform is saturated, which further causes the above problem. That is, there is a problem that a measurement error becomes noticeable and the distance is measured as a distance closer to the actual distance, so that an alarm is unnecessarily issued even to an interrupting vehicle whose traveling speed is faster than the own vehicle.

【0024】この発明は、上記の如き点に鑑みてなされ
たもので、近距離測定、遠距離測定を広範囲にわたって
測定精度を均一に確保しながら確実に前方物体までの距
離を測定できる装置を提供することを目的とする。
The present invention has been made in view of the above points, and provides an apparatus capable of surely measuring a distance to a front object while ensuring uniform measurement accuracy over a wide range for short distance measurement and long distance measurement. The purpose is to do.

【0025】[0025]

【課題を解決するための手段】この発明に係る距離測定
装置は、発光素子と、該発光素子にトリガ信号を供給し
て駆動する駆動信号発生手段と、前記発光素子から発せ
られ、前方物体によって反射された反射光を受光する受
光素子と、前記駆動信号発生手段からのトリガ信号の発
生タイミングと前記受光素子での受光タイミングとの時
間差に基づいて前記前方物体までの距離を算出する距離
算出手段とを備えた距離測定装置において、前記受光手
段から入力される受光波形の波高値を検出して、波高値
が所定値より大きい場合には前記駆動信号発生手段の出
力パワーを徐々に低下させ、また波高値が所定値より小
さい場合には、前記駆動信号発生手段の出力パワーを徐
々に増加させる信号を出力する第1制御手段を備えると
共に、前記距離算出手段の算出した距離が、前回の算出
距離に比べて急激な至近距離を示した場合は、前記駆動
信号発生手段の出力パワーを直ちに最低電圧まで低下せ
しめ、その後徐々に増加させてなる第2制御手段とを備
えてなる。
A distance measuring device according to the present invention includes a light emitting element, drive signal generating means for supplying a trigger signal to the light emitting element to drive the light emitting element, and a front object emitted from the light emitting element. Distance calculating means for calculating the distance to the front object based on the time difference between the light receiving element that receives the reflected light reflected by the light receiving element, the generation timing of the trigger signal from the drive signal generating means, and the light receiving timing of the light receiving element. In the distance measuring device comprising, detecting the peak value of the received light waveform input from the light receiving means, if the peak value is larger than a predetermined value, gradually decrease the output power of the drive signal generating means, Further, when the crest value is smaller than a predetermined value, it is provided with a first control means for outputting a signal for gradually increasing the output power of the drive signal generation means, and the distance calculation is provided. When the distance calculated by the means indicates a shortest distance compared to the distance calculated last time, the output power of the drive signal generating means is immediately decreased to the minimum voltage, and then gradually increased to the second control. And means.

【0026】[0026]

【作用】この発明による距離測定装置は、通常時は、受
光波形の波高値が飽和せずに所定の値に、または所定の
範囲内に入るように発光素子の発光出力を制御し、かつ
突然至近距離に前方物体を検出したときには、発光出力
を0レベル、または最低レベル(設定された範囲での)
に短時間に低減し、その後徐々に発光出力を増大して、
前方物体までの距離を短時間で得られるようにする。
The distance measuring device according to the present invention normally controls the light emission output of the light emitting element so that the peak value of the received light waveform does not saturate to a predetermined value or falls within a predetermined range, and suddenly. When a front object is detected at a close range, the emission output is 0 level or the minimum level (within the set range)
To a short time, then gradually increase the light emission output,
Make it possible to obtain the distance to the front object in a short time.

【0027】[0027]

【実施例】【Example】

[第1実施例]以下、この実施例による構成の説明を図
1に基づいて行う。図1において図4で説明したものと
同一構成のもの、または均等なものには同一符号を付し
てその説明を省略し、異なる構成についてのみ以下に説
明する。
[First Embodiment] The structure of this embodiment will be described below with reference to FIG. In FIG. 1, the same components as those described with reference to FIG. 4 or equivalent components are designated by the same reference numerals, and the description thereof will be omitted. Only different components will be described below.

