[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08327609A - Ultrasonic unit - Google Patents

Ultrasonic unit

Info

Publication number
JPH08327609A
JPH08327609A JP7133182A JP13318295A JPH08327609A JP H08327609 A JPH08327609 A JP H08327609A JP 7133182 A JP7133182 A JP 7133182A JP 13318295 A JP13318295 A JP 13318295A JP H08327609 A JPH08327609 A JP H08327609A
Authority
JP
Japan
Prior art keywords
signal
time
sampling
convolution
ultrasonic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7133182A
Other languages
Japanese (ja)
Other versions
JP3677815B2 (en
Inventor
Yutaka Masuzawa
裕 鱒沢
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13318295A priority Critical patent/JP3677815B2/en
Publication of JPH08327609A publication Critical patent/JPH08327609A/en
Application granted granted Critical
Publication of JP3677815B2 publication Critical patent/JP3677815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE: To obtain an ultrasonic unit based on a new phase matching method. CONSTITUTION: The ultrasonic unit having a plurality of receiving elements Qn for receiving ultrasonic signals comprises means SPL for sampling the receiving signal an means TC for time shifting the sampled signal sn in units of sampling period, means SUM for adding the receiving signals fn having identical time lag, a pair of means for convoluting a pair of sine wave signals having the carrier frequency of receiving signal and orthogonal phase and a signal received after a plurality of receiving signals are added over a predetermined length of section being sampled at the time interval of delay accuracy, and means for operating the root of squared sum of outputs from respective convolution means. The root of squared sum is provided as a phase matching output and an ultrasonic beam having high performance directivity is formed. This arrangement reduces the scale of multiplier and simplifies the constitution greatly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】超音波により、水中での物体等の
計測を行う場合に使用する超音波装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic device used for measuring an object or the like underwater by ultrasonic waves.

【0002】[0002]

【従来の技術】これまで水中あるいは生体中における超
音波撮像の方式が提案されている。このような装置にお
いては、受信信号の遅延と加算処理を行なう受信整相部
の構成法が、装置全体の規模を決定する点で最も重要で
ある。そこで本発明者らにより、遅延整相部に対する精
度要求を緩和する周波数移動整相法が提案されている
(日本音響学会誌、44巻、9号(1988)pp.6
46〜652)。また、受信整相部の構成法として、近
年の集積回路技術の急速な発展により、量子化整相法が
主要な技術となりつつある。この量子化整相法では、標
本化回路の動作速度あるいは量子化精度が問題となる。
この問題に関して、本発明者らは周波数移動オーバーサ
ンプリング法を提案している(特願平4−252576
号)。
2. Description of the Related Art Up to now, a method of ultrasonic imaging in water or in a living body has been proposed. In such an apparatus, the method of constructing the reception phasing unit for performing the delay and addition processing of the received signals is the most important in determining the scale of the entire apparatus. Therefore, the present inventors have proposed a frequency shift phasing method that relaxes the accuracy requirement for the delay phasing unit (Journal of Acoustical Society of Japan, Vol. 44, No. 9 (1988) pp. 6).
46-652). In addition, as a method of configuring the reception phasing unit, the quantized phasing method is becoming the main technique due to the rapid development of integrated circuit technology in recent years. In this quantization and phasing method, the operation speed of the sampling circuit or the quantization accuracy becomes a problem.
With respect to this problem, the present inventors have proposed a frequency shift oversampling method (Japanese Patent Application No. 4-252576).
issue).

【0003】標本化回路の動作速度を緩和する方法とし
て、補間による整相法が知られている。この技術は例え
ば、”Digital Interpolation
Beamforming for Low−Pass
and Bandpass Signals”、Pro
ceedings of the IEEE、Vol.
67、No.6、June(1979)に記載されてい
る。
As a method of relaxing the operation speed of the sampling circuit, a phasing method by interpolation is known. This technology is, for example, "Digital Interpolation".
Beamforming for Low-Pass
and Bandpass Signals ", Pro
ceedings of the IEEE, Vol.
67, No. 6, June (1979).

【0004】補間による整相法では、受信信号を目的と
する時間精度より粗い時間精度で標本化し、整相加算時
に目的の時間精度での信号値を、標本化関数等の補間関
数を用いて算出し加算する。この補間による整相法で
は、標本化周期を単位とする大きな時間遅延を、記憶回
路やシフトレジスタを用いた回路構成で行ない、標本化
周期以下の微小な遅延を、補間関数を用いて実現する。
In the phasing method by interpolation, the received signal is sampled with a coarser time precision than the desired time precision, and the signal value with the desired time precision is added at the time of phasing addition by using an interpolation function such as a sampling function. Calculate and add. In the phasing method based on this interpolation, a large time delay in units of sampling cycle is performed by a circuit configuration using a memory circuit and a shift register, and a minute delay below the sampling cycle is realized by using an interpolation function. .

【0005】また、一般にベースバンド整相法と呼ばれ
る方式では、受信信号を直交する参照波で周波数移動
し、低周波通過フィルタを経て直流成分を中心周波数と
する単一の信号帯に変換してから遅延処理を行なう。
Further, in a method generally called a baseband phasing method, a received signal is frequency-shifted by orthogonal reference waves and is converted into a single signal band having a DC component as a center frequency through a low frequency pass filter. Delay processing from.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術では、ベ
ースバンドへの周波数移動処理(復調処理)と補間による
整相加算を行なう構成を、同時に実現する場合には、位
相回転あるいは周波数移動に多数の乗算器が必要とな
り、装置規模が大きくなる点に問題があった。即ち、周
波数移動のためのミキサあるいは復調回路を受信信号の
個々に設ける必要があった。また、周波数移動を行わず
に補間による整相を行なった後に復調回路を後置する
と、標本化関数等を用いる補間関数との畳み込み演算回
路の出力は、搬送波を有するままの受信信号帯域を保存
する必要から、周波数移動処理(復調処理)を高い周波数
で行う必要があった。
In the above-mentioned prior art, in the case of simultaneously realizing a configuration for performing frequency shift processing (demodulation processing) to the baseband and phasing addition by interpolation, a large number of phase rotations or frequency shifts are required. However, there is a problem in that the device scale becomes large. That is, it is necessary to provide a mixer or a demodulation circuit for moving the frequency for each received signal. Also, if the demodulation circuit is post-positioned after performing phasing by interpolation without performing frequency shift, the output of the convolution operation circuit with the interpolation function that uses a sampling function etc. preserves the received signal band with the carrier wave kept. Therefore, it is necessary to perform the frequency shift process (demodulation process) at a high frequency.

【0007】本発明の目的は、このような状況を鑑み、
整相を行った後に復調回路を後置することなく、補間器
を主体とする簡易な構成の整相方式を提供し、この整相
方式に基づく、装置構成の大幅な簡易化を達成する超音
波装置を提供することにある。
In view of such a situation, an object of the present invention is to
It provides a simple phasing method mainly consisting of an interpolator without post-demodulation circuit after phasing, and achieves a great simplification of the device configuration based on this phasing method. To provide a sound wave device.

【0008】[0008]

【課題を解決するための手段】本発明の構成は、各素子
による受信信号を標本化する手段と、標本化された信号
を標本化周期を単位に時間移動する手段と、同じ遅延時
間の受信信号同士を加算する加算手段と、受信信号の搬
送波周波数を有し、互いに位相が直交する一対の正弦波
と、遅延精度の時間間隔で標本化された所定の区間長で
の複数の受信波形が加算された後の受信信号との畳み込
みを行なう畳み込み手段の対と、それぞれの畳み込み手
段の出力の二乗和の平方根を演算する手段を有し、上記
の二乗和の平方根を整相出力として得て、高性能な指向
性を有した超音波ビームを形成すること特徴がある。
The structure of the present invention comprises means for sampling the signal received by each element, means for moving the sampled signal in units of sampling cycles, and reception of the same delay time. An adding means for adding signals, a pair of sine waves having a carrier frequency of a received signal and having mutually orthogonal phases, and a plurality of received waveforms at a predetermined section length sampled at delay accuracy time intervals are provided. It has a pair of convolution means for convolving the received signal after addition, and means for calculating the square root of the sum of squares of the output of each convolution means, and obtains the square root of the above sum of squares as a phasing output. The feature is that it forms an ultrasonic beam with high-performance directivity.

【0009】また、本発明の別の構成では、上記の加算
後の受信信号と畳み込む波形を、上記の一対の正弦波の
それぞれに、任意の時間積分効果が得られる波形を共通
に乗じること、畳み込み手段における畳み込みの時間間
隔を標本化手段における標本化の時間間隔よりも短くす
ることに特徴がある。
In another configuration of the present invention, each of the pair of sinusoidal waves is multiplied by the waveform convoluted with the received signal after the addition in common with a waveform capable of obtaining an arbitrary time integration effect, It is characterized in that the time interval of convolution in the convolution means is set shorter than the time interval of sampling in the sampling means.

【0010】[0010]

【作用】上記整相法では、各素子による受信信号を標本
化し、時間移動を行った後に同一時刻の信号毎に加算し
最後に畳み込み処理を行なう。このような処理により、
信号の正確な遅延処理が可能となる原理を以下に説明す
る。
In the phasing method, the received signals from the respective elements are sampled, time-shifted, added for each signal at the same time, and finally convolved. By such processing,
The principle that enables accurate delay processing of signals will be described below.

【0011】超音波の送受波器から中心周波数がωS
る信号を送信する。この送信信号による反射信号をa
(t)とする。この信号を標本化した波形をs(t)、
その標本化関数をW(t)とすると、畳み込みにより
A signal having a center frequency of ω S is transmitted from an ultrasonic wave transmitter / receiver. The reflected signal due to this transmission signal is
(T). A waveform obtained by sampling this signal is s (t),
If the sampling function is W (t), then by convolution

【0012】[0012]

【数1】 a(t)=∫s(t−ε)W(ε)dε=s(t)*W(t) …(数1) となる。ここで、*は畳み込み演算を示し、積分∫は−
∞から+∞まで行なう。波形a(t)をτだけ遅延した
信号a(t−τi)は
## EQU1 ## a (t) = ∫s (t−ε) W (ε) dε = s (t) * W (t) (Equation 1) Here, * indicates the convolution operation, and the integral ∫ is −
Perform from ∞ to + ∞. The signal a (t−τ i ) obtained by delaying the waveform a (t) by τ is

【0013】[0013]

【数2】 a(t−τi)=∫s(t−τi−ε)W(ε)dε =s(t−τi)*W(t) …(数2) となる。ここで、(数1)と同様に*は畳み込み演算を
示し、積分は−∞から+∞まで行なう。この関係は、標
本化した波形を希望する時間τiだけ時間移動した波形
を作り、これを標本化関数と畳み込むことにより、正し
く遅延処理された信号が形成されることを示している。
ここで、畳み込みは線形の演算であるため、全ての信号
を加算した後にこの演算を行なうことが可能となる。
[Number 2] becomes a (t-τ i) = ∫s (t-τ i -ε) W (ε) dε = s (t-τ i) * W (t) ... ( number 2). Here, as in (Equation 1), * indicates a convolution operation, and integration is performed from −∞ to + ∞. This relationship indicates that a properly delayed signal is formed by forming a waveform obtained by moving the sampled waveform by a desired time τ i and convolving the waveform with a sampling function.
Here, since the convolution is a linear operation, it is possible to perform this operation after adding all signals.

【0014】i=1〜Nの信号を遅延加算した結果をa
(t−τ)とすると、
The result of delay addition of the signals of i = 1 to N is a
(T−τ)

【0015】[0015]

【数3】 a(t−τ)=Σa(t−τi)=Σs(t−τi)*W(t) =W(t)*{Σs(t−τi)} …(数3) ここで、*は畳み込み演算を示し、和Σは、i=1から
i=Nの範囲で行なう。
[Number 3] a (t-τ) = Σa (t-τ i) = Σs (t-τ i) * W (t) = W (t) * {Σs (t-τ i)} ... ( number 3 ) Here, * indicates a convolution operation, and the sum Σ is performed in the range of i = 1 to i = N.

【0016】一方、a(t)、a(t−τ)は、包絡線
形状をf(t)、初期位相をδ、虚数単位をjとして、
以下のように表せる。
On the other hand, a (t) and a (t-τ) have an envelope shape of f (t), an initial phase of δ, and an imaginary unit of j.
It can be expressed as follows.

【0017】[0017]

【数4】 a(t)=f(t)cos(ωst+δ) =f(t)exp{-j(ωst+δ)} +f(t)exp{j(ωst+δ)} …(数4)## EQU00004 ## a (t) = f (t) cos (ω s t + δ) = f (t) exp {-j (ω s t + δ)} + f (t) exp {j (ω s t + δ)} ... 4)

【0018】[0018]

【数5】 a(t−τ)=f(t−τ)exp{−j(ωst−ωsτ+δ)} +f(t−τ)exp{j(ωst−ωsτ+δ)} …(数5) 最終的な整相加算出力として、a(t)を整相出力とし
て得るのではなく、包絡線f(t)の整相出力を得るこ
とを考える。受信信号帯域幅の通過域を有する低域通過
フィルタのインパルス応答v(t)と、角周波数ωs
初期位相φの互いに位相が直交する正弦波の対との積V
(t)(数6)は、角周波数ωsを中心としたバンドパ
スフィルタを形成する。
Equation 5] a (t-τ) = f (t-τ) exp {-j (ω s t-ω s τ + δ)} + f (t-τ) exp {j (ω s t-ω s τ + δ)} (Equation 5) Consider that instead of obtaining a (t) as the final phasing output, the phasing output of the envelope f (t) is obtained. The impulse response v (t) of the low-pass filter having the pass band of the reception signal bandwidth and the angular frequency ω s ,
The product V of the initial phase φ and a pair of sine waves whose phases are orthogonal to each other
(T) (Equation 6) forms a bandpass filter centered on the angular frequency ω s .

【0019】[0019]

【数6】 V(t)=v(t)exp{−j(ωst+φ)} …(数6) V(t)とa(t−τ)との畳み込みb(t−τ)を計
算する、
[6] V (t) = v (t ) exp {-j (ω s t + φ)} ... ( number 6) V (t) and a (t-τ) convolution of the b (t-τ) To calculate,

【0020】[0020]

【数7】 b(t−τ)=a(t−τ)*V(t) =〈f(t−τ)exp{−j(ωst−ωsτ+δ)} +f(t−τ)exp{j(ωst−ωsτ+δ)}〉*V(t) =〈f(t−τ)exp{−j(ωst−ωsτ+δ)}〉*V(t) +〈f(t−τ)exp{j(ωst−ωsτ+δ)}〉*V(t)(数7) この時、V(t)との畳み込みが、第2項の f(t−τ)exp{j(ωst−ωsτ+δ)} を抑圧する周波数特性を有するため、(数7)は、Equation 7] b (t-τ) = a (t-τ) * V (t) = <f (t-τ) exp {-j (ω s t-ω s τ + δ)} + f (t-τ) exp {j (ω s t-ω s τ + δ)}〉 * V (t) = <f (t−τ) exp {−j (ω s t −ω s τ + δ)}〉 * V (t) + <f (t-τ) exp {j (ω s t-ω s τ + δ)}> * V (t) ( 7) At this time, the convolution of the V (t) is the second term of f (t-τ) because having a frequency characteristic for suppressing exp {j (ω s t- ω s τ + δ)}, ( 7) is

【0021】[0021]

【数8】 b(t−τ)≒〈f(t−τ)exp{−j(ωst−ωsτ+δ)}〉*V(t ) …(数8) と近似できる。さらに、(数8)の変形を行なうと、[Equation 8] can be approximated as b (t-τ) ≒ < f (t-τ) exp {-j (ω s t-ω s τ + δ)}> * V (t) ... ( number 8). Furthermore, if the transformation of (Equation 8) is performed,

【0022】[0022]

【数9】 b(t−τ)≒〈f(t−τ)exp{−j(ωst−ωsτ+δ)}〉 *(v(t)exp{−j(ωst+φ)}) =〈f(t−τ)exp(−jωst)〉 *〈v(t)exp(−jωst)〉exp{−j(φ−ωsτ+δ)} =〈f(t−τ)*v(t)〉exp{−j(ωst+φ−ωsτ+δ)} …(数9) が得られる。この(数9)の複素信号の絶対値をとると
位相項が脱落し、包絡線ev(t−τ)が
Equation 9] b (t-τ) ≒ < f (t-τ) exp {-j (ω s t-ω s τ + δ)}> * (v (t) exp {-j (ω s t + φ)}) = <f (t-τ) exp (-jω s t)> * <v (t) exp (-jω s t)> exp {-j (φ-ω s τ + δ)} = <f (t-τ) * v (t)> exp { -j (ω s t + φ-ω s τ + δ)} ... ( Equation 9) is obtained. When the absolute value of the complex signal of (Equation 9) is taken, the phase term is dropped and the envelope ev (t−τ) is

【0023】[0023]

【数10】 ev(t−τ)=f(t−τ)*v(t) …(数10) として得られる。[Equation 10] ev (t−τ) = f (t−τ) * v (t) (Equation 10)

【0024】[0024]

【実施例】以下、本方式の動作を図面により詳細に説明
する。図1に本発明による超音波装置の基本構成を示
す。超音波の受波器Q1…Qn…QN(以下ではQn(n=
1…N)と記載する)により受信信号a1(t)…a
n(t)…aN(t)(以下ではan(t)(n=1…
N)と記載する)を得る。この信号an(t)を、アナ
ログ−ディジタル変換器を含んで構成される標本化回路
SPL(制御信号C1により制御される)により、時間
間隔T0にて標本化してsn(t)を得る。この標本化さ
れた信号sn(t)を図2に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation of this system will be described in detail below with reference to the drawings. FIG. 1 shows the basic configuration of an ultrasonic device according to the present invention. Ultrasonic wave receiver Q 1 ... Q n ... Q N (Hereinafter, Q n (n =
1 ... N)), the received signal a 1 (t) ... a
n (t) ... a N (t) (hereinafter, a n (t) (n = 1 ...
N))) is obtained. This signal a n (t) is sampled at a time interval T 0 by a sampling circuit SPL (controlled by a control signal C1) including an analog-digital converter to obtain s n (t). obtain. This sampled signal s n (t) is shown in FIG.

【0025】信号sn(t)(n=1…N)は反射体の
存在する方向に対応した相互の時間遅れを有し、受信波
面の入射方向に対応する一点鎖線P0により示した各時
刻から、一斉に出現する(なお、図2では、以下で説明
する図4と同様に、n=1…Nは、n=…−2、−1、
0、+1、+2、…の形式で表現されている)。
The signals s n (t) (n = 1 ... N) have a mutual time delay corresponding to the direction in which the reflector is present, and each of them is shown by a chain line P 0 corresponding to the incident direction of the reception wavefront. Appear all at once from the time (note that in FIG. 2, n = 1 ... N is n = ...- 2, −1, as in FIG. 4 described below.
It is expressed in the format of 0, +1, +2, ...).

【0026】この信号sn(t)の時間軸tを、図1に
示す時間軸補正部TC(制御信号C2により制御され
る)により移動する。時間軸補正部TCの具体的構成を
図3に示す。信号sn(t)に対して、時間間隔T0を単
位とする遅延を記憶部D0にて行ない信号dn(t)
(n=1…N)を得て、信号dn(t)に対して、時間
間隔T0より短い時間間隔T1(T0=uT1)を単位とす
る遅延を記憶部D1にて行なうことにより、sn(t)
をpT0+qT1(0≦q<u−1)だけ遅延させ、目的
とする波面の入射時刻P0が全ての信号sn(t)につい
て、T1の精度で一致するように時間軸tの移動を行な
う。この制御全体を制御信号C2により行なう。ここで
p、q、uはいずれも整数であり、標本化における時間
間隔T0より大幅に高い時間精度T1にて時間調整を行な
う。
The time axis t of this signal s n (t) is moved by the time axis correction unit TC (controlled by the control signal C2) shown in FIG. FIG. 3 shows a specific configuration of the time axis correction unit TC. The signal d n (t) is delayed in the storage unit D0 with respect to the signal s n (t) in units of the time interval T 0.
(N = 1 ... N) is obtained, and the signal d n (t) is delayed in the storage unit D1 in units of time intervals T 1 (T 0 = uT 1 ) shorter than the time interval T 0. Therefore, s n (t)
Are delayed by pT 0 + qT 1 (0 ≦ q <u−1), and the time axis t is set so that the incident time P 0 of the target wavefront matches all signals s n (t) with the accuracy of T 1. Move. The entire control is performed by the control signal C2. Here, p, q, and u are all integers, and time adjustment is performed with a time accuracy T 1 that is significantly higher than the time interval T 0 in sampling.

【0027】この時間軸補正部TCの出力、fn(t)
(n=…−2、−1、0、+1、+2、…)を、図4
(a)に示す。ここで、受信信号の存在しない時刻の値
は0としてある。また、ここでは、u=4(T0=4
1)として図示してある。この信号fn(t)を、各時
刻ごとに、図1に示す加算器SUM(制御信号C3によ
り制御される)により加算し、図4(b)に示す信号g
(t)を得る。図3に加算器SUMの構成を時間補正部
TCと同時に示すが、Aはリップルキャリーによる並列
加算器であり、二つの入力値の和出力を第三の加算器の
入力端子に出力する。また、Rはレジスターであり、時
間間隔T1なるクロックである制御信号C3により制御
され対応する時刻の値を保持する。
The output of this time axis correction unit TC, f n (t)
(N = ... -2, -1, 0, +1, +2, ...) is shown in FIG.
(A). Here, the value of the time when there is no received signal is 0. Further, here, u = 4 (T 0 = 4
It is shown as T 1 ). This signal f n (t) is added at each time by the adder SUM shown in FIG. 1 (controlled by the control signal C3), and the signal g shown in FIG.
Get (t). The configuration of the adder SUM is shown in FIG. 3 together with the time correction unit TC, where A is a parallel adder using ripple carry and outputs the sum output of the two input values to the input terminal of the third adder. Further, R is a register, which is controlled by a control signal C3 which is a clock having a time interval T 1 and holds a corresponding time value.

【0028】加算器SUMの出力であるこの加算された
信号g(t)と、図5(a)に示す波形Vr(t)(数
11)と図5(b)示す波形Vi(t)(数12)の
組、あるいは図5(c)に示す波形Vr’(t)(数1
3)と図5(d)に示す波形Vi’(t)(数14)の
組で示されるような波形のそれぞれと畳み込み積分処理
と、畳み込み積分処理結果の二乗和の平方根を求める演
算による複素出力の絶対値の演算を、図1に示す畳み込
み回路CNVにより行ない、図4(c)に示されるよう
な整相出力h(t)を得る。なお、本実施例では、二乗
和の平方根を求める演算手段をも含めて畳み込み回路C
NVと呼称するものとする。
This added signal g (t), which is the output of the adder SUM, and the waveform V r (t) (Equation 11) shown in FIG. 5A and the waveform V i (t) shown in FIG. 5B. ) (Equation 12), or the waveform V r '(t) (Equation 1) shown in FIG.
3) and waveforms V i '(t) (Equation 14) shown in FIG. 5 (d), respectively, and convolution integration processing, and calculation of the square root of the sum of squares of the results of the convolution integration processing. The absolute value of the complex output is calculated by the convolution circuit CNV shown in FIG. 1 to obtain a phasing output h (t) as shown in FIG. 4 (c). In the present embodiment, the convolution circuit C including the calculation means for obtaining the square root of the sum of squares.
It shall be referred to as NV.

【0029】[0029]

【数11】 Vr(t)={sin(πt/Tw)/(πt/Tw)}cos(ωct) …(数11)[Number 11] V r (t) = {sin (πt / T w) / (πt / T w)} cos (ω c t) ... ( number 11)

【0030】[0030]

【数12】 Vi(t)={sin(πt/Tw)/(πt/Tw)}sin(ωct) …(数12)[Number 12] V i (t) = {sin (πt / T w) / (πt / T w)} sin (ω c t) ... ( number 12)

【0031】[0031]

【数13】 Vr’(t)=cos(ωct) …(数13)[Number 13] V r '(t) = cos (ω c t) ... ( number 13)

【0032】[0032]

【数14】 Vi’(t)=sin(ωct) …(数14) 波形Vr'(t)とVi'(t)は、互いに位相が直交する
正弦波を特定の時間区間で取り出したもので、周期は受
信信号の搬送波周期と一致させる。また、波形V
r(t)とVi(t)は、波形Vr'(t)とVi'(t)の
それぞれに、周波数スペクトル上で受信信号の帯域幅と
同程度の矩形の通過域を有する低域通過フィルタのイン
パルス応答波形を乗じたものであり、加算信号g(t)
との畳み込みにより、複素周波数スペクトル上の片側の
信号帯のみを残して濾波する効果がある。
Equation 14] V i '(t) = sin (ω c t) ... ( Equation 14) waveform V r' (t) and V i '(t) is a specific time interval a sine wave in phase with each other perpendicular The period is made to coincide with the carrier wave period of the received signal. Also, the waveform V
r (t) and V i (t) are low waveforms having rectangular pass bands on the frequency spectrum that are similar to the bandwidth of the received signal in the waveforms V r ′ (t) and V i ′ (t), respectively. The summed signal g (t) is obtained by multiplying the impulse response waveform of the band pass filter.
The convolution with and has the effect of filtering leaving only one signal band on the complex frequency spectrum.

【0033】図4(c)に示す例では、目的方向からの
受信信号であるため、加算した波形は同相となってお
り、畳み込み回路CNVの出力h(t)は、h0(t)
と大きな値として得られる。
In the example shown in FIG. 4C, since the received signals are from the target direction, the added waveforms are in phase, and the output h (t) of the convolution circuit CNV is h 0 (t).
And get as a big value.

【0034】図5(a)から図5(d)に示した波形
((数11)から(数14))以外にも、標本化による
不要信号成分を抑圧する波形であり、畳み込みの結果、
互いに直交する成分を出力する波形であれば任意の波形
が使用可能である。
In addition to the waveforms ((Equation 11) to (Equation 14)) shown in FIGS. 5A to 5D, there are waveforms for suppressing unnecessary signal components due to sampling, and as a result of convolution,
Any waveform can be used as long as it is a waveform that outputs components orthogonal to each other.

【0035】図6に畳み込み回路CNVの構成例を示
す。シフトレジスタSHR(転送クロックC4aにより制
御される)により、順次転送される波形g(t)と、波
形記憶部MR1に記憶したVr(t)(またはVr'
(t))、及びMR2に記憶したVi(t)(または
i'(t))との乗算を各々行ない、乗算結果を加算器
SS(加算クロックC4bにより制御される)により、そ
れぞれの波形(図4(a)のfn(t))について全て
加算することにより、信号h1(t)、h2(t)を同時
に得る。二乗和平方根演算器ABSにより、加算器SS
の出力を二乗和をとった後、平方根の演算を行ない、信
号の位相項が取り除かれた包絡線出力h(t)が得られ
る。即ち、
FIG. 6 shows a configuration example of the convolution circuit CNV. The waveform g (t) sequentially transferred by the shift register SHR (controlled by the transfer clock C 4a ) and V r (t) (or V r ′) stored in the waveform storage unit MR1.
(T)) and V i (t) (or V i '(t)) stored in MR2, and the multiplication result is added by adder SS (controlled by addition clock C 4b ), respectively. The signals h 1 (t) and h 2 (t) are obtained at the same time by adding all the waveforms (f n (t) in FIG. 4A). The adder SS is added by the square sum square root calculator ABS.
After taking the square sum of the output of, the square root operation is performed to obtain the envelope output h (t) from which the phase term of the signal has been removed. That is,

【0036】[0036]

【数15】 h(t)=√〈{h1(t)}2+{h2(t)}2〉 …(数15) を得る。(数15)において、√〈 〉は〈 〉内の平
方根をとることを示す。
[Equation 15] h (t) = √ <{h 1 (t)} 2 + {h 2 (t)} 2 > ... (Equation 15) In (Equation 15), √ <> indicates that the square root in <> is taken.

【0037】ここでクロックC4aとクロックC4bとを一
致させ時間間隔T1とすると、T1毎にh(t)が計算さ
れる。この時間間隔T1は、受信信号s(t)に関する
ナイキスト間隔以内であれば基本的には充分であること
から、クロックC4bをクロックC4aよりも遅い構成とす
ることが可能であり、クロックC4bを時間間隔T0とす
る構成が特に有利である。
Here, assuming that the clock C 4a and the clock C 4b are matched and the time interval is T 1 , h (t) is calculated for each T 1 . Since this time interval T 1 is basically sufficient as long as it is within the Nyquist interval for the received signal s (t), it is possible to make the clock C 4b slower than the clock C 4a. A configuration in which C 4b is the time interval T 0 is particularly advantageous.

【0038】以上は、目的方向からの信号についての本
発明の超音波装置の動作説明であるが、目的方向以外か
らの信号の場合には、図4(a)の場合と異なり、時間
軸補正部TCによる時間軸補正後において、波面の入射
時刻P0が同時刻とならないため、各信号fn(t)(n
=…−2、−1、0、+1、+2、…)に位相差が存在
するため、加算器SUMの出力である加算信号g(t)
は、打ち消され不規則な小さい信号となる。この結果、
畳み込み回路CNVの出力h(t)も、小さな出力とな
る。これが、実質的に目的方向からの信号のみを選択し
て抽出することを可能としている動作原理である。ま
た、図1において、制御信号C1、C2、C3、C4
は、制御部CNTにより制御されている。
The above is the description of the operation of the ultrasonic device of the present invention with respect to the signal from the target direction. However, in the case of the signal from other than the target direction, the time axis correction is performed unlike the case of FIG. 4A. After the time axis correction by the section TC, the incident times P 0 of the wavefronts are not the same time, so that each signal f n (t) (n
= ... -2, -1, 0, +1, +2, ...) Since there is a phase difference, the addition signal g (t) which is the output of the adder SUM
Becomes a small signal that is canceled and is irregular. As a result,
The output h (t) of the convolution circuit CNV also becomes a small output. This is the operating principle that makes it possible to select and extract only signals from the target direction. Further, in FIG. 1, control signals C1, C2, C3, C4
Are controlled by the control unit CNT.

【0039】このようにして合成された超音波ビームの
指向性の性能は、受波信号の時間合わせの精度により決
定されるが(日本音響学会誌、44巻、9号、pp.6
53〜657)、標本化回路の高速化は困難である。し
かし、ここに述べた本実施例の構成によると、受波信号
の標本化間隔は時間間隔T0のままで、標本化された信
号sn(t)(n=1…N)相互の時間合わせ精度のみ
をT1に向上することが可能であり、高性能な指向性を
有する超音波ビームが形成できる。
The directivity performance of the ultrasonic beam thus synthesized is determined by the accuracy of time alignment of received signals (Journal of Acoustical Society of Japan, Vol. 44, No. 9, pp. 6).
53-657), it is difficult to speed up the sampling circuit. However, according to the configuration of this embodiment described here, the sampling interval of the received signal remains the time interval T 0 , and the time between the sampled signals s n (t) (n = 1 ... N) is changed. Only the alignment accuracy can be improved to T 1 , and an ultrasonic beam having high performance directivity can be formed.

【0040】また、標本化周期T0は、受信信号の包絡
線の周波数帯域幅で決まり、周波数帯域の上限周波数の
ナイキスト間隔よりも長い周期とすることが可能であ
る。標本化周波数F0=1/T0を、信号帯域幅Bの2倍
以上の周波数とし、かつそのF/2の整数倍が、標本化
前の信号帯域内に存在しないように選択する。即ち、信
号帯の中心周波数をFcとして、2B≦F0であり、mを
全ての自然数として
The sampling period T 0 is determined by the frequency bandwidth of the envelope of the received signal, and can be set to a period longer than the Nyquist interval of the upper limit frequency of the frequency band. The sampling frequency F 0 = 1 / T 0 is selected so that the frequency is twice or more the signal bandwidth B, and an integral multiple of F / 2 does not exist in the signal band before sampling. That is, assuming that the center frequency of the signal band is F c , 2B ≦ F 0 , and m is all natural numbers.

【0041】[0041]

【数16】 mF0/2<Fc−B/2 かつ (m+1)F0/2>Fc+B/2 …(数16) を満たすF0を選択する。このような標本化周波数F0
選定により、標本化の著しい低速化が可能である。
Equation 16] mF 0/2 <F c -B / 2 and (m + 1) F 0/ 2> to select the F c + B / 2 ... F 0 satisfying equation (16). By selecting the sampling frequency F 0 in this way, the sampling speed can be significantly reduced.

【0042】以上述べた本発明の超音波装置の各種の変
形構成も可能である。その第一の変形構成を図7に示
す。図7に示すように、加算器(A0、A1、…、Aq
…、Au-1)を各受波信号に対して並列に配置した並列
加算構成からなり、短い時間間隔T1を単位とする遅延
を行なう記憶部D1を有しない構成である。
Various modifications of the ultrasonic device of the present invention described above are possible. The first modified configuration is shown in FIG. As shown in FIG. 7, adders (A 0 , A 1 , ..., A q ,
, A u-1 ) is arranged in parallel with respect to each received signal, and does not have a storage unit D1 that delays by a short time interval T 1 .

【0043】この構成においては信号dn(t)を、切
り換え器MPXにより、qの値に対応する加算器Aq
みに印加する。このような構成により、それぞれのqに
対応する時刻の加算信号gq(t)が対応する加算器の
出力として得られる。このような構成によると、一回の
加算に許容される時間がT0となり、加算器(A0
1、…、Aq、…、Au-1)の動作速度を低下させるこ
とが可能となる。信号gq(t)(q=0、1、…q…
u−1)は、畳み込み回路CNVにおいて畳み込み演算
される。
In this structure, the signal d n (t) is applied only to the adder A q corresponding to the value of q by the switch MPX. With such a configuration, the addition signal g q (t) at the time corresponding to each q is obtained as the output of the corresponding adder. With such a configuration, the time allowed for one addition is T 0 , and the adder (A 0 ,
A 1, ..., A q, ..., it is possible to lower the operating speed of the A u-1). Signal g q (t) (q = 0, 1, ... Q ...
u-1) is subjected to a convolution operation in the convolution circuit CNV.

【0044】第二の変形構成を図8に示す。図8に示す
ように、受波信号dn(t)を、nについて複数の群に
分割し、複数の加算器SUMBのそれぞれを各群に対し
て並列に配置した並列加算構成からなる。図8では、受
波信号dn(t)が、(1〜n+1)と、(n+2〜
N)の2群に分割されいる。ここでは2群に分割してい
るがさらに分割数を増やしてもよい。図8の構成も、短
い時間間隔T1を単位とする遅延を行なう記憶部D1を
保有しない構成である。
A second modified structure is shown in FIG. As shown in FIG. 8, the received signal d n (t) is divided into a plurality of groups for n, and each of the plurality of adders SUMB is arranged in parallel for each group, and has a parallel addition configuration. In FIG. 8, the received signal d n (t) is (1 to n + 1) and (n + 2 to 2).
N) is divided into two groups. Although it is divided into two groups here, the number of divisions may be further increased. The configuration of FIG. 8 is also a configuration in which the storage unit D1 that delays in units of short time intervals T 1 is not included.

【0045】この構成はさらに切り換え器SELnによ
り、加算器Anをqの値に対応する信号線上に接続す
る。図8でに示した例では、加算器A1はq=3に対応
する信号線上に接続し、加算器Anはq=2に対応する
信号線上に接続している。図7において、信号d
n(t)はqに対応する信号線gq上においてのみ加算さ
れるが、図8に示すように使用する加算器の個数を減少
した簡易な構成により、それぞれのqに対応する時刻の
加算信号gq(t)が対応する加算器の出力として得ら
れる。このような構成によれば、加算器の動作速度を低
下させることが可能であり、さらに必要とする加算器の
個数が減少する。この図8に示す構成例では、上記の各
群に対して配置された加算器における遅延を補償するた
めに、パイプライン処理を可能とする構成とし、上記の
各群の間において、適当な加算段数ごとにレジスターR
を配置している。
This structure further connects the adder A n to the signal line corresponding to the value of q by the switch SEL n . In the example shown in FIG. 8, the adder A 1 is connected on the signal line corresponding to q = 3, and the adder A n is connected on the signal line corresponding to q = 2. In FIG. 7, the signal d
Although n (t) is added only on the signal line g q corresponding to q, the addition of the time corresponding to each q is performed by a simple configuration in which the number of adders used is reduced as shown in FIG. The signal g q (t) is obtained as the output of the corresponding adder. With such a configuration, the operating speed of the adder can be reduced, and the number of required adders can be reduced. In the configuration example shown in FIG. 8, in order to compensate for the delay in the adder arranged for each of the groups described above, pipeline processing is possible, and appropriate addition is performed between the groups. Register R for each stage
Has been arranged.

【0046】即ち、加算手段において部分的に加算され
た信号を保持するレジスターRを有し、部分的に加算さ
れた信号の複数個をパイプライン処理により加算する。
通常の構成では、図8に示すd1〜dnは共通の波面P0
に対応する標本化信号であるが、このパイプライン処理
の場合には、信号d1〜dnは信号dn+1〜dNよりもT0
だけ遅れた時刻の標本化信号とする。このようにするこ
とにより、下段の加算器SUMBにおける加算処理によ
る遅れ時間が補償可能となる。信号gq(t)(q=
0、1、…q…u−1)は、畳み込み回路CNVにおい
て畳み込み演算される。 第三の変形構成を図9に示
す。図9に示すように、時間変換部と加算器からなる単
位構成を、従属的に接続する従属接続構成とすることに
より、長時間記憶部D0の記憶容量を減少する。この図
9の構成では、受波信号sn(t)が、n=1〜kと、
n=k+1〜Nの2群に分割され、複数の上記の単位構
成のそれぞれが各群に対して接続される。各群におい
て、時間間隔T0を単位時間とする遅延を記憶部D0に
て行ない、それぞれ、d1〜dk、dk+1〜dNを得て、d
1〜dk、dk+1〜dNが各群の加算器SUMに入力され、
それぞれの加算器SUMにおいて、信号dn(t)が複
数の群に分割され、これらそれぞれの群について、加算
信号ggq(t)(qは、複数の群に分割された信号dn
(t)の各群を識別するための引数を示す)が求めら
れ、続いて、2群の各群におけるggq(t)は、標本
化時間間隔T0を単位とする2次遅延回路DD0により
再度遅延を受ける。2次遅延回路DD0により再度遅延
を受けた2群からの信号は、2次加算器SSUMにより
再度加算され最終的に、加算信号gq(t)が得られ
る。
That is, it has a register R for holding the signals partially added by the adding means, and adds a plurality of the partially added signals by pipeline processing.
In a normal configuration, d 1 to d n shown in FIG. 8 have a common wavefront P 0.
It is a sampling signal corresponding to, in the case of the pipeline processing, signal d 1 to d n is the signal d n + 1 ~d N T 0 than
Sampling signal at a time delayed by By doing so, the delay time due to the addition processing in the adder SUMB in the lower stage can be compensated. Signal g q (t) (q =
0, 1, ... Q ... u-1) are convolved in the convolution circuit CNV. The third modified configuration is shown in FIG. As shown in FIG. 9, the storage capacity of the long-time storage unit D0 is reduced by making the unit configuration including the time conversion unit and the adder a subordinate connection configuration in which the units are subordinately connected. In the configuration of FIG. 9, the received signal s n (t) is n = 1 to k,
It is divided into two groups of n = k + 1 to N, and each of the plurality of unit configurations described above is connected to each group. In each group, a delay with the time interval T 0 as a unit time is performed in the storage unit D0 to obtain d 1 to d k and d k + 1 to d N , respectively, and d
1 to d k and d k + 1 to d N are input to the adder SUM of each group,
In each adder SUM, the signal d n (t) is divided into a plurality of groups, and for each of these groups, the added signal gg q (t) (q is a signal d n divided into a plurality of groups).
(Indicates an argument for identifying each group of (t)), and subsequently, gg q (t) in each group of the two groups is a quadratic delay circuit DD0 with the sampling time interval T 0 as a unit. Will be delayed again by. The signals from the second group that have been delayed again by the secondary delay circuit DD0 are again added by the secondary adder SSUM, and finally the added signal g q (t) is obtained.

【0047】この信号gq(t)は、畳み込み回路CN
Vにおいて畳み込み演算される。このような構成による
と時間間隔T0を単位時間とする遅延を行なう記憶部D
0の記憶容量を減少することができる。
This signal g q (t) is the convolutional circuit CN
The convolution operation is performed on V. With this configuration, the storage unit D that delays the time interval T 0 as a unit time
The storage capacity of 0 can be reduced.

【0048】[0048]

【発明の効果】本発明の超音波装置は、各素子による受
信信号を微小遅延時間毎に別々に加算し、最後に畳み込
み処理を行なう新しい整相方式に基づくものであり、必
要とする乗算器の数が減少し、装置構成の大幅な簡易化
を可能とする。
The ultrasonic device of the present invention is based on a new phasing method in which the received signals from the respective elements are added separately for each minute delay time, and finally convolution processing is performed, and the required multiplier is provided. The number of devices can be reduced and the device configuration can be greatly simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超音波装置の基本構成を示すブロ
ック図。
FIG. 1 is a block diagram showing a basic configuration of an ultrasonic device according to the present invention.

【図2】受信信号と入射波面の関係、標本化された信号
n(t)を説明する図。
FIG. 2 is a diagram illustrating a relationship between a received signal and an incident wavefront, and a sampled signal s n (t).

【図3】時間補正部と加算器の詳細な構成を説明する
図。
FIG. 3 is a diagram illustrating a detailed configuration of a time correction unit and an adder.

【図4】目的方向からの信号における、(a)時間軸補
正部の出力波形、(b)加算器の出力波形、(c)畳み
込み回路の出力波形を、それぞれ示する図。
FIG. 4 is a diagram showing (a) an output waveform of a time axis correction unit, (b) an output waveform of an adder, and (c) an output waveform of a convolution circuit in a signal from a target direction.

【図5】畳み込み波形例(a)〜(d)を示す図。FIG. 5 is a diagram showing examples (a) to (d) of convolutional waveforms.

【図6】畳み込み回路の構成例を示すブロック図。FIG. 6 is a block diagram showing a configuration example of a convolution circuit.

【図7】本発明による超音波装置の基本構成の第1の変
形構成を示すブロック図。
FIG. 7 is a block diagram showing a first modified configuration of the basic configuration of the ultrasonic device according to the present invention.

【図8】本発明による超音波装置の基本構成の第2の変
形構成を示すブロック図。
FIG. 8 is a block diagram showing a second modified configuration of the basic configuration of the ultrasonic device according to the present invention.

【図9】本発明による超音波装置の基本構成の第3の変
形構成を示すブロック図。
FIG. 9 is a block diagram showing a third modified configuration of the basic configuration of the ultrasonic device according to the present invention.

【符号の説明】[Explanation of symbols]

n…超音波受波器、SPL…標本化回路、TC…時間
補正部、SUM…加算器、CNV…畳み込み回路、CN
T…制御部、ABS:二乗和平方根演算器、SHR…シ
フトレジスタ、MR1、MR2…波形記憶部、SS…加
算器、A0、A1、…、Aq、…、Au-1…加算器、D1…
記憶部、SUMB…加算器、SELn…切り換え器、R
…レジスター、D0…記憶部、DD0…2次遅延回路、
SSUM…2次加算器。
Q n ... Ultrasonic wave receiver, SPL ... Sampling circuit, TC ... Time correction unit, SUM ... Adder, CNV ... Convolution circuit, CN
T ... Control unit, ABS: Square sum of squares operator, SHR ... Shift register, MR1, MR2 ... Waveform storage unit, SS ... Adder, A 0 , A 1 , ..., A q , ..., A u-1 ... Addition Bowl, D1 ...
Storage unit, SUMB ... Adder, SEL n ... Switching device, R
... register, D0 ... storage section, DD0 ... secondary delay circuit,
SSUM ... Secondary adder.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01S 15/89 8907−2F G01S 15/89 B Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location G01S 15/89 8907-2F G01S 15/89 B

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】複数の受信素子を有し超音波信号を受信す
る超音波装置において、受信信号を標本化する標本化手
段と、標本化されたそれぞれの信号を異なる時間関係に
変換する時間変換手段と、時間変換されたそれぞれの信
号の同一時同士の値を加算する加算手段と、該加算手段
による加算結果と二つの異なる参照信号との畳み込み処
理をそれぞれ行なう畳み込み手段、該畳み込み手段で得
た二つの畳み込み処理結果の二乗和の平方根を求める手
段を有することを特徴とする超音波装置。
1. In an ultrasonic device having a plurality of receiving elements for receiving an ultrasonic signal, sampling means for sampling the received signal and time conversion for converting each sampled signal into a different time relationship. Means, an adding means for adding the values of the time-converted signals at the same time, a convolution means for respectively performing a convolution process of the addition result by the adding means and two different reference signals, and the convolution means An ultrasonic device having means for obtaining a square root of a sum of squares of two convolution processing results.
【請求項2】請求項1に記載の装置において、前記加算
手段において同一時刻の判定を、前記標本化手段におけ
る標本化時間間隔以内の特定の時間間隔以内とすること
を特徴とする超音波装置。
2. The ultrasonic device according to claim 1, wherein the addition means determines that the same time is within a specific time interval within a sampling time interval in the sampling means. .
【請求項3】請求項1に記載の装置において、前記加算
手段は、並列に接続された並列加算器により構成される
ことを特徴とする超音波装置。
3. The ultrasonic device according to claim 1, wherein the adding means is composed of parallel adders connected in parallel.
【請求項4】請求項3に記載の装置において、前記加算
手段は切り換え器を含み、該切り換え器により、前記並
列加算器を対応する時刻の信号について動作させること
を特徴とする超音波装置。
4. The ultrasonic device according to claim 3, wherein the adding means includes a switch, and the switch causes the parallel adder to operate for a signal at a corresponding time.
【請求項5】請求項1に記載の装置において、前記加算
手段において部分的に加算された信号を保持する手段を
有し、前記部分的に加算された信号の複数個をパイプラ
イン処理により加算することを特徴とする超音波装置。
5. The apparatus according to claim 1, further comprising means for holding the signals partially added by said adding means, and adding a plurality of said partially added signals by pipeline processing. An ultrasonic device characterized by:
【請求項6】請求項1に記載の装置において、前記時間
変換手段および前記加算手段を単位構成として、複数の
該単位構成を従属的に接続したことを特徴とする超音波
装置。
6. The ultrasonic device according to claim 1, wherein the time converting means and the adding means are unitary and a plurality of the unitary constituents are connected subordinately.
【請求項7】請求項1に記載の装置において、前記畳み
込み手段における畳み込みの時間間隔を前記標本化手段
のおける標本化時間よりも短かくすることを特徴とする
超音波装置。
7. The ultrasonic device according to claim 1, wherein a convolution time interval in the convolution means is set shorter than a sampling time in the sampling means.
【請求項8】請求項1に記載の装置において、前記の二
つの異なる参照信号が、互いに位相が直交する一対の正
弦波であることを特徴とする超音波装置。
8. The ultrasonic device according to claim 1, wherein the two different reference signals are a pair of sine waves whose phases are orthogonal to each other.
JP13318295A 1995-05-31 1995-05-31 Ultrasonic device Expired - Fee Related JP3677815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13318295A JP3677815B2 (en) 1995-05-31 1995-05-31 Ultrasonic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13318295A JP3677815B2 (en) 1995-05-31 1995-05-31 Ultrasonic device

Publications (2)

Publication Number Publication Date
JPH08327609A true JPH08327609A (en) 1996-12-13
JP3677815B2 JP3677815B2 (en) 2005-08-03

Family

ID=15098610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13318295A Expired - Fee Related JP3677815B2 (en) 1995-05-31 1995-05-31 Ultrasonic device

Country Status (1)

Country Link
JP (1) JP3677815B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961409A (en) * 1995-08-21 1997-03-07 Hitachi Ltd Ultrasonic signal processing apparatus
JP2016080609A (en) * 2014-10-21 2016-05-16 日立Geニュークリア・エナジー株式会社 Ultrasonic leakage detector and leakage detection method using the same
WO2019229895A1 (en) * 2018-05-30 2019-12-05 三菱電機株式会社 Ultrasonic rangefinder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961409A (en) * 1995-08-21 1997-03-07 Hitachi Ltd Ultrasonic signal processing apparatus
JP2016080609A (en) * 2014-10-21 2016-05-16 日立Geニュークリア・エナジー株式会社 Ultrasonic leakage detector and leakage detection method using the same
WO2019229895A1 (en) * 2018-05-30 2019-12-05 三菱電機株式会社 Ultrasonic rangefinder

Also Published As

Publication number Publication date
JP3677815B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
JP3442471B2 (en) Delay interpolator for digital phased array type ultrasonic beamformer
US7583214B2 (en) Dynamic receive beamformer with oversampling for medical diagnostic ultrasound
US4983970A (en) Method and apparatus for digital phased array imaging
KR100806425B1 (en) Sequential-acquisition, multi-band, multi-channel, matched filter
JP3329575B2 (en) Multi-channel digital receiver and ultrasonic diagnostic apparatus
EP2904419B1 (en) Improvements in and relating to radar receivers
KR20160145177A (en) Ultrasonic imaging compression methods and apparatus
US5477859A (en) Ultrasound imaging system having spatial filtering preprocessor
JP2008149139A (en) Device and method for forming beam based on fractional delay filter using post filtering
Comoretto et al. The signal processing firmware for the low frequency aperture array
CA2407242C (en) Aggregate beamformer for use in a directional receiving array
US5591911A (en) Ultrasound signal processor
JPH08327609A (en) Ultrasonic unit
US7236901B2 (en) Digital broadband frequency measurement
JP3134618B2 (en) Ultrasonic signal processor
RU2271066C2 (en) Method for adaptive on-line noise compensation
JPH07143982A (en) Ultrasonic apparatus
KR101334381B1 (en) A synthetic aperture beamforming system of using phase rotation beamformers
JP3697328B2 (en) Ultrasonic diagnostic equipment
Neoh et al. Time-Delay Digital Beamforming with 1.3 GHz Bandwidth Using Direct RF ADC
JP3788900B2 (en) Radar equipment
Okumura et al. Very large FX correlator system for enhanced ALMA
COMORETTO et al. Radioastronomic signal processing cores for the SKA radio telescope
JPH0961409A (en) Ultrasonic signal processing apparatus
TW202124994A (en) Modernized global navigation satellite system receivers

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees