[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0931573A - Hydrogen storage alloy and its production - Google Patents

Hydrogen storage alloy and its production

Info

Publication number
JPH0931573A
JPH0931573A JP7207343A JP20734395A JPH0931573A JP H0931573 A JPH0931573 A JP H0931573A JP 7207343 A JP7207343 A JP 7207343A JP 20734395 A JP20734395 A JP 20734395A JP H0931573 A JPH0931573 A JP H0931573A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
capacity
content
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7207343A
Other languages
Japanese (ja)
Other versions
JP3473926B2 (en
Inventor
Masamoto Sasaki
正元 佐々木
Shigeo Hirayama
成生 平山
Shin Sumimoto
伸 住本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP20734395A priority Critical patent/JP3473926B2/en
Publication of JPH0931573A publication Critical patent/JPH0931573A/en
Application granted granted Critical
Publication of JP3473926B2 publication Critical patent/JP3473926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a hydrogen storage alloy electrode with high capacitance having a long service life by incorporating specified amounts of misch metal, Ni, Co, Mn, Al, Mo, Cr and La into an alloy to improve deterioration in its capacitance after a charging-discharging cycle. SOLUTION: In the formula, Mm denotes misch metal and X denotes Mo and/or Cr: 3.5<a<4.0, 0.001<e<0.3 and 4.8 <=a+b+c+d<5.4. The content of La in Mm is regulated to 20 to 80wt.%. The metallic raw materials of each component are melted and mixed, which is poured on a flat board or a mold cooled by water to rapidly solidify the molten body. The compsn. of MmNi3.55 Co0.75 Mn0.4 Al0.3 Mo0.01 or MmNi3.55 Co0.75 Mn0.4 Al0.3 Cr0.01 is preferable. In the case the content of La in Mm is less than 20wt.%, its capacitance and cycle characteristics deteriorate. In the case of >80wt.%, the cycle characteristics deteriorate though the capacitance is high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はニッケル−水素蓄電池の
負極として用いられる水素吸蔵合金およびその製造方法
に関し、特にニッケル−水素蓄電池のサイクル寿命を向
上させた水素吸蔵合金およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy used as a negative electrode of a nickel-hydrogen storage battery and a method for producing the same, and more particularly to a hydrogen storage alloy having improved cycle life of a nickel-hydrogen storage battery and a method for producing the same.

【0002】[0002]

【従来の技術】水素吸蔵合金を負極に、水酸化ニッケル
を正極に用いてなるニッケル−水素蓄電池は最近小型の
電子機器の電源として急速に普及している。従来、広く
使用されているニッケル−カドミウム蓄電池を、無公害
性と高容量を特長としてニッケル−水素蓄電池に代替す
るために、ニッケル−水素蓄電池は多くの課題を解決し
てきた(例えば“太田ら、電気化学および工業物理化学
60、No.8(1992)、第689〜692
頁”)。
2. Description of the Related Art A nickel-hydrogen storage battery using a hydrogen storage alloy as a negative electrode and nickel hydroxide as a positive electrode has recently been rapidly spread as a power source for small electronic devices. Conventionally, nickel-hydrogen storage batteries have solved many problems in order to replace the widely used nickel-cadmium storage batteries with nickel-hydrogen storage batteries because of their pollution-free and high capacity (for example, “Ota et al. Electrochemistry and Industrial Physical Chemistry 60, No. 8 (1992), Nos. 689-692
page").

【0003】しかし、電子機器のより高度な要求を満た
すには、まだ十分な性能が得られていない。その一つの
要求がより大きな初期容量を得ることであり、別の要求
が充放電の長サイクル使用後もその容量をあまり低下さ
せないというサイクル寿命の向上である。
However, sufficient performance has not yet been obtained to meet the higher requirements of electronic equipment. One of the requirements is to obtain a larger initial capacity, and the other requirement is to improve the cycle life so that the capacity is not lowered so much even after long-term charging and discharging.

【0004】これらの性能は主として負極の水素吸蔵合
金の性質によって決まるため、水素吸蔵合金の改良が種
々試みられてきたが、容量の増大とサイクル寿命とは合
金組成の調整では相反する結果が生ずることが多く未解
決の状態であった(例えば“境ら、大阪工業技術試験
所、季報42[2](1991)、第23〜55
頁”)。
Since these performances are mainly determined by the properties of the hydrogen storage alloy of the negative electrode, various attempts have been made to improve the hydrogen storage alloy. However, increasing the capacity and the cycle life give conflicting results in adjusting the alloy composition. In many cases, it was in an unsolved state (for example, "Sakai et al., Osaka Industrial Technology Laboratory, Quarterly Report 42 [2] (1991), Nos. 23-55).
page").