【0028】すなわち、図1において、LD切換ドライ
バ12’は、図4におけるLD切換ドライバ12の機能
に対して、フィルタ回路23を介してピーク検出回路2
2から制御信号を受けて、出力電圧を変化させるための
制御機能が追加されている。
That is, in FIG. 1, the LD switching driver 12 'has a function of the LD switching driver 12 in FIG.
A control function for receiving a control signal from the control circuit 2 and changing the output voltage is added.

【0029】22は受光波形の中心の電圧値(例えばピ
ーク値)を検出するピーク検出回路で、前記増幅回路1
7からの受光信号(図3(b))を入力して、その受光
信号の波形(図3の(b)の波形A,B)と基準値発生
回路18の出力電圧、即ち基準値V0 とを比較(図2
(b)参照)し、受光信号の波形、例えば波形Aが前記
基準値発生回路18の出力電圧V0 を越えたときにハイ
レベル(図3(c))を出力する。さらに、同様に出力
電圧V0 に微小電圧αを加えたV0 +αとも比較し、V
0 +αを越えたときにハイレベル(図3(c’))を出
力する。
Reference numeral 22 is a peak detection circuit for detecting the voltage value (for example, peak value) at the center of the received light waveform.
The light receiving signal (FIG. 3 (b)) from 7 is input, and the waveform of the light receiving signal (waveforms A and B in FIG. 3 (b)) and the output voltage of the reference value generating circuit 18, that is, the reference value V0 Compare (Figure 2
Then, when the waveform of the received light signal, for example, the waveform A exceeds the output voltage V0 of the reference value generating circuit 18, a high level (FIG. 3C) is output. Further, similarly, V0 + α obtained by adding a small voltage α to the output voltage V0 is also compared to obtain V0
When it exceeds 0 + α, a high level (Fig. 3 (c ')) is output.

【0030】なお、図3(c)及び図3(c’)で出力
したハイレベル状態は次に発光するときまで、保持され
るが、LD切換ドライバ12’は、駆動信号発生回路1
1からのLD発生信号を受けて発光し、その終了と同時
にローレベル状態にリセットされる。また、増幅回路1
7から出力される受光信号の波形(図3のbの波形A、
B)がV0 及びV0 +αを越えない場合は、図3
(c),(c’)に示すハイレベル信号は出力されな
い。受光波形AとV0 +αとが比較された出力(図3
(c’))は、ローパス機能を有するフィルタ回路23
に供給され、フィルタ回路23に供給される信号(図3
(c’))がハイレベルの場合は、発光素子13の発光
出力が急激に低下するよう発光素子13の駆動電圧を低
下させる。また、フィルタ回路23にピーク検出回路2
2から供給される信号(図3(c’))がローレベルの
場合は、徐々に発光素子13の発光出力が増加するよう
に発光素子13の駆動電圧を上げていく(図2の(f)
のT2)。
The high level state output in FIGS. 3 (c) and 3 (c ') is held until the next light emission, but the LD switching driver 12' includes the drive signal generating circuit 1
When the LD generation signal from 1 is received, it emits light, and at the same time, it is reset to the low level state. In addition, amplifying circuit 1
7 shows the waveform of the received light signal (waveform A in FIG. 3B,
If B) does not exceed V0 and V0 + α, then FIG.
The high level signals shown in (c) and (c ') are not output. The output obtained by comparing the received light waveform A and V0 + α (Fig. 3
(C ′)) is a filter circuit 23 having a low-pass function
Signal supplied to the filter circuit 23 (see FIG. 3).
When (c ′)) is at a high level, the drive voltage of the light emitting element 13 is lowered so that the light emission output of the light emitting element 13 sharply drops. Further, the peak detection circuit 2 is added to the filter circuit 23.
When the signal supplied from 2 (FIG. 3 (c ')) is at a low level, the drive voltage of the light emitting element 13 is gradually increased so that the light emission output of the light emitting element 13 is gradually increased ((f in FIG. 2). )
T2).

【0031】フィルタ回路23は、リセット機能を有
し、前記ピーク検出回路22からの出力信号(c’)を
受けて、前記増幅回路17からの受光信号(b)が常に
所定の大きさになるようにLD切替ドライバ12’の出
力電圧を制御するものである。また前記フィルタ回路2
3は、演算回路41’からの単発パルスの制御信号
(e)を受けて、出力電圧を0ボルトまで(又は設定さ
れた最低電圧まで)低下させ、その後所定の時定数で出
力電圧を上昇させる機能を合わせ持っている。
The filter circuit 23 has a reset function and receives the output signal (c ') from the peak detection circuit 22 so that the light reception signal (b) from the amplification circuit 17 always becomes a predetermined magnitude. Thus, the output voltage of the LD switching driver 12 'is controlled. Further, the filter circuit 2
3 receives the control signal (e) of a single pulse from the arithmetic circuit 41 ', lowers the output voltage to 0 volt (or to the set minimum voltage), and then raises the output voltage with a predetermined time constant. It also has functions.

【0032】即ち、例えば自車両の直前に車両が割り込
んできて、演算回路41’において急に至近距離が算出
された場合には、演算回路41’はフィルタ回路19に
対して単発パルスの制御信号図2(e)を送出して、ス
イッチングレギュレータを構成する一種のフィルタ機能
を次に発光パルスが逆出されるまで停止させる。換言す
ると、ピーク検出回路22からフィルタ回路23への信
号c’の状態がハイレベルに反転した場合には、即座に
LD切替ドライバ12’の出力電源電圧は0ボルト(又
は最低電圧)にまで低下させられる。その結果、発光素
子13の発光出力は最低レベルになる。そして、フィル
タ機能の停止は1回の距離測定、すなわち演算回路4
1’が1回の距離演算に必要な時間だけであるので、そ
の後はフィルタ機能によって発光出力は徐々に必要な大
きさまで所定の特定数で増加していく。
That is, for example, when the vehicle is in front of the host vehicle and the shortest distance is suddenly calculated by the arithmetic circuit 41 ′, the arithmetic circuit 41 ′ sends the single-pulse control signal to the filter circuit 19. 2 (e) is sent out, and a kind of filter function forming the switching regulator is stopped until the next light emission pulse is output. In other words, when the state of the signal c ′ from the peak detection circuit 22 to the filter circuit 23 is inverted to the high level, the output power supply voltage of the LD switching driver 12 ′ immediately drops to 0 volt (or the minimum voltage). To be made. As a result, the light emission output of the light emitting element 13 becomes the lowest level. The stop of the filter function is one distance measurement, that is, the arithmetic circuit 4
Since 1'is only the time required for one distance calculation, after that, the light emission output is gradually increased by the predetermined specific number to the required level by the filter function.

【0033】次に、上記構成の作用を図2を参照しなが
ら説明する。先ず、前方車両がない状態(図2のT1区
間)において、LD切替ドライバ12’は最大出力をも
って発光素子13を駆動している(図2の(a’)参
照)が、受光信号を増幅する増幅回路17の出力信号
(図2の(b)参照)はない。従って、基準電圧V0 +
αを越えないため、ピーク検出回路22はフィルタ回路
23に対してローレベル信号(図2の(c’)参照)を
出力する。フィルタ回路23は、このローレベル信号を
反転して出力するためLD切替ドライバ12’に対して
ハイレベル信号(図2の(f)参照)の出力を維持す
る。従って、LD切替ドライバ12’へ供給される電源
電圧は最大出力となる。
Next, the operation of the above configuration will be described with reference to FIG. First, in a state where there is no vehicle in front (T1 section of FIG. 2), the LD switching driver 12 ′ drives the light emitting element 13 with the maximum output (see (a ′) of FIG. 2), but amplifies the light reception signal. There is no output signal from the amplifier circuit 17 (see FIG. 2B). Therefore, the reference voltage V0 +
Since α is not exceeded, the peak detection circuit 22 outputs a low level signal (see (c ′) in FIG. 2) to the filter circuit 23. Since the filter circuit 23 inverts and outputs the low level signal, it maintains the output of the high level signal (see (f) of FIG. 2) to the LD switching driver 12 ′. Therefore, the power supply voltage supplied to the LD switching driver 12 'has the maximum output.

【0034】次に、自車両前方に他の車両が走行してい
る場合には、図3に示すようにカウンタ(距離算出手
段)20は発光駆動パルス(図3(a))の立上りをト
リガ信号として基準パルス発生回路21からのクロック
パルス(図3(d))を計数する一方で、受光素子16
からの受光信号(図3(b))を受光すると、その受光
信号が基準値発生回路18からの基準値V0 (受光信号
と判断するための基準値)を越えると、カウンタ20に
対して計数を停止せしめる信号(図3(c))を出力
し、カウンタ20は区間Tにおける計数値を演算回路4
1’に供給する。
Next, when another vehicle is traveling in front of the host vehicle, the counter (distance calculating means) 20 triggers the rise of the light emission drive pulse (FIG. 3 (a)) as shown in FIG. While counting the clock pulses (FIG. 3D) from the reference pulse generating circuit 21 as a signal, the light receiving element 16
When the light receiving signal from the light receiving device (FIG. 3B) is received, when the light receiving signal exceeds the reference value V0 (reference value for determining the light receiving signal) from the reference value generating circuit 18, the counter 20 is counted. The counter 20 outputs a signal (FIG. 3 (c)) to stop the counting, and the counter 20 calculates the count value in the section T.
Supply 1 '.

【0035】次いで受光信号が、受光信号の飽和状態を
判断する基準値V0 +αを越えるとフィルタ回路23に
対してLD切替ドライバ12’への供給電圧を徐々に低
下せしめるための信号(図3(c’))を供給する。
Next, when the received light signal exceeds a reference value V0 + α for judging the saturation state of the received light signal, a signal for gradually decreasing the supply voltage to the LD switching driver 12 'for the filter circuit 23 (see FIG. 3 ( c ')) is supplied.

【0036】またこの時、自車両の前方の至近距離内に
割り込み車両が発生した場合には、その直前まで発光素
子13を駆動している駆動信号(図2の(a’)参照)
は、最大出力となっているため、増幅回路17から出力
される受光信号(図2の(b)参照)は過大で飽和状態
の信号となる。従って、基準電圧V0 +αを越えるた
め、その時点でピーク検出回路22の出力信号(図2の
(c)参照)を出力し、演算回路41’にて至近距離で
あることが算出される。従って、演算回路41’は、信
号(図2の(e)参照)の単発パルスをフィルタ回路2
3に対して出力する。これによって、フィルタ回路23
の出力は直ちに0ボルト(又は最低電源電圧)まで下げ
られて、その結果、発光素子13を駆動するための信号
a’の出力も最低レベルに下げられる。
Further, at this time, if an interrupting vehicle occurs within a close range in front of the host vehicle, a drive signal for driving the light emitting element 13 until immediately before that (see (a ') in FIG. 2).
Has a maximum output, the received light signal output from the amplifier circuit 17 (see (b) of FIG. 2) becomes an excessively saturated signal. Therefore, since the voltage exceeds the reference voltage V0 + α, the output signal of the peak detection circuit 22 (see (c) of FIG. 2) is output at that time, and the arithmetic circuit 41 'calculates that it is the shortest distance. Therefore, the arithmetic circuit 41 'filters the single pulse of the signal (see (e) of FIG. 2).
Output to 3. As a result, the filter circuit 23
Is immediately lowered to 0 volt (or the lowest power supply voltage), and as a result, the output of the signal a ′ for driving the light emitting element 13 is also lowered to the lowest level.

【0037】それによって、発光出力が下げられるため
に、受光素子16での受光信号(図2(b))も小さく
なり、再び基準電圧V0 +αを越えなくなり、フィルタ
回路23へのピーク検出回路22の出力(図2
(c’))はローレベルとなる。ローレベルとなること
によって、フィルタ回路23の出力電圧は徐々に増加
し、それに伴って、LD切替ドライバ12’の出力電圧
(図2(a’))も徐々に増加していく。そして、再度
増幅回路17からの受光信号bの出力電圧のピーク電圧
が基準値V0 +αを越えたところでピーク検出回路22
からフィルタ回路23への信号(図2(c’))はハイ
レベルとローレベルを交互に繰り返し、一定値に制御さ
れる。
As a result, since the light emission output is lowered, the light receiving signal (FIG. 2 (b)) at the light receiving element 16 also becomes small, the reference voltage V0 + α is not exceeded again, and the peak detection circuit 22 to the filter circuit 23 is not reached. Output (Fig. 2
(C ')) becomes low level. The low level causes the output voltage of the filter circuit 23 to gradually increase, and accordingly, the output voltage of the LD switching driver 12 ′ (FIG. 2 (a ′)) also gradually increases. Then, again when the peak voltage of the output voltage of the received light signal b from the amplifier circuit 17 exceeds the reference value V0 + α, the peak detection circuit 22
The signal from the filter circuit 23 to the filter circuit 23 (FIG. 2 (c ')) is controlled to a constant value by alternately repeating high level and low level.

【0038】[0038]

【発明の効果】以上説明してきたように、この発明によ
れば、近距離から遠距離までの広範囲の距離測定を確実
に所定の精度で検出でき、かつ自車両の直前至近距離に
他の車両が自車両よりも速い速度で割り込んできても瞬
時にその割り込んできた車両を検出できるので不必要な
警報を発せずにすみ、製品の信頼性を向上することがで
きるという効果が発揮される。
As described above, according to the present invention, it is possible to reliably detect a wide-range distance measurement from a short distance to a long distance with a predetermined accuracy, and to detect another vehicle in a short distance immediately before the own vehicle. Even if the vehicle interrupts at a faster speed than the own vehicle, the vehicle that interrupted the vehicle can be instantly detected, so that an unnecessary alarm is not issued and the reliability of the product can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による実施例を示す回路ブロック説明
図である。
FIG. 1 is a circuit block diagram showing an embodiment according to the present invention.

【図2】図1の作用説明をするための波形による説明図
である。
FIG. 2 is an explanatory diagram with waveforms for explaining the operation of FIG.

【図3】図1のピーク検出回路及びその周辺回路の作動
を説明するための波形説明図である。
FIG. 3 is a waveform explanatory view for explaining the operation of the peak detection circuit and its peripheral circuits in FIG.

【図4】従来装置の回路ブロック説明図である。FIG. 4 is a circuit block diagram of a conventional device.

【図5】図4の回路説明を行うための波形説明図であ
る。
5 is a waveform diagram for explaining the circuit of FIG.

【図6】図4における演算回路で距離算出を行うための
フローチャートである。
FIG. 6 is a flowchart for calculating a distance by the arithmetic circuit in FIG.

【符号の説明】[Explanation of symbols]

11 駆動信号発生回路 12 LD切替ドライバ 13 発光素子 16 受光素子 18 基準値発生回路 20 カウンタ(距離算出手段) 22 ピーク検出回路 23 フィルタ回路 41 演算回路(距離算出手段) 41’ 演算回路 11 Drive Signal Generation Circuit 12 LD Switching Driver 13 Light-Emitting Element 16 Light-Receiving Element 18 Reference Value Generation Circuit 20 Counter (Distance Calculator) 22 Peak Detection Circuit 23 Filter Circuit 41 Arithmetic Circuit (Distance Calculator) 41 'Arithmetic Circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G08B 21/00 G02B 7/11 B // G01C 3/06 G03B 3/00 A ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G08B 21/00 G02B 7/11 B // G01C 3/06 G03B 3/00 A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 発光素子(13)と、該発光素子にトリ
ガ信号を供給して駆動する駆動信号発生手段と、前記発
光素子(13)から発せられ、前方物体によって反射さ
れた反射光を受光する受光素子(16)と、前記駆動信
号発生手段からのトリガ信号の発生タイミングと前記受
光素子(16)での受光タイミングとの時間差に基づい
て前記前方物体までの距離を算出する距離算出手段(2
0、41)とを備えた距離測定装置において、前記受光
素子(16)から入力される受光波形の波高値を検出し
て、波高値が所定値より大きい場合には前記駆動信号発
生手段の出力パワーを徐々に低下させ、また波高値が所
定値より小さい場合には、前記駆動信号発生手段の出力
パワーを徐々に増加させる信号を出力する第1制御手段
を備えると共に、前記距離算出手段(20、41)の算
出した距離が、前回の算出距離に比べて急激な至近距離
を示した場合は、前記駆動信号発生手段の出力パワーを
直ちに最低電圧まで低下せしめ、その後徐々に増加させ
てなる第2制御手段とを備えてなることを特徴とする距
離測定装置。
1. A light emitting element (13), drive signal generating means for supplying a trigger signal to the light emitting element to drive the light emitting element, and reflected light emitted from the light emitting element (13) and reflected by a front object. Distance calculating means for calculating the distance to the front object based on the time difference between the light receiving element (16) to be operated, the generation timing of the trigger signal from the drive signal generating means, and the light receiving timing of the light receiving element (16) ( Two
0, 41), the peak value of the received light waveform input from the light receiving element (16) is detected, and when the peak value is larger than a predetermined value, the output of the drive signal generating means is detected. The distance calculating means (20) is provided with first control means for gradually decreasing the power and for outputting a signal for gradually increasing the output power of the drive signal generating means when the peak value is smaller than a predetermined value. 41), the output power of the drive signal generating means is immediately lowered to the minimum voltage and then gradually increased. A distance measuring device comprising two control means.
JP7204782A 1995-08-10 1995-08-10 Distance-measuring apparatus Pending JPH0954155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7204782A JPH0954155A (en) 1995-08-10 1995-08-10 Distance-measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7204782A JPH0954155A (en) 1995-08-10 1995-08-10 Distance-measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0954155A true JPH0954155A (en) 1997-02-25

Family

ID=16496263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7204782A Pending JPH0954155A (en) 1995-08-10 1995-08-10 Distance-measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0954155A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004086287A (en) * 2002-08-23 2004-03-18 Nissan Motor Co Ltd Vehicle relative velocity measuring device and vehicle controller
KR100634640B1 (en) * 1999-02-25 2006-10-16 지멘스 악티엔게젤샤프트 Method and device for sensing an object or a person in the interior of a vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100634640B1 (en) * 1999-02-25 2006-10-16 지멘스 악티엔게젤샤프트 Method and device for sensing an object or a person in the interior of a vehicle
JP2004086287A (en) * 2002-08-23 2004-03-18 Nissan Motor Co Ltd Vehicle relative velocity measuring device and vehicle controller

Similar Documents

Publication Publication Date Title
JP2002257934A (en) Road surface condition detector for vehicle and range- finder for vehicle
JPS61149879A (en) Device for preventing error in reception pulse detection
JPH0675048A (en) Range finding radar and visibility detection system employing range finding radar signal
JPH0743469A (en) Communication system between cars
JPH0954155A (en) Distance-measuring apparatus
JP2576638B2 (en) Leading vehicle recognition device
JPH08153300A (en) Obstacle detecting device
JPH0882679A (en) Radar apparatus for vehicle
JPH0680436B2 (en) Airborne particle detector
JPH06174848A (en) Obstacle detecting device
JPH10153661A (en) Range-finding device
JPH0853038A (en) Collision preventing device
JPH06174849A (en) Obstacle detecting device
JPH0862331A (en) Laser rader
JPH0528759U (en) Obstacle detection device
JP2000314774A (en) Laser radar device for vehicle
JPH08254577A (en) Collision alarm device for vehicles
JPH1142991A (en) Collision alarm device
JP3121882B2 (en) Visibility obstacle detection method
JPH08122436A (en) Method and equipment for measuring distance
JPH10253759A (en) Range finder
JPH0717345A (en) Obstacle detecting device
JPH08132996A (en) Collision preventing device
JP2727484B2 (en) Estimation method for distance measurement target
JPH06180798A (en) Obstacle detecting device