【0005】現在、実用化されているニッケル−水素蓄
電池に用いられている水素吸蔵合金はAB5系水素吸蔵
合金であり、ミッシュメタル(Mm)、ニッケル、コバ
ルト、マンガン、アルミニウムの合金組成を調整するこ
とによって容量と寿命とをバランスさせ、水素吸蔵合金
として260mAh/g程度の容量が得られている
(“湯浅ら、National Technical
Report、Vol.37、No.1、Feb.19
91、第44〜51頁”)。
At present, the hydrogen storage alloy used in nickel-hydrogen storage batteries that have been put into practical use is the AB 5 type hydrogen storage alloy, and the alloy composition of misch metal (Mm), nickel, cobalt, manganese, and aluminum is adjusted. By doing so, the capacity and the life are balanced, and a capacity of about 260 mAh / g is obtained as a hydrogen storage alloy (“Yuasa et al., National Technical.
Report, Vol. 37, no. 1, Feb. 19
91, pp. 44-51 ").

【0006】しかし、電子機器や電気自動車等の用途の
高度な要求を満たすには、少なくとも合金として320
mAh/g以上、好ましくは350mAh/g以上の容
量があり、しかも数100回の充放電サイクル後にあっ
ても容量劣化の少ない負極としての水素吸蔵合金が必要
であるが、そのような水素吸蔵合金は未だ得られていな
い。
However, in order to meet the high requirements for applications such as electronic devices and electric vehicles, at least 320 alloys are required.
There is a need for a hydrogen storage alloy as a negative electrode having a capacity of mAh / g or more, preferably 350 mAh / g or more, and having less capacity deterioration even after several 100 charge / discharge cycles. Has not been obtained yet.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、水素
吸蔵合金として320mAh/g以上の初期容量を有
し、しかもニッケル−水素電池の負極とした時に充放電
サイクル後も容量劣化の少ないサイクル寿命を向上させ
ることを可能とした水素吸蔵合金およびその製造方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a hydrogen storage alloy having an initial capacity of 320 mAh / g or more and having a small capacity deterioration even after charge / discharge cycles when used as a negative electrode of a nickel-hydrogen battery. It is an object of the present invention to provide a hydrogen storage alloy capable of improving the life and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明の上記目的は、ミ
ッシュメタル、ニツケル、コバルト、マンガン、アルミ
ニウムの合金成分に加えて、モリブデンおよび/または
クロムを第6成分として用い、かつこれら6成分の配合
比を特定する共に、ミッシュメタル中のランタンの含有
量を一定量とすることにより達成される。
The above object of the present invention is to use molybdenum and / or chromium as the sixth component in addition to the alloy components of misch metal, nickel, cobalt, manganese, and aluminum. This is achieved by specifying the compounding ratio and keeping the lanthanum content in the misch metal constant.

【0009】すなわち、本発明は、下記式;That is, the present invention provides the following formula:

【化2】 (式中、Mmはミッシュメタル、Xはモリブデンおよび
/またはクロム、3.5<a<4.0、0.001<e
<0.3、4.8≦a+b+c+d<5.4)で表わさ
れ、該Mm中のランタン含有量が20〜80重量%であ
ることを特徴とする水素吸蔵合金にある。
Embedded image (In the formula, Mm is misch metal, X is molybdenum and / or chromium, 3.5 <a <4.0, 0.001 <e
<0.3, 4.8 ≦ a + b + c + d <5.4), wherein the lanthanum content in the Mm is 20 to 80% by weight.

【0010】本発明の水素吸蔵合金は、下記式The hydrogen storage alloy of the present invention has the following formula:

【化3】 で示される。Embedded image Indicated by

【0011】ここでMmはミッシュメタルを示し、Mm
中にランタンを20〜80重量%、好ましくは30〜7
5重量%含有することが必要である。Mm中のランタン
含有量が30重量%未満では、放電容量やサイクル特性
が低下する。またMm中のランタン含有量が80重量%
を超えると放電容量は高い範囲にあるものの、サイクル
特性が低下する。
Here, Mm represents misch metal, and Mm
20-80% by weight of lanthanum, preferably 30-7
It is necessary to contain 5% by weight. When the lanthanum content in Mm is less than 30% by weight, the discharge capacity and cycle characteristics are deteriorated. The lanthanum content in Mm is 80% by weight.
When it exceeds, the discharge capacity is in a high range, but the cycle characteristics are deteriorated.

【0012】また、ニッケルはミッシュメタルに対して
a=3.5〜4.0(モル比)の範囲にあることが必要
である。aが3.5未満では放電容量やサイクル特性が
低下する。aが4.0を超えると放電容量やサイクル特
性が低下する。
Further, nickel needs to be in the range of a = 3.5 to 4.0 (molar ratio) with respect to the misch metal. When a is less than 3.5, the discharge capacity and cycle characteristics deteriorate. When a exceeds 4.0, the discharge capacity and cycle characteristics deteriorate.

【0013】Xはモリブテンおよび/またはクロムを示
し、このモリブテンおよび/またはクロムはミッシュメ
タルに対してe=0.001〜0.3(モル比)である
ことが必要である。eが0.001未満では放電容量は
高い範囲にあるものの、サイクル特性が低下する。ま
た、eが0.3を超えると放電容量、サイクル特性とも
低下する。
X represents molybdenum and / or chromium, and this molybdenum and / or chromium needs to have e = 0.001 to 0.3 (molar ratio) with respect to the misch metal. When e is less than 0.001, the discharge capacity is in a high range, but the cycle characteristics are deteriorated. Moreover, when e exceeds 0.3, both the discharge capacity and the cycle characteristics deteriorate.

【0014】ニッケル、コバルト、マンガン、アルミニ
ウムの総量(a+b+c+d)はミッシュメタルに対し
てa+b+c+d=4.8〜5.4未満(モル比)であ
る。a+b+c+dが4.8未満では放電容量、サイク
ル特性とも低下する。また、a+b+c+dが5.4以
上でも放電容量、サイクル特性とも低下する。
The total amount (a + b + c + d) of nickel, cobalt, manganese and aluminum is a + b + c + d = 4.8 to less than 5.4 (molar ratio) with respect to the misch metal. When a + b + c + d is less than 4.8, both the discharge capacity and the cycle characteristics are deteriorated. Further, even if a + b + c + d is 5.4 or more, both the discharge capacity and the cycle characteristics are deteriorated.

【0015】また本発明の水素吸蔵合金の製造方法は、
上記式で示される水素吸蔵合金を構成する各成分の金属
原料を融解混合して、各成分組成が3.5<a<4.
0、0.001<e<0.3、4.8≦a+b+c+d
<5.4、Mm中のランタン含有量が20〜80重量%
となるうよに均一な融体を調製し、次に該融体を水で冷
却された平板上または鋳型中に注いで急冷凝固すること
を特徴とする。
The method for producing a hydrogen storage alloy of the present invention is
The metal raw material of each component constituting the hydrogen storage alloy represented by the above formula is melt-mixed, and each component composition is 3.5 <a <4.
0, 0.001 <e <0.3, 4.8 ≦ a + b + c + d
<5.4, lanthanum content in Mm is 20 to 80% by weight
A uniform melt is prepared as follows, and then the melt is poured onto a water-cooled flat plate or into a mold for rapid solidification.

【0016】[0016]

【実施例】以下、実施例に基づいて本発明を具体的に説
明する。実施例1〜3および比較例1〜3 表1に示す割合で市販のミッシュメタル(La含量70
重量%)、ニツケル、コバルト、マンガン、アルミニウ
ム、モリブデンまたはクロムの各金属原料を用い、アル
ゴン不活性雰囲気、高周波融解炉を用いて融解した後、
銅製の水冷鋳型に注湯して急冷凝固させ、表1に示す種
々の組成を有する水素吸蔵合金を作製した。
EXAMPLES The present invention will be specifically described below based on examples. Examples 1 to 3 and Comparative Examples 1 to 3 Commercially available misch metal (La content 70
% By weight), nickel, cobalt, manganese, aluminum, molybdenum, or chromium metal raw materials, and after melting in an argon inert atmosphere, high frequency melting furnace,
It was poured into a water-cooled mold made of copper and rapidly solidified to prepare hydrogen storage alloys having various compositions shown in Table 1.

【0017】このようにして得られた水素吸蔵合金を、
機械的に500μm以下の粒度に粗粉砕し、PCT(水
素吸蔵特性)測定装置を用いて合金の水素吸蔵量(PC
T容量)を測定し、結果を表1に示した。
The hydrogen storage alloy thus obtained is
Mechanically coarsely pulverized to a particle size of 500 μm or less and using a PCT (hydrogen storage property) measuring device, the hydrogen storage capacity (PC
The T capacity) was measured and the results are shown in Table 1.

【0018】次に、水素吸蔵合金電極としての容量と充
放電のサイクル寿命とを測定するために試験セルを作成
した。まず上記粗粉砕した水素吸蔵合金をさらに−45
μmまで微粉砕した後、バインダー、ニツケル粉と共に
混合後、ペレット状に加圧成型して電極を作成した。対
極には水素化ニッケルを用い水酸化カリウム電解液中に
て充放電サイクル試験を行った。表1に充放電200サ
イクル後の電極容量を示した。
Next, a test cell was prepared to measure the capacity of the hydrogen storage alloy electrode and the charge / discharge cycle life. First, the coarsely crushed hydrogen storage alloy was further -45.
After finely pulverized to μm, the mixture was mixed with a binder and nickel powder, and then pressure-molded into a pellet to prepare an electrode. A charge / discharge cycle test was performed in a potassium hydroxide electrolyte using nickel hydride as the counter electrode. Table 1 shows the electrode capacity after 200 cycles of charge and discharge.

【0019】[0019]

【表1】 [Table 1]

【0020】表1から明らかなように、モリブデンまた
はクロム以外のニツケル、コバルト、マンガン、アルミ
ニウムの合計量とミッシュメタルとのモル比、すなわち
AB5における1:5の比がいずれの側に大きくずれて
も、200サイクル後の電極容量が小さくなる。すなわ
ちサイクル寿命が短かくなる。従ってa+b+c+dが
4.8以上から5.4未満の水素吸蔵合金が好適な電極
となることが判る。
[0020] As apparent from Table 1, nickel other than molybdenum or chromium, cobalt, manganese, total amount and Misch molar ratio between the metal of the aluminum, i.e. 1 in the AB 5: largely shifted in the ratio of 5 either side However, the electrode capacity after 200 cycles becomes small. That is, the cycle life becomes short. Therefore, it is understood that a hydrogen storage alloy having a + b + c + d of 4.8 or more and less than 5.4 is a suitable electrode.

【0021】実施例4〜6および比較例4〜6 表2にニッケルの組成比を変化させ、実施例1と同様に
水素吸蔵合金および試験セルを調製し、PCT容量と2
00サイクル後の電極容量を測定し、結果を表2に示し
た。ここでニッケル以外の組成はMmNiaCo4.3-a
0.4Al0.3(Mo、Cr)0.1であり、ミッシュメタ
ル中のランタン含有量は33重量%である。
Examples 4 to 6 and Comparative Examples 4 to 6 In Table 2, the composition ratio of nickel was changed to prepare a hydrogen storage alloy and a test cell in the same manner as in Example 1, and the PCT capacity and 2 were prepared.
The electrode capacity after 00 cycles was measured, and the results are shown in Table 2. Here, the composition other than nickel is MmNi a Co 4.3-a M
n 0.4 Al 0.3 (Mo, Cr) 0.1 and the lanthanum content in the misch metal is 33% by weight.

【0022】[0022]

【表2】 [Table 2]

【0023】表2から明らかなように、ニツケルが過少
の場合はコバルトを増すことになるので放電容量が低下
し、ニッケルが過剰の場合は、水素吸放出の平衡圧力が
高くなるのでやはり放電容量が低下すると共に、コバル
トが減少することになって耐食性が低下し、サイクル寿
命が悪くなる。従って、ニッケルが3.5<a<4.0
の範囲にある水素吸蔵合金が好適な合金電極であること
がわかる。
As is clear from Table 2, when nickel is too small, cobalt increases, so the discharge capacity decreases, and when nickel is excessive, the equilibrium pressure for hydrogen absorption / desorption increases, so the discharge capacity is also high. And the cobalt content decreases, the corrosion resistance decreases, and the cycle life deteriorates. Therefore, nickel is 3.5 <a <4.0.
It can be seen that a hydrogen storage alloy within the range is a suitable alloy electrode.

【0024】実施例7〜14および比較例7〜10 表3にモリブデンおよび/またはクロムの組成を変化さ
せ、実施例1と同様に水素吸蔵合金および試験セルを調
製し、PCT容量と200サイクル後の電極容量を測定
し、結果を表3に示した。ここでモリブデン、クロム以
外の組成は、MmNi3.55Co0.75Mn0.40Al0.30
eであり、ミッシュメタル中のランタン含有量は33重
量%である。
Examples 7 to 14 and Comparative Examples 7 to 10 The hydrogen storage alloy and the test cell were prepared in the same manner as in Example 1 except that the composition of molybdenum and / or chromium was changed as shown in Table 3, and the PCT capacity and after 200 cycles were obtained. The electrode capacity was measured and the results are shown in Table 3. Here, the composition other than molybdenum and chromium is MmNi 3.55 Co 0.75 Mn 0.40 Al 0.30 X
a e, lanthanum content in mischmetal was 33 weight%.

【0025】[0025]

【表3】 [Table 3]

【0026】表3から判るように、モリブデンおよび/
またはクロムの含有は特に電極容量の増加、すなわちサ
イクル寿命の改善に顕著な効果があることが判る。この
結果からモリブデンおよび/またはクロムの含有量は
0.001<e<0.3が好適であることが判る。モリ
ブデンおよび/またはクロムの含有量が少量では含有効
果がなく、過剰ではモリブデンやクロムの偏析により耐
食性が低下し、サイクル寿命が低下する。
As can be seen from Table 3, molybdenum and /
Further, it can be seen that the inclusion of chromium has a remarkable effect particularly in increasing the electrode capacity, that is, improving the cycle life. From this result, it is found that the content of molybdenum and / or chromium is preferably 0.001 <e <0.3. If the content of molybdenum and / or chromium is small, there is no effect, and if the content is excessive, segregation of molybdenum and chromium deteriorates corrosion resistance and cycle life.

【0027】実施例15〜19および比較例12〜14 表4にミッシュメタル中のランタン含有量を変化させ、
実施例1と同様に水素吸蔵合金および試験セルを調製
し、PCT容量と200サイクル後の電極容量を測定
し、結果を表4に示した。ここで用いた水素吸蔵合金の
組成はMmNi3.55Co0.75Mn0.40Al0.30(Mo、
Cr)0.10とした。
Examples 15 to 19 and Comparative Examples 12 to 14 In Table 4, the lanthanum content in misch metal was changed,
A hydrogen storage alloy and a test cell were prepared in the same manner as in Example 1, the PCT capacity and the electrode capacity after 200 cycles were measured, and the results are shown in Table 4. The composition of the hydrogen storage alloy used here is MmNi 3.55 Co 0.75 Mn 0.40 Al 0.30 (Mo,
Cr) was set to 0.10 .

【0028】ミッシュメタル中のランタン含有量の調整
は、用いたミツシュメタル中にランタンが不足の場合は
ランタンメタルを添加し、ランタンが過剰の場合は、他
のセリウム、ネオジム、プラセオジム等を加えることに
よって行なった。
The lanthanum content in the misch metal is adjusted by adding lanthanum metal when the lanthanum is insufficient in the used misch metal, and by adding other cerium, neodymium, praseodymium or the like when the lanthanum is excessive. I did.

【0029】[0029]

【表4】 [Table 4]

【0030】表4から、ミッシュメタル中のランタン含
有量が増すほどPCT容量が増加し、しかも200サイ
クル後の電極容量も増加していることが判る。比較例1
4に示すように、モリブデンおよび/またはクロムを含
まない従来の合金組成においては、ランタン量を増すと
サイクル後の電極容量が低下して実用にならないとされ
ていた。しかし、実施例15〜19から明らかなように
ランタン量を増加してもサイクル後の電極容量が高く保
て、より高容量でサイクル寿命の大きい合金電極が得ら
れることが判る。
From Table 4, it can be seen that the PCT capacity increases as the lanthanum content in the misch metal increases, and the electrode capacity after 200 cycles also increases. Comparative Example 1
As shown in FIG. 4, in the conventional alloy composition containing no molybdenum and / or chromium, it was said that if the amount of lanthanum was increased, the electrode capacity after the cycle was decreased and it was not practical. However, as is clear from Examples 15 to 19, it can be seen that even if the amount of lanthanum is increased, the electrode capacity after the cycle is kept high, and an alloy electrode having a higher capacity and a longer cycle life can be obtained.

【0031】実施例20〜21 表5に、組成Mm(La含量33重量%)Ni3.55Co
0.75Mn0.40Al0.30Mo0.10の合金溶湯を冷却方法を
変えて凝固させたときに得られるマンガン偏析の有無、
金属組成および200サイクル後の放電容量について示
す。
Examples 20-21 Table 5 shows the composition Mm (La content 33% by weight) Ni 3.55 Co.
Presence or absence of manganese segregation obtained when solidifying an alloy melt of 0.75 Mn 0.40 Al 0.30 Mo 0.10 by changing the cooling method,
The metal composition and the discharge capacity after 200 cycles are shown.

【0032】[0032]

【表5】 [Table 5]

【0033】表5に示されるように、本発明の製造方法
である急冷凝固法を用いた実施例20〜21は、マンガ
ンの偏析による耐食性の劣化がなく、しかも柱状晶が得
られるので充放電におけるサイクル劣化が少なく寿命の
長い電極が得られることが判った。
As shown in Table 5, in Examples 20 to 21 using the rapid solidification method which is the manufacturing method of the present invention, the corrosion resistance is not deteriorated by the segregation of manganese, and columnar crystals are obtained. It was found that an electrode having a long cycle life with little cycle deterioration in was obtained.

【0034】[0034]

【発明の効果】本発明の水素吸蔵合金は、従来技術の欠
点であったミッシュメタル系水素吸蔵合金電極の充放電
サイクル後の放電容量の低下を改善し、より高容量で長
寿命の水素吸蔵合金電極を提供することができる。
EFFECTS OF THE INVENTION The hydrogen storage alloy of the present invention improves the reduction in discharge capacity after charge / discharge cycles of the misch metal hydrogen storage alloy electrode, which is a drawback of the prior art, and has a higher capacity and a longer life. Alloy electrodes can be provided.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 下記式; 【化1】 (式中、Mmはミッシュメタル、Xはモリブデンおよび
/またはクロム、3.5<a<4.0、0.001<e
<0.3、4.8≦a+b+c+d<5.4)で表わさ
れ、該Mm中のランタン含有量が20〜80重量%であ
ることを特徴とする水素吸蔵合金。
1. The following formula; (In the formula, Mm is misch metal, X is molybdenum and / or chromium, 3.5 <a <4.0, 0.001 <e
<0.3, 4.8 ≦ a + b + c + d <5.4), wherein the lanthanum content in the Mm is 20 to 80% by weight.
【請求項2】 前記a+b+c+d=5.0である請求
項1に記載の水素吸蔵合金。
2. The hydrogen storage alloy according to claim 1, wherein a + b + c + d = 5.0.
【請求項3】 前記式が、MmNi3.55Co0.75Mn
0.4Al0.3Mo0.01またはMmNi3.55Co0.75Mn
0.4Al0.3Cr0.01である請求項1に記載の水素吸蔵合
金。
3. The formula is MmNi 3.55 Co 0.75 Mn
0.4 Al 0.3 Mo 0.01 or Mm Ni 3.55 Co 0.75 Mn
The hydrogen storage alloy according to claim 1, which is 0.4 Al 0.3 Cr 0.01 .
【請求項4】 前記合金のMm中のランタン含有量が3
0〜75重量%である請求項1に記載の水素吸蔵合金。
4. The lanthanum content in Mm of the alloy is 3
The hydrogen storage alloy according to claim 1, which is 0 to 75% by weight.
【請求項5】 請求項1に記載の式で示される水素吸蔵
合金を構成する各成分の金属原料を融解混合して、各成
分組成が3.5<a<4.0、0.001<e<0.
3、4.8≦a+b+c+d<5.4、Mm中のランタ
ン含有量が20〜80重量%となるように均一な融体を
調製し、次に該融体を水で冷却された平板上または鋳型
中に注いで急冷凝固することを特徴とする水素吸蔵合金
の製造方法。
5. A metal raw material of each component constituting the hydrogen storage alloy represented by the formula of claim 1 is melt-mixed, and each component composition is 3.5 <a <4.0, 0.001 <. e <0.
3,4.8 ≦ a + b + c + d <5.4, a uniform melt was prepared so that the lanthanum content in Mm was 20-80 wt%, and then the melt was placed on a water-cooled flat plate or A method for producing a hydrogen storage alloy, which comprises pouring into a mold and rapidly solidifying.
JP20734395A 1995-07-24 1995-07-24 Hydrogen storage alloy and method for producing the same Expired - Fee Related JP3473926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20734395A JP3473926B2 (en) 1995-07-24 1995-07-24 Hydrogen storage alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20734395A JP3473926B2 (en) 1995-07-24 1995-07-24 Hydrogen storage alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0931573A true JPH0931573A (en) 1997-02-04
JP3473926B2 JP3473926B2 (en) 2003-12-08

Family

ID=16538172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20734395A Expired - Fee Related JP3473926B2 (en) 1995-07-24 1995-07-24 Hydrogen storage alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3473926B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179868A1 (en) * 2000-08-10 2002-02-13 Alcatel Hydridable alloy
US6602639B1 (en) 1997-12-26 2003-08-05 Toyota Jidosha Kabushiki Kaisha Process for producing hydrogen storage alloy and process for producing hydrogen storage alloy electrode
KR100445709B1 (en) * 2002-02-23 2004-08-25 주식회사 알덱스 Material with high performance and large capacity for secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602639B1 (en) 1997-12-26 2003-08-05 Toyota Jidosha Kabushiki Kaisha Process for producing hydrogen storage alloy and process for producing hydrogen storage alloy electrode
US6942947B2 (en) 1997-12-26 2005-09-13 Toyota Jidosha Kabushiki Kaisha Hydrogen storage alloy, process for producing hydrogen storage alloy, hydrogen storage alloy electrode, process for producing hydrogen storage alloy electrode, and battery
US7223497B2 (en) 1997-12-26 2007-05-29 Toyota Jidosha Kabushiki Kaisha Hydrogen storage alloy, process for producing hydrogen storage alloy, hydrogen storage alloy electrode, process for producing hydrogen storage alloy electrode, and battery
EP1179868A1 (en) * 2000-08-10 2002-02-13 Alcatel Hydridable alloy
FR2812887A1 (en) * 2000-08-10 2002-02-15 Cit Alcatel HYDRURABLE ALLOY
US6472102B2 (en) 2000-08-10 2002-10-29 Alcatel Hydridable alloy
KR100445709B1 (en) * 2002-02-23 2004-08-25 주식회사 알덱스 Material with high performance and large capacity for secondary battery

Also Published As

Publication number Publication date
JP3473926B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
US9219277B2 (en) Low Co hydrogen storage alloy
JP3965209B2 (en) Low Co hydrogen storage alloy
JP2020205192A (en) Nickel-hydrogen secondary battery negative electrode active material that needs no surface treatment, and nickel-hydrogen secondary battery
JPH06231763A (en) Hydrogen storage alloy for alkaline storage battery
TWI395364B (en) Adsorption of hydrogen alloy and nickel - hydrogen battery electrode
JPH09213319A (en) Sealed alkaline battery
JP3881823B2 (en) Hydrogen storage alloy and method for producing the same
KR100218835B1 (en) Mish metal for ni/mh secondary cell and nickel-series alloy storing hydrogen
KR100344143B1 (en) Rare earth metal-nickel-base hydrogen absorbing alloy, process for preparing the same, and negative electrode for nickel-hydrogen rechargeable battery
JP2001040442A (en) Hydrogen storage alloy
JP3473926B2 (en) Hydrogen storage alloy and method for producing the same
JP7206096B2 (en) Hydrogen storage alloy mixed powder and hydrogen storage alloy powder
JP3266980B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode
JP2004285406A (en) Hydrogen storage alloy and electrode for nickel-hydrogen battery using the same
JP2004218017A (en) Hydrogen storage alloy
JP2008258121A (en) Hydrogen storage alloy, nickel hydrogen secondary battery, and negative electrode therefor
JP2001181763A (en) Hydrogen storage alloy
JP3351227B2 (en) Hydrogen storage alloy powder for battery and its manufacturing method
EP1324407A1 (en) Hydrogen storage material
JP2003247037A (en) Hydrogen-storage alloy
JPH03267337A (en) Hydrogen occlusion ni-zr alloy
JPH10152739A (en) Hydrogen storage alloy and electrode for nickel-hydrogen battery using it
JPH0466633A (en) Hydrogen storage ni-zr series alloy
JPH03277737A (en) Hydrogen storage ni-zr series alloy
JPH06163042A (en) Metal-hydride secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees