[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08306979A - Multilayer piezoelectric device - Google Patents

Multilayer piezoelectric device

Info

Publication number
JPH08306979A
JPH08306979A JP7137140A JP13714095A JPH08306979A JP H08306979 A JPH08306979 A JP H08306979A JP 7137140 A JP7137140 A JP 7137140A JP 13714095 A JP13714095 A JP 13714095A JP H08306979 A JPH08306979 A JP H08306979A
Authority
JP
Japan
Prior art keywords
piezoelectric
electrodes
electrode
piezoelectric element
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7137140A
Other languages
Japanese (ja)
Inventor
Kazuo Mochizuki
一夫 望月
Katsumi Yamauchi
克己 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP7137140A priority Critical patent/JPH08306979A/en
Publication of JPH08306979A publication Critical patent/JPH08306979A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

(57)【要約】 【目的】圧電素子の厚みを薄くすることなく、従って積
層工数を増やすことなく、駆動時の圧電素子端部におけ
る引張応力増大による電気的導通の破壊を防止できる圧
電素子間の接続構造を有する積層型圧電体装置を提供す
る。 【構成】厚み方向に分極した複数の板状圧電素子6を備
える。各圧電素子6は、表面、裏面に一体に膜状に形成
された主電極にそれぞれ接続された膜状の第1の端部電
極4と第2の端部電極5とを有する。隣接する圧電素子
6の第1の端部電極4と第2の端部電極5とが積層方向
に連なるように配列し、かつ隣接する圧電素子6の分極
方向が逆方向となるように複数枚の圧電素子6を積層す
る。圧電素子6の積層方向に連なる同一配列内の端部電
極4、5間をワイヤボンディングにより接続した。ま
た、圧電材1の端面を面取りして同一系列内の端部電極
4、5を導電性接着剤により接続した。
(57) [Abstract] [Purpose] Between piezoelectric elements that can prevent breakdown of electrical conduction due to increase in tensile stress at the end of the piezoelectric element during driving without reducing the thickness of the piezoelectric element and therefore without increasing the number of lamination steps. There is provided a laminated piezoelectric device having the connection structure described above. [Structure] A plurality of plate-shaped piezoelectric elements 6 polarized in the thickness direction are provided. Each piezoelectric element 6 has a film-shaped first end electrode 4 and a film-shaped second end electrode 5, which are connected to a main electrode integrally formed on the front surface and the back surface, respectively. Plural sheets are arranged such that the first end electrode 4 and the second end electrode 5 of the adjacent piezoelectric elements 6 are arranged so as to be continuous in the stacking direction, and the polarization directions of the adjacent piezoelectric elements 6 are opposite to each other. The piezoelectric element 6 is laminated. The end electrodes 4 and 5 in the same array that are continuous in the stacking direction of the piezoelectric elements 6 were connected by wire bonding. Further, the end surface of the piezoelectric material 1 was chamfered, and the end electrodes 4 and 5 in the same series were connected by a conductive adhesive.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、板状の圧電材の表裏面
の主電極および端面の端部電極を膜形成技術によって形
成し、これを重ねて一体に組み合わせることにより構成
される積層型圧電体装置に係り、特に厚み効果を利用す
る圧電アクチュエータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated type structure in which a main electrode on the front and back surfaces of a plate-shaped piezoelectric material and an end electrode on the end surface are formed by a film forming technique, and these are stacked and integrally combined. The present invention relates to a piezoelectric device, and particularly to a piezoelectric actuator that utilizes the thickness effect.

【0002】[0002]

【従来の技術】圧電素子の厚み効果を利用した圧電体装
置は、圧電素子の積層方法に関し、単板積層方式と、
電極一体焼成方式とに分類される。単板積層方式で最
も一般的なものは、板状の圧電材と金属薄板からなる電
極板とを交互に積み重ね、隣接する圧電材の分極方向を
互いに逆とし、かつ、電極板を1層おきにリード線で接
続することで、各圧電材をその分極方向に関し並列接続
したものである。
2. Description of the Related Art A piezoelectric device utilizing the thickness effect of a piezoelectric element relates to a method of laminating the piezoelectric element, and a single plate laminating method,
It is classified as an electrode integrated firing method. The most common single-plate stacking method is to stack plate-like piezoelectric materials and electrode plates made of thin metal plates alternately, make the polarization directions of adjacent piezoelectric materials opposite to each other, and place every other electrode plate. Each of the piezoelectric materials is connected in parallel with respect to the polarization direction by connecting the lead wire to the.

【0003】この従来の単板積層方式のうち、実開平4
−111770号公報においては、各層に重ねる電極板
を不要とすること、およびリード線の接続作業を不要に
することによる製造コストの低減と、厚みのある電極板
が介在することによる特性上の問題点を改善することを
目的として、図13に示すように、板状をなす圧電材1
の表裏面に主電極2、3を形成すると共に、端面の一部
に表面の主電極2に接続された第1の端部電極4を形成
し、圧電材1の端面における該第1の端部電極4とは別
の箇所に、裏面の主電極3に接続された第2の端部電極
5を設け、さらに、第1の端部電極4、第2の端部電極
5にはそれぞれ圧電材1の裏面、表面への回り込み電極
4a、5aを設けて圧電素子6を構成し、これらの回り
込み電極4a、5aを分極方向が交互に逆方向となるよ
うに重ねて圧電素子の並列接続を図ったものが開示され
ている。なお、図中、6A、6Bは複数枚重ねて構成さ
れた積層体の上下端部に重ねた端部圧電素子、7、8は
信号端子7a、8aを有する電極板、9、10は端部絶
縁板、11はこれらの積層体を一体化する絶縁樹脂であ
る。また、圧電素子6、6A、6B内の矢印は各圧電材
1の分極の方向を示す。
Of the conventional single plate stacking systems, the actual flat plate 4
In Japanese Patent Laid-Open No. 111770/1999, manufacturing costs are reduced by eliminating the need for an electrode plate to be overlaid on each layer and by eliminating the work of connecting lead wires, and there is a problem in characteristics due to the presence of a thick electrode plate. For the purpose of improving the points, as shown in FIG. 13, a piezoelectric material 1 having a plate shape is formed.
Main electrodes 2 and 3 are formed on the front and back surfaces, and a first end electrode 4 connected to the main electrode 2 on the front surface is formed on a part of the end surface of the piezoelectric material 1. A second end electrode 5 connected to the main electrode 3 on the back surface is provided at a position different from the partial electrode 4, and the first end electrode 4 and the second end electrode 5 are each provided with a piezoelectric material. Piezoelectric element 6 is formed by providing wraparound electrodes 4a and 5a on the back and front surfaces of material 1, and these wraparound electrodes 4a and 5a are stacked so that the polarization directions are alternately opposite to each other, and the piezoelectric elements are connected in parallel. The intended one is disclosed. In the figure, 6A and 6B are end piezoelectric elements stacked on the upper and lower end portions of a laminated body formed by stacking a plurality of sheets, 7 and 8 are electrode plates having signal terminals 7a and 8a, and 9 and 10 are end portions. The insulating plate 11 is an insulating resin that integrates these laminated bodies. The arrows in the piezoelectric elements 6, 6A and 6B indicate the polarization directions of the piezoelectric materials 1.

【0004】上記構造においては、回り込み電極4a、
5aどうしの接触のみで電極どうしの接続を保証するこ
とは困難である。特に、厚み方向に大きな歪みを必要と
するアクチュエータ用途に使用する場合、この回り込み
電極4a、5aどうしの接続の保証は困難である。すな
わち、圧電材1の表裏面の主電極2、3間に高い電圧が
加わるので、両主電極2、3間の絶縁を十分確保するに
は、一方の面の主電極2(または3)と他方の面の主電
極3(または2)に付属する端部電極5(または4)の
回り込み電極5a(または4a)との間に十分なギャッ
プGを必要とする。従って、端部電極4、5の周辺部は
圧電素子6の両主電極2、3が互いに投影する領域から
外れ、圧電素子6の周辺部は中央部ほど伸縮しない。こ
のため、アクチュエータとしての駆動時に回り込み電極
4a、5aどうしの接触部にサブミクロンオーダーの隙
間が生じ、接続ができなくなる。
In the above structure, the wraparound electrode 4a,
It is difficult to guarantee the connection between the electrodes only by the contact between the electrodes 5a. In particular, when it is used for an actuator application that requires a large strain in the thickness direction, it is difficult to guarantee the connection between the wraparound electrodes 4a, 5a. That is, since a high voltage is applied between the main electrodes 2 and 3 on the front and back surfaces of the piezoelectric material 1, in order to ensure sufficient insulation between the two main electrodes 2 and 3, the main electrode 2 (or 3) on one surface and A sufficient gap G is required between the end electrode 5 (or 4) attached to the main electrode 3 (or 2) on the other surface and the wraparound electrode 5a (or 4a). Therefore, the peripheral portions of the end electrodes 4 and 5 deviate from the regions where the two main electrodes 2 and 3 of the piezoelectric element 6 project from each other, and the peripheral portion of the piezoelectric element 6 does not expand or contract as much as the central portion. Therefore, when driven as an actuator, a submicron-order gap is generated in the contact portion between the wraparound electrodes 4a, 5a, and the connection cannot be made.

【0005】このため、同じ配列に属する端部電極4、
5間の接続を確実にするため、図13に示すように、あ
る程度柔軟性のある導電性接着剤12を塗布している。
Therefore, the end electrodes 4 belonging to the same array,
In order to ensure the connection between the five, as shown in FIG. 13, a conductive adhesive 12 having some flexibility is applied.

【0006】一方、前記の電極一体焼成方式のもの
は、圧電材からなる焼成前のグリーンシートと電極材料
とを交互に積層したものを焼成することにより、圧電素
子と電極が一体になった圧電積層体を構成するものであ
る。
On the other hand, in the above-mentioned electrode integral firing system, a piezoelectric element and an electrode are integrated by firing a laminate of green sheets of piezoelectric material before firing and electrode materials which are alternately laminated. It constitutes a laminated body.

【0007】[0007]

【発明が解決しようとする課題】前記の電極一体焼成
方式の積層型圧電体装置は、積層する各シートの厚みに
あまり厚いものが使用できないため、各層の厚みが薄く
なり、低い電圧で駆動するアクチュエータとしては適し
ているものの、大型のものを得るには不向きであり、高
容量となるため、高速応答には不向きである。また、高
圧力下(高荷重下)で大変位を得ようとする場合、機械
的強度の面においても不利である。
In the electrode-integrated firing type laminated piezoelectric device, the thickness of each laminated sheet cannot be used. Therefore, the thickness of each layer becomes thin, and the laminated piezoelectric device is driven at a low voltage. Although it is suitable as an actuator, it is unsuitable for obtaining a large-sized one and has a high capacity, and therefore is unsuitable for high-speed response. Further, when trying to obtain a large displacement under high pressure (under high load), it is also disadvantageous in terms of mechanical strength.

【0008】一方、前記の単板積層方式のものは、各
圧電材でなるチップがシート法による場合よりも厚くな
るため、低電圧駆動に不向きであるが、高電圧駆動が可
能な用途においては、むしろ大型で高速応答が得られ、
高圧力下での使用に十分耐える高い機械強度のアクチュ
エータが得易いという特徴がある。しかし、圧電材1に
電極2〜5を膜により形成するのではなく、前記電極板
と圧電材とを重ねて構成するものは、前述のように、積
層数が例えば数十ないし百数十にも及ぶ多数の場合に、
積層作業が煩雑になり、しかもリード線の接続工数も多
くなるという問題点がある。
On the other hand, the above-mentioned single-plate laminated type is unsuitable for low voltage driving because the chip made of each piezoelectric material becomes thicker than that by the sheet method, but in the application capable of high voltage driving, , Rather large and fast response is obtained,
It is characterized in that it is easy to obtain an actuator with high mechanical strength that can withstand use under high pressure. However, in the case where the electrodes 2 to 5 are not formed on the piezoelectric material 1 by a film but the electrode plate and the piezoelectric material are stacked, as described above, the number of stacked layers is, for example, several tens to one hundred and several tens. In many cases,
There is a problem that the stacking work becomes complicated and the number of lead wire connecting steps also increases.

【0009】また、図13に示したような各層の電極板
が存在しない単板積層構造の積層型圧電体装置が例えば
高さ50mm〜80mmの高さに構成され、例えば−2
00V〜500Vの高電圧で連続的にパルス駆動し、例
えば−50μm〜80μmの大きな変位を例えば100
kgf/cm2〜200kgf/cm2で得ようとする用
途においては、同一系列内の端部電極4、5間を接続す
る導電性接着剤12に信頼性上無視できない大きさの伸
縮応力が加わる。
A laminated piezoelectric device having a single-plate laminated structure without the electrode plates of the respective layers as shown in FIG. 13 is constructed to have a height of 50 mm to 80 mm, for example, -2.
Pulse driving is continuously performed at a high voltage of 00 V to 500 V, and a large displacement of, for example, −50 μm to 80 μm is set to 100, for example.
In applications to be obtained in kgf / cm 2 ~200kgf / cm 2 , stretching stress of reliability on negligible magnitude is applied to the conductive adhesive 12 which connects the end electrodes 4 and 5 in the same sequence .

【0010】図14はその様子を摸式的に描いている。
今、図14(A)のように、圧電素子6の厚みtが電圧
を印加することで図14(B)のように、圧電素子6の
中心部(すなわち、印加電圧に応じた電界が生じる主電
極に挟まれた領域)と周辺部とでは異なる歪みとなり、
そのギャップGと圧電素子6の厚みtとの比率にもよる
が、最端部ではほとんど厚みが変化しないため、圧電素
子6の端部間でこれをつなぐ導電性接着剤12上に圧電
素子6の変位Δtとほぼ同様な歪みを生じる。これによ
り、圧電素子6の端部間をつなぐ部分eに集中的に引張
応力が発生することになる。仮に、前記アクチュエータ
の圧電素子1枚当たりの厚みを0.5mm程度とすれ
ば、変位Δtはサブミクロンのオーダーである。
FIG. 14 schematically shows the situation.
Now, as shown in FIG. 14A, when a voltage is applied by the thickness t of the piezoelectric element 6, as shown in FIG. There will be different strain between the area sandwiched between the main electrodes) and the periphery,
Although it depends on the ratio between the gap G and the thickness t of the piezoelectric element 6, the thickness of the piezoelectric element 6 hardly changes at the end, so that the piezoelectric element 6 is connected to the conductive adhesive 12 connecting the ends of the piezoelectric element 6. A strain similar to the displacement Δt of is generated. As a result, tensile stress is intensively generated in the portion e connecting the ends of the piezoelectric element 6. If the thickness of each piezoelectric element of the actuator is about 0.5 mm, the displacement Δt is on the order of submicrons.

【0011】導電性接着剤12はこの引張応力を吸収
し、かつ、圧電素子6の変位Δtを拘束しない柔軟性を
持つことが要求されるが、今のところ上述した使用下で
は、圧電素子6の端部間をつなぐ部分にクラックが発生
することを完全に防止することができない。
The conductive adhesive 12 is required to absorb this tensile stress and to have the flexibility not to restrain the displacement Δt of the piezoelectric element 6. However, under the above-mentioned use, the piezoelectric element 6 is not yet used. It is not possible to completely prevent the occurrence of cracks in the portion connecting the ends of the.

【0012】前記引張応力を緩和するひとつの方策とし
て、圧電素子6の一層当たりの厚さtを小さくすること
により、歪みΔtを小さくすることが考えられるが、以
下の理由により、この方策は得策と思われない。理論
上、同一高さ、同一材質の積層型圧電体装置では、積層
される圧電素子6の厚みtや枚数とは無関係に、その得
られる変位は同一に制限される。すなわち、圧電素子6
の一層当たりの厚みを1/2にすれば、積層枚数は2倍
必要であり、圧電素子6の材質により印加可能な電界が
制限されるため、印加電圧も1/2にしなければならな
いので、得られる変位は変わらないことになる。
As one measure to alleviate the tensile stress, it is conceivable to reduce the strain Δt by reducing the thickness t per layer of the piezoelectric element 6, but this measure is advantageous for the following reasons. I don't think so. Theoretically, in the laminated piezoelectric device having the same height and the same material, the obtained displacement is limited to the same regardless of the thickness t or the number of the laminated piezoelectric elements 6. That is, the piezoelectric element 6
If the thickness per layer is halved, the number of laminated layers is required to be doubled, and the electric field that can be applied is limited by the material of the piezoelectric element 6, so the applied voltage must also be halved. The resulting displacement will not change.

【0013】従って、高電圧が使用可能な用途であれ
ば、圧電素子6の一層当たりの厚みを厚くして積層枚数
を減らすことが、工数を減少させる上で製造コスト上明
らかに有利であるばかりでなく、層数が増えることによ
る特性上の問題点(例えば層数が多くなると耐荷重特性
が低下するという問題点)を回避できる。
Therefore, in the case where the high voltage can be used, increasing the thickness per layer of the piezoelectric element 6 to reduce the number of laminated layers is obviously advantageous in terms of manufacturing cost in order to reduce the number of steps. In addition, it is possible to avoid a problem in characteristics due to an increase in the number of layers (for example, a problem in that the load bearing characteristic is deteriorated when the number of layers increases).

【0014】本発明は、上記した問題点に鑑み、圧電素
子の厚みを薄くすることなく、従って積層工数を増やす
ことなく、駆動時の圧電素子端部における引張応力増大
による電気的導通の破壊を防止できる圧電素子間の接続
構造を有する積層型圧電体装置を提供することを目的と
する。
In view of the above-mentioned problems, the present invention eliminates the breakage of electrical conduction due to an increase in tensile stress at the end of the piezoelectric element during driving without reducing the thickness of the piezoelectric element, and thus without increasing the number of lamination steps. An object of the present invention is to provide a laminated piezoelectric device having a connection structure between piezoelectric elements that can be prevented.

【0015】[0015]

【課題を解決するための手段】本発明は、厚み方向に分
極した複数の板状圧電素子を備え、各圧電素子は成形さ
れた板状の圧電材の表裏面に膜状の主電極を形成し、か
つ圧電材の表面、裏面に形成した主電極にそれぞれ接続
して前記圧電材の端面に形成された膜状の第1の端部電
極と第2の端部電極とを有してなり、隣接する圧電素子
の第1の端部電極と第2の端部電極とが積層方向に連な
るように配列し、かつ隣接する圧電素子の分極方向が逆
方向となるように複数枚の圧電素子を積層し、同一配列
内の端部電極間をワイヤボンディングにより接続したこ
とを特徴とする。
The present invention comprises a plurality of plate-shaped piezoelectric elements polarized in the thickness direction, and each piezoelectric element has a film-shaped main electrode formed on the front and back surfaces of a molded plate-shaped piezoelectric material. And has a film-shaped first end electrode and a second end electrode formed on the end surface of the piezoelectric material by being connected to the main electrodes formed on the front surface and the back surface of the piezoelectric material, respectively. , A plurality of piezoelectric elements in which first end electrodes and second end electrodes of adjacent piezoelectric elements are arranged so as to be continuous in the stacking direction, and the polarization directions of the adjacent piezoelectric elements are opposite to each other Are laminated and the end electrodes in the same array are connected by wire bonding.

【0016】また本発明は、前記圧電材の外周部を面取
りし、同一配列内の端部電極間を導電性接着剤により接
続したことを特徴とする。
Further, the present invention is characterized in that the outer peripheral portion of the piezoelectric material is chamfered, and the end electrodes in the same array are connected by a conductive adhesive.

【0017】[0017]

【作用】本発明のワイヤボンディングによる接続構造、
すなわち同一系列内の端部電極間をワイヤボンディング
により接続する構造においては、ワイヤが端部の狭い領
域に溶接され、かつ、素子変位が端部ではほとんど発生
しないため、圧電体装置を駆動した際、ワイヤの端部電
極に対する溶接部に余分な応力が加わらない。また、ワ
イヤは微小変位を吸収できるような十分な撓み性を持っ
ているので、ワイヤ溶接部の変位はワイヤの撓みにより
吸収され、溶接部にワイヤによる引張応力も発生しな
い。
Operation: The connection structure by wire bonding of the present invention,
That is, in the structure in which the end electrodes in the same series are connected by wire bonding, the wire is welded to the narrow area of the end, and the element displacement hardly occurs at the end, so when the piezoelectric device is driven. , No extra stress is applied to the welded part of the wire end electrode. Further, since the wire has sufficient flexibility to absorb a minute displacement, the displacement of the wire welding portion is absorbed by the bending of the wire, and the tensile stress due to the wire is not generated in the welding portion.

【0018】また、導電性接着剤により端部電極間を接
続した場合、従来構造においては、圧電素子の端部間の
微小な境界部に導電性接着剤に対する歪みが集中する
が、圧電素子の外周部をR面等に面取りした本発明の構
造においては、圧電素子の端部間が広がり、歪みの集中
が緩和され、導電性接着剤の弾性の範囲で変位を十分吸
収できるまで歪みを低下させることができる。
Further, when the end electrodes are connected by the conductive adhesive, the strain due to the conductive adhesive is concentrated on the minute boundary portion between the ends of the piezoelectric element in the conventional structure. In the structure of the present invention in which the outer peripheral portion is chamfered to the R surface or the like, the distance between the ends of the piezoelectric element is widened, the strain concentration is relieved, and the strain is reduced until the displacement can be sufficiently absorbed within the elastic range of the conductive adhesive. Can be made.

【0019】[0019]

【実施例】図1(A)、(B)は本発明による積層型圧
電体装置の一実施例を示す斜視図であり、(A)はワイ
ヤ13による接続前の状態、(B)はワイヤ13による
接続後の状態を示す。この積層型圧電体装置は、図2
(A)の分解斜視図に示すように、複数枚の圧電素子6
の上下端に端部圧電素子6A、6Bを重ね、さらに端部
圧電素子6A、6Bに電極板7、8を重ね、さらに絶縁
板9、10を電極板7、8に重ね、これを図1(A)に
示すように重ね、図1(B)に示すように、ワイヤ13
により同一配列内にある端部電極4、5間をワイヤボン
ディングによって接続し、さらに外側を絶縁樹脂11に
より、絶縁板9、10でなる端面を残して含浸させるこ
とにより一体化して構成される。
1 (A) and 1 (B) are perspective views showing an embodiment of a laminated piezoelectric device according to the present invention. FIG. 1 (A) is a state before connection by a wire 13, and FIG. 1 (B) is a wire. The state after connection by 13 is shown. This laminated piezoelectric device is shown in FIG.
As shown in the exploded perspective view of FIG.
The end piezoelectric elements 6A and 6B are superposed on the upper and lower ends, the electrode plates 7 and 8 are superposed on the end piezoelectric elements 6A and 6B, and the insulating plates 9 and 10 are superposed on the electrode plates 7 and 8. As shown in FIG. 1 (A), the wires 13 are stacked as shown in FIG. 1 (B).
Thus, the end electrodes 4 and 5 in the same arrangement are connected by wire bonding, and the outside is impregnated with the insulating resin 11 leaving the end faces made of the insulating plates 9 and 10 to be integrated.

【0020】前記圧電素子6は、図2(B)の平面図お
よび同(C)の底面図に示すように、板状に成形された
圧電性セラミックでなる圧電材1の表裏面にスパッタリ
ングにより主電極2、3を形成すると同時に、圧電材1
の端面に、それぞれ主電極2、3に接続される第1の端
部電極4と第2の端部電極5とを形成したものである。
本例の第1の端部電極4は、円形をなす圧電材1の外周
に120度の間隔を持って3箇所に配設されており、第
2の端部電極5はこれらの第1の端部電極4の間に位置
するように、圧電材1の外周に120度の間隔を持って
配設されたもので、表裏同形をなしている。これらは、
図2(D)に示すように、隣接する圧電素子を60度ず
つずらして積層することにより、図2(A)に示すよう
に、隣接する圧電素子6の第1の端部電極4と第2の端
部電極5とが上下方向すなわち積層方向に連なるように
重ねられる。
As shown in the plan view of FIG. 2B and the bottom view of FIG. 2C, the piezoelectric element 6 is formed by sputtering on the front and back surfaces of the piezoelectric material 1 formed of a plate-shaped piezoelectric ceramic. At the same time as forming the main electrodes 2 and 3, the piezoelectric material 1
A first end electrode 4 and a second end electrode 5, which are connected to the main electrodes 2 and 3, respectively, are formed on the end faces of the.
The first end electrodes 4 of this example are arranged at three locations on the outer circumference of the circular piezoelectric material 1 at intervals of 120 degrees, and the second end electrodes 5 are the first end electrodes 4 thereof. The piezoelectric material 1 is arranged between the end electrodes 4 with an interval of 120 degrees on the outer periphery of the piezoelectric material 1 and has the same shape as the front and back. They are,
As shown in FIG. 2 (D), the adjacent piezoelectric elements are stacked with a shift of 60 degrees from each other, so that the first end electrode 4 and the first piezoelectric element 6 of the adjacent piezoelectric element 6 and the first end electrode 4 are stacked as shown in FIG. 2 (A). The two end electrodes 5 are stacked so as to be continuous in the vertical direction, that is, the stacking direction.

【0021】図3(A)の平面図に示すように、上端部
の圧電素子6Aは、その下に重なる圧電素子の第2の端
部電極5に接続される位置関係で重なる第1の端部電極
4を主電極2に連続させて形成され、裏面には主電極3
のみを形成して第2の端部電極5は有していない。ま
た、図3(C)の平面図および図3(D)の底面図に示
すように、下端の端部圧電素子6Bは、その上の圧電素
子6の下面に接触する主電極2のみを上面に有し、端面
(外周面)には裏面の主電極3に接続された第2の端部
電極5を有する。
As shown in the plan view of FIG. 3A, the piezoelectric element 6A at the upper end has a first end that overlaps in a positional relationship that is connected to the second end electrode 5 of the piezoelectric element that overlaps therebelow. The partial electrode 4 is formed continuously from the main electrode 2, and the main electrode 3 is formed on the back surface.
Only the second end electrode 5 is not provided. Further, as shown in the plan view of FIG. 3C and the bottom view of FIG. 3D, the end piezoelectric element 6B at the lower end has only the main electrode 2 which is in contact with the lower surface of the piezoelectric element 6 on the upper surface. And has a second end electrode 5 connected to the main electrode 3 on the back surface on the end surface (outer peripheral surface).

【0022】このような圧電素子6A、6、6Bを分極
方向を反対にして重ねるか、あるいは積層後に分極する
ことにより、隣接する圧電素子6A、6、6Bの対向す
る表裏面どうしが接触し、隣接する圧電素子6A、6、
6Bの対向しない面どうしが第1の端部電極4と第2の
端部電極5とにより接続された並列接続状態が実現さ
れ、さらに電極板7、8に形成した入出力端子7a、8
aから電圧を印加することによって、その電圧に応じた
各圧電素子6a、6、6Bの歪みが加えられた量の歪み
量が圧電体装置全体から得られるものである。
By stacking such piezoelectric elements 6A, 6 and 6B with their polarization directions opposite to each other or by polarizing after stacking, the opposing front and back surfaces of the adjacent piezoelectric elements 6A, 6 and 6B come into contact with each other, Adjacent piezoelectric elements 6A, 6,
A parallel connection state is realized in which non-opposing surfaces of 6B are connected to each other by the first end electrode 4 and the second end electrode 5, and the input / output terminals 7a and 8 formed on the electrode plates 7 and 8 are realized.
By applying a voltage from a, the amount of strain in which the strain of each piezoelectric element 6a, 6 and 6B is applied according to the voltage is obtained from the entire piezoelectric device.

【0023】図4、図5、図6はそれぞれワイヤ13に
よる端部電極4、5の接続関係の一例を示す断面図であ
り、上下に連なる同一配列内の端部電極4、5のうち、
少なくとも隣接する圧電素子6の対向しない側の主電極
2、3に付属した端部電極4、5間をワイヤ13により
接続するものである。図4の例は、隣接する圧電素子6
の互いに対向し接触する主電極2、3どうしは歪み発生
によっても電気的接続関係が保たれ、図14(B)に示
したように、歪みが発生すると、端部電極4、5どうし
が離れるおそれがあることに鑑み、同じ系列にある端部
電極4、5を、圧電素子6の1つとびにワイヤ13によ
り接続し、溶接部14の数の低減を図ったものである。
FIGS. 4, 5 and 6 are cross-sectional views showing an example of the connection relationship of the end electrodes 4, 5 by the wire 13, respectively, of the end electrodes 4, 5 in the same array which are vertically arranged.
At least the end electrodes 4 and 5 attached to the main electrodes 2 and 3 on the non-opposing sides of the adjacent piezoelectric elements 6 are connected by a wire 13. In the example of FIG. 4, the adjacent piezoelectric elements 6
The main electrodes 2 and 3 facing and contacting each other maintain their electrical connection even when strain occurs, and as shown in FIG. 14B, when strain occurs, the end electrodes 4 and 5 are separated from each other. In view of the possibility of concern, the end electrodes 4 and 5 in the same series are connected to each one of the piezoelectric elements 6 by a wire 13 to reduce the number of welded portions 14.

【0024】図5の例は、同一系列内の端部電極4、5
において、隣接する圧電素子6の互いに対向し接触する
主電極2、3にそれぞれ接続される端部電極4、5どう
しはワイヤ13による接続は行わず、隣接する圧電素子
6の対向しない側の主電極2、3に付属した端部電極
4、5間をワイヤ13により接続したものである。
In the example of FIG. 5, the end electrodes 4, 5 in the same series are used.
, The end electrodes 4, 5 respectively connected to the main electrodes 2, 3 of the adjacent piezoelectric elements 6 facing and contacting each other are not connected by the wire 13, and the main electrodes on the non-opposing sides of the adjacent piezoelectric elements 6 The end electrodes 4 and 5 attached to the electrodes 2 and 3 are connected by a wire 13.

【0025】図6の例は、隣接する圧電素子6について
同一系列内の端部電極4、5をすべてワイヤ13により
接続したものである。
In the example of FIG. 6, all the end electrodes 4 and 5 in the same series of the adjacent piezoelectric elements 6 are connected by the wires 13.

【0026】なお、前記電極2〜5には好ましくは銅、
ニッケル、アルミニウム等が用いられ、ワイヤ13には
金細線、アルミニウム細線、銅細線等が用いられる。
The electrodes 2 to 5 are preferably made of copper,
Nickel, aluminum or the like is used, and the wire 13 is gold thin wire, aluminum thin wire, copper thin wire or the like.

【0027】図7(A)は図6のワイヤ配設例におい
て、圧電体装置に電圧を加えない状態すなわち歪みが発
生していない状態を示し、図7(B)は電圧を加えて歪
みを発生させた状態を示すもので、図7(B)に示すよ
うに、圧電体装置を駆動した際、溶接部14、すなわち
端面には、ギャップGの存在により、圧電素子駆動によ
る歪みは殆ど発生しないから、溶接部14には余分な応
力が加わらない。また、ワイヤ13は本発明で対象とす
る圧電素子6の駆動による変位程度の微小変位に対して
十分な撓み性を持っているため、ワイヤ13が圧電素子
6間の変位を十分吸収し、溶接部14にワイヤ13の引
張応力も発生しない。従って、単板積層方式の圧電体装
置を、連続的に大変位を発生させるアクチュエータとし
て使用する場合でも、圧電材1を薄くすることなく、各
圧電素子6間の並列接続を確実に維持できる。
FIG. 7 (A) shows a state where no voltage is applied to the piezoelectric device, that is, no distortion is generated in the wire arrangement example of FIG. 6, and FIG. 7 (B) is generated by applying voltage. As shown in FIG. 7B, when the piezoelectric device is driven, there is almost no distortion due to the driving of the piezoelectric element due to the presence of the gap G in the welded portion 14, that is, the end face. Therefore, no extra stress is applied to the welded portion 14. In addition, since the wire 13 has sufficient flexibility with respect to a minute displacement such as a displacement caused by driving the piezoelectric element 6 which is a target of the present invention, the wire 13 sufficiently absorbs the displacement between the piezoelectric elements 6, and the welding is performed. The tensile stress of the wire 13 does not occur in the portion 14. Therefore, even when the single-plate laminated piezoelectric device is used as an actuator that continuously generates a large displacement, parallel connection between the piezoelectric elements 6 can be reliably maintained without thinning the piezoelectric material 1.

【0028】また、圧電素子6の表裏面の主電極2、3
および端部電極4、5をスパッタリングにより同時かつ
一体に形成したので、端部電極4、5を回り込みよく形
成でき、かつ電極2〜5を薄く形成でき、荷重特性が向
上すると共に、面精度があがり、圧電素子どうしの密着
性が向上する。また、電極2〜5を形成する前に、予め
仮電極により全面分極する場合には、圧電材1のキュー
リー温度より低い温度で電極2〜5を形成できるので特
性に影響を与えるおそれがない。
The main electrodes 2 and 3 on the front and back surfaces of the piezoelectric element 6 are also provided.
And since the end electrodes 4 and 5 are formed simultaneously and integrally by sputtering, the end electrodes 4 and 5 can be formed so as to wrap around well, and the electrodes 2 to 5 can be formed thin, the load characteristics are improved, and the surface accuracy is improved. As a result, the adhesion between the piezoelectric elements is improved. In addition, when the entire surface is preliminarily polarized by the temporary electrode before the electrodes 2 to 5 are formed, the electrodes 2 to 5 can be formed at a temperature lower than the Curie temperature of the piezoelectric material 1, so that the characteristics are not affected.

【0029】また、本発明を実施する場合、端部圧電素
子6A、6Bや電極板7、8を設けない構成も採用可能
であるが、表裏面の主電極2、3と、第1または第2の
端部電極4、5のいずれかとを有する板状をなす端部圧
電素子6A、6Bを、表裏面の主電極2、3の一方を外
側にして、複数の圧電素子6の積層体の両端に重畳し、
各端部圧電素子6A、6Bに、それぞれ電気信号入出力
用の信号端子7a、8aを有する電極板7、8を介して
絶縁板9、10を重畳した構成とすることにより、電極
板7、8を圧電素子6A、6Bに単に重ねるだけで引き
出し部の構成が行え、かつ圧電素子6の電極に引き出し
部を設ける場合に比較して強度が大となる。
Further, when the present invention is carried out, it is possible to employ a structure in which the end piezoelectric elements 6A, 6B and the electrode plates 7, 8 are not provided, but the main electrodes 2, 3 on the front and back surfaces, and the first or the first or second main electrodes. The plate-shaped end piezoelectric elements 6A and 6B having any one of the two end electrodes 4 and 5 are arranged in a laminated body of a plurality of piezoelectric elements 6 with one of the main electrodes 2 and 3 on the front and back surfaces being outside. Overlap on both ends,
By forming insulating plates 9 and 10 on each end piezoelectric element 6A and 6B via electrode plates 7 and 8 having signal terminals 7a and 8a for inputting and outputting electric signals, respectively, the electrode plate 7 and The lead-out portion can be formed by simply overlapping 8 on the piezoelectric elements 6A and 6B, and the strength is greater than when the lead-out portion is provided on the electrode of the piezoelectric element 6.

【0030】また、各構成要素6〜10からなる積層型
圧電体装置に絶縁樹脂11を含浸することにより一体化
したので、絶縁耐圧を高め、かつ耐湿性を向上させるこ
とができる。
Further, since the laminated piezoelectric device composed of the respective constituent elements 6 to 10 is integrated by impregnating it with the insulating resin 11, it is possible to increase the dielectric strength voltage and the moisture resistance.

【0031】上記のように、ワイヤ13により端部電極
4、5間を接続する構造は、図3(E)の平面図、
(F)の底面図および(G)の断面図に示すように、端
部電極4、5に主電極2、3の反対側への回り込み電極
4a、5aを有する圧電素子を用いた場合にも適用しう
ることはいうまでもない。
As described above, the structure in which the end electrodes 4 and 5 are connected by the wire 13 has a plan view of FIG.
As shown in the bottom view of (F) and the cross-sectional view of (G), when the piezoelectric elements having the wrap-around electrodes 4a, 5a on the opposite side of the main electrodes 2, 3 are used as the end electrodes 4, 5, respectively. It goes without saying that it can be applied.

【0032】図8(A)および図9は、同一配列内の端
部電極4、5のうち、隣接する圧電素子6の対向しない
側の主電極2、3に付属した端部電極4、5間をそれぞ
れ2個ずつ導電性接着剤12によって接続するものにお
いて、圧電材1の端部1aを面取りすることにより、導
電性接着剤12にクラックが発生することを防止したも
のである。
8 (A) and 9 show end electrodes 4, 5 attached to the main electrodes 2, 3 on the non-opposing side of the adjacent piezoelectric element 6 among the end electrodes 4, 5 in the same array. In the case where two spaces are connected by the conductive adhesive 12, the ends 1a of the piezoelectric material 1 are chamfered to prevent the conductive adhesive 12 from cracking.

【0033】また、図8(B)は同一配列内の積層方向
に連なる端部電極4、5を複数の端部電極からなるグル
ープに分け、それぞれのグループ内の端部電極間が電気
的に接続されるように、導電性接着剤12を塗布したも
のである。
Further, in FIG. 8B, the end electrodes 4 and 5 connected in the stacking direction in the same array are divided into a group consisting of a plurality of end electrodes, and the end electrodes in each group are electrically connected. The conductive adhesive 12 is applied so as to be connected.

【0034】図10は、前記と同様に圧電材1の端部1
aを面取りし、同一系列内に属する端部電極4、5全体
について、導電性接着剤12を塗布したものである。
FIG. 10 shows the end portion 1 of the piezoelectric material 1 as described above.
A is chamfered, and the conductive adhesive 12 is applied to the entire end electrodes 4 and 5 belonging to the same series.

【0035】図11はこのように圧電材1の端部1aを
面取りし、導電性接着剤12により端部電極4、5を接
続して構成する積層型圧電体装置の製造工程を示す図で
あり、まず、図11(A)に示すように、セラミックで
なる円板状の圧電材1の端部1aを面取りし、図11
(B)に示すように、周囲がR面に形成された圧電材1
を得る。この面取りは、端部1aのコーナー部が削られ
た傾斜面をなすC面としてもよいが、製造上の容易さか
ら、実施例においては、バレル研磨によるR面取りとし
た。次に、面取りした圧電材1上に、図11(C)に示
すように、スパッタリングにより主電極2、3および端
部電極4、5を形成する。次に前記図1(A)において
示したように、各要素6〜10を積層し、積層したもの
を治具等で仮固定した状態で、図11(D)に示すよう
に、導電性接着剤12を同一系列の端部電極4、5に塗
布する。図示例は同一系列に属する端部電極4、5の全
てについて導電性接着剤12を帯状に塗布した例を示
す。導電性接着剤12は、塗布後に硬化処理される。そ
の図11(E)に示すように、後両端面を除いて絶縁樹
脂11を含浸し、全体を絶縁コーティングすると共に、
接着一体化する。この場合、絶縁板9、10の端面を除
いて絶縁樹脂11を含浸することにより、圧電体装置と
しての面精度をあげることができる。次に図11(F)
に示すように、信号端子7a、8aにリード線15、1
6を接続する。
FIG. 11 is a view showing a manufacturing process of a laminated piezoelectric device in which the end portion 1a of the piezoelectric material 1 is chamfered and the end electrodes 4 and 5 are connected by the conductive adhesive 12 as described above. First, as shown in FIG. 11A, the end portion 1a of the disk-shaped piezoelectric material 1 made of ceramic is chamfered, and
As shown in (B), the piezoelectric material 1 whose periphery is formed into an R surface
Get. This chamfer may be a C surface that forms an inclined surface in which the corner portion of the end portion 1a is shaved, but in the example, R chamfering is performed by barrel polishing for ease of manufacturing. Next, as shown in FIG. 11C, the main electrodes 2 and 3 and the end electrodes 4 and 5 are formed on the chamfered piezoelectric material 1 by sputtering. Next, as shown in FIG. 1 (A), the elements 6 to 10 are stacked, and the stacked ones are temporarily fixed with a jig or the like, and as shown in FIG. The agent 12 is applied to the end electrodes 4 and 5 of the same series. The illustrated example shows an example in which the conductive adhesive 12 is applied in a strip shape to all the end electrodes 4 and 5 belonging to the same series. The conductive adhesive 12 is cured after being applied. As shown in FIG. 11 (E), the insulating resin 11 is impregnated except for both rear end surfaces, and the whole is insulation-coated.
Adhesive and integrated. In this case, the surface accuracy of the piezoelectric device can be increased by impregnating the insulating resin 11 except the end faces of the insulating plates 9 and 10. Next, FIG. 11 (F)
As shown in, the lead wires 15 and 1 are connected to the signal terminals 7a and 8a.
Connect 6

【0036】図12はこのように圧電材1の端面を面取
りした場合の効果を従来例と対比して示す図であり、
(A)は従来例の圧電素子6の端部拡大図と該端部にお
ける導電性接着剤12の表層aに発生するY方向(積層
方向)の歪み分布図、(B)は本発明における同様の拡
大図および導電性接着剤12の表層dの歪み分布図、
(C)は本発明と従来例におけるX方向(圧電素子6の
半径方向)の歪み分布図である。なおこの例において
は、圧電材1の厚みを0.5mm、電極2〜5の厚みを
1μm、端部電極4、5上に塗布された導電性接着剤1
2の厚みを20μm、面取りした圧電材1のコーナー部
のR=0.08mmとした。
FIG. 12 is a diagram showing the effect of chamfering the end surface of the piezoelectric material 1 in this manner, in comparison with the conventional example.
(A) is an enlarged view of the end of the piezoelectric element 6 of the conventional example and a strain distribution diagram in the Y direction (stacking direction) generated in the surface layer a of the conductive adhesive 12 at the end, (B) is the same as in the present invention And a strain distribution diagram of the surface layer d of the conductive adhesive 12,
(C) is a strain distribution chart in the X direction (radial direction of the piezoelectric element 6) in the present invention and the conventional example. In this example, the thickness of the piezoelectric material 1 is 0.5 mm, the thickness of the electrodes 2 to 5 is 1 μm, and the conductive adhesive 1 applied on the end electrodes 4 and 5 is used.
The thickness of 2 was 20 μm, and the chamfered corners of the piezoelectric material 1 were R = 0.08 mm.

【0037】このように構成されたものをアクチュエー
タの用途で駆動する場合、一枚の圧電素子6の最大変位
は0.5μm程度となる。圧電素子6間の駆動前の初期
的なb点、すなわち端面における隙間が電極厚みで決ま
るとすれば、このb点における隙間は2μm(=1μm
+1μm)となる。これが圧電素子6の駆動により0.
5μm歪むわけであるから、0.5μm/2μmの歪み
が発生することになる。前述のように、通常、これほど
大きな歪みを吸収できるほど柔軟で、かつ他の要求性能
を満たす導電性接着剤を得ることは困難である。
When the thus constructed device is driven for use as an actuator, the maximum displacement of one piezoelectric element 6 is about 0.5 μm. If the initial point b between the piezoelectric elements 6 before driving, that is, the gap at the end face is determined by the electrode thickness, the gap at this point b is 2 μm (= 1 μm).
+1 μm). When the piezoelectric element 6 is driven, this results in 0.
Since the distortion is 5 μm, a distortion of 0.5 μm / 2 μm is generated. As described above, it is usually difficult to obtain a conductive adhesive that is flexible enough to absorb such a large amount of strain and that satisfies other requirements.

【0038】一方、本実施例においては、圧電材1の端
部1aを面取りしてコーナー部をR面としたことによ
り、導電性接着剤12の表層位置dにおいて、図12
(A)、(B)の歪み分布図の対比から分かるように、
導電性接着剤12がその弾性の範囲で十分吸収できるま
で歪みを低下させることができる。また、図12(C)
に示すように、従来構造においては、接合部であるb点
において大きな歪みが生じるのに対し、本実施例の構造
においては、表層位置であるd点における歪みは圧電素
子端部においてR面において分散され、歪みの大きさも
小さくなり、接合部への歪みの集中もなくなり、導電性
接着剤12のクラック発生が防止される。
On the other hand, in the present embodiment, the end portion 1a of the piezoelectric material 1 is chamfered so that the corner portion becomes the R surface, so that at the surface layer position d of the conductive adhesive 12, as shown in FIG.
As can be seen from the comparison of the strain distribution diagrams of (A) and (B),
The strain can be reduced until the conductive adhesive 12 can be sufficiently absorbed within its elasticity range. In addition, FIG.
As shown in FIG. 4, in the conventional structure, a large strain is generated at the point b which is the joint portion, whereas in the structure of the present embodiment, the strain at the point d which is the surface layer position is at the R surface at the end of the piezoelectric element. Dispersion, the magnitude of strain is reduced, the concentration of strain on the joint is eliminated, and the occurrence of cracks in the conductive adhesive 12 is prevented.

【0039】図12(B)に示すように、前記圧電材1
の端部1aの面取りを行う範囲を、圧電材1の表裏面か
ら面取りを行う厚みsとして設定すると、該面取りを行
う厚みsは、圧電材1の厚みt(図10参照)に対し、
3%〜50%(s/t=0.03〜0.5)、好ましく
は10%〜30%(s/t=0.1〜0.3)程度に設
定することにより、前述した導電性接着剤12のクラッ
ク発生防止効果が期待できる。
As shown in FIG. 12B, the piezoelectric material 1
If the range for chamfering the end portion 1a of the piezoelectric material 1 is set as the thickness s for chamfering from the front and back surfaces of the piezoelectric material 1, the thickness s for performing the chamfering is relative to the thickness t of the piezoelectric material 1 (see FIG. 10).
3% to 50% (s / t = 0.03 to 0.5), preferably 10% to 30% (s / t = 0.1 to 0.3) is set to about the above-mentioned conductivity. The effect of preventing cracking of the adhesive 12 can be expected.

【0040】なお、図8(A)や図9に示すように、隣
接する2つの圧電素子6間で対向しない面の主電極2、
3にそれぞれ接続された端部電極4、5間が電気的に接
続されるように、導電性接着剤12を塗布すれば、導電
性接着剤12の塗布領域を少なくすることができ、ま
た、導電性接着剤12によって圧電素子の歪みを拘束す
る方向の反力が緩和され、導電性接着剤12のクラック
発生がよりよく防止され、圧電素子6の並列接続がより
よく維持される。
As shown in FIG. 8A and FIG. 9, the main electrode 2 on the surface which does not face between the two adjacent piezoelectric elements 6,
If the conductive adhesive 12 is applied so that the end electrodes 4 and 5 respectively connected to 3 are electrically connected, the application area of the conductive adhesive 12 can be reduced, and By the conductive adhesive 12, the reaction force in the direction of restraining the strain of the piezoelectric element is relaxed, cracking of the conductive adhesive 12 is better prevented, and the parallel connection of the piezoelectric elements 6 is better maintained.

【0041】また、図8(B)に示すように、導電性接
着剤12をグループ分けして塗布すれば、導電性接着剤
12によって圧電素子6の歪みを拘束する方向の反力の
圧電体装置の中央部への集中が緩和され、圧電素子6の
並列接続がよりよく維持されると共に、圧電素子6を2
個ずつについて同一系列の端部電極を導電性接着剤12
によって接続する場合に比較し、導電性接着剤12の塗
布工程が簡略化される。
Further, as shown in FIG. 8B, if the conductive adhesives 12 are applied in groups, the piezoelectric material having a reaction force in the direction of restraining the strain of the piezoelectric element 6 by the conductive adhesives 12 is applied. The concentration in the central part of the device is eased, the parallel connection of the piezoelectric elements 6 is better maintained, and
For the end electrodes of the same series for each one, the conductive adhesive 12
The application process of the conductive adhesive 12 is simplified as compared with the case of connecting by using.

【0042】上記実施例においては、圧電材1の形状を
円形としたが、多角形としてもよい。また、本発明は、
アクチュエータとして用いる場合のみならず、センサと
して用いる場合にも適用できる。また、圧電材1の分極
の方法は、予め分極したものを重ねる方法と、圧電素子
を重ねかつ並列接続状態としておき、通常の使用電圧よ
り高い電圧を印加して分極させる方法とがある。また、
本発明において、ワイヤ13と導電性接着剤12とを併
用して端部電極4、5の接続を図る構成としてもよく、
このような併用構造とすれば、圧電素子間の並列接続が
より確実に維持できる。
Although the piezoelectric material 1 has a circular shape in the above embodiment, it may have a polygonal shape. Also, the present invention
It can be applied not only when used as an actuator but also when used as a sensor. The method of polarization of the piezoelectric material 1 includes a method of stacking pre-polarized materials and a method of stacking the piezoelectric elements in parallel and connecting them in parallel and applying a voltage higher than a normal working voltage to polarize them. Also,
In the present invention, the wire 13 and the conductive adhesive 12 may be used together to connect the end electrodes 4 and 5,
With such a combined structure, the parallel connection between the piezoelectric elements can be more reliably maintained.

【0043】[0043]

【発明の効果】請求項1によれば、圧電材の表裏面に主
電極を膜により形成すると共に、第1、第2の端部電極
をそれぞれ表裏面の主電極に接続して設けた圧電素子を
用いた積層型圧電体装置において、同一配列内の端部電
極間をワイヤボンディングにより接続したので、単板積
層方式の圧電体装置を、連続的に大変位を発生させるア
クチュエータとして使用する場合でも、圧電素子の厚み
を薄くすることなく、従って積層工数を増やすことな
く、各圧電素子間の並列接続を確実に維持できる。すな
わち、電極を膜により一体に形成した単板積層方式の圧
電体装置においては、溶接部すなわち端面には、対向電
極間のギャップの存在により、圧電素子駆動による歪み
は殆ど発生しないから、溶接部には余分な応力が加わら
ない。また、ワイヤは本発明で対象とする程度の微小変
位に対して十分な撓み性を持っているため、ワイヤが圧
電素子間の変位を十分吸収し、溶接部にワイヤの引張応
力も発生しないから、溶接部におけるクラック発生やワ
イヤの断線のおそれがなく、圧電素子間の並列接続が確
実に維持できる。
According to the first aspect of the present invention, the piezoelectric material is formed by forming the main electrodes by films on the front and back surfaces of the piezoelectric material and connecting the first and second end electrodes to the front and back main electrodes, respectively. In the laminated piezoelectric device using the element, since the end electrodes in the same array are connected by wire bonding, the single plate laminated piezoelectric device is used as an actuator for continuously generating large displacement. However, the parallel connection between the piezoelectric elements can be reliably maintained without reducing the thickness of the piezoelectric elements and thus without increasing the number of stacking steps. That is, in the single-plate stacking type piezoelectric device in which the electrodes are integrally formed by the film, the welded portion, that is, the end face, has almost no distortion due to the piezoelectric element driving due to the existence of the gap between the opposed electrodes. No extra stress is applied to the. In addition, since the wire has sufficient flexibility with respect to a minute displacement that is a target of the present invention, the wire sufficiently absorbs the displacement between the piezoelectric elements and the tensile stress of the wire is not generated in the welded portion. In addition, there is no risk of cracks or wire breakage in the welded portion, and parallel connection between the piezoelectric elements can be reliably maintained.

【0044】請求項2によれば、前記圧電材の外周部を
面取りし、同一系列の端部電極間を導電性接着剤により
接続したので、圧電素子駆動により導電性接着剤に作用
する歪みが分散し緩和され、導電性接着剤の弾性の範囲
で十分吸収できるまで歪みを低下させることができ、導
電性接着剤のクラック発生を防止でき、単板積層方式の
圧電体装置を、連続的に大変位を発生させるアクチュエ
ータとして使用する場合でも、各圧電素子間の並列接続
を確実に維持できる。
According to the second aspect, since the outer peripheral portion of the piezoelectric material is chamfered and the end electrodes of the same series are connected by the conductive adhesive, the strain applied to the conductive adhesive by driving the piezoelectric element is reduced. Dispersed and relaxed, the strain can be reduced until it can be sufficiently absorbed within the elastic range of the conductive adhesive, cracking of the conductive adhesive can be prevented, and a single-plate laminated piezoelectric device can be continuously Even when it is used as an actuator that generates a large displacement, parallel connection between the piezoelectric elements can be reliably maintained.

【0045】請求項3によれば、ワイヤボンディングと
導電性接着剤とを併用して端部電極の接続を行ったの
で、圧電素子間の並列接続がより確実に維持できる。
According to the third aspect, since the end electrodes are connected by using the wire bonding and the conductive adhesive together, the parallel connection between the piezoelectric elements can be more surely maintained.

【0046】請求項4によれば、前記同一配列内の積層
方向に連なる端部電極を複数の端部電極からなるグルー
プに分け、それぞれのグループ内の端部電極間が電気的
に接続されるように、導電性接着剤を塗布したので、導
電性接着剤によって圧電素子の歪みを拘束する方向の反
力の圧電体装置の中央部への集中が緩和され、圧電素子
の並列接続がよりよく維持されると共に、2個の圧電素
子ずつについて同一系列の端部電極を導電性接着剤によ
って接続する場合に比較し、導電性接着剤の塗布工程が
簡略化される。
According to the fourth aspect, the end electrodes connected in the stacking direction in the same array are divided into a group consisting of a plurality of end electrodes, and the end electrodes in each group are electrically connected. As described above, since the conductive adhesive is applied, the conductive adhesive alleviates the concentration of the reaction force in the direction of restraining the strain of the piezoelectric element on the central portion of the piezoelectric device, and the parallel connection of the piezoelectric elements is improved. In addition to being maintained, the application process of the conductive adhesive is simplified as compared with the case where the end electrodes of the same series are connected by the conductive adhesive for every two piezoelectric elements.

【0047】請求項5によれば、隣接する2つの圧電素
子間で対向しない面の主電極にそれぞれ接続された端部
電極間が電気的に接続されるように、導電性接着剤を塗
布したので、圧電材の表裏面におけるギャップが存在す
る積層型圧電体装置において、電気的接続が確実に緩和
され、また、導電性接着剤の塗布領域を少なくすること
ができるため、導電性接着剤によって圧電素子の歪みを
拘束する方向の反力が緩和され、導電性接着剤のクラッ
ク発生がよりよく防止され、圧電素子の並列接続がより
よく維持される。
According to the fifth aspect, the conductive adhesive is applied so that the end electrodes, which are respectively connected to the main electrodes on the surfaces not facing each other between the two adjacent piezoelectric elements, are electrically connected. Therefore, in the laminated piezoelectric device in which the gaps on the front and back surfaces of the piezoelectric material exist, the electrical connection is reliably relaxed, and the application area of the conductive adhesive can be reduced. The reaction force in the direction of restraining the strain of the piezoelectric element is relaxed, cracking of the conductive adhesive is better prevented, and the parallel connection of the piezoelectric elements is better maintained.

【0048】請求項6によれば、圧電素子の表裏面の主
電極および端部電極をスパッタリングにより同時かつ一
体に形成したので、端部電極を回り込みよく形成でき、
かつ電極を薄く形成でき、荷重特性が向上すると共に、
面精度があがり、圧電素子どうしの密着性が向上する。
また、圧電材のキューリー温度より低い温度で電極を形
成できるので、特性に影響を与えるおそれがない。
According to the sixth aspect, since the main electrodes and the end electrodes on the front and back surfaces of the piezoelectric element are formed simultaneously and integrally by sputtering, the end electrodes can be formed so as to wrap around well.
Moreover, the electrodes can be formed thin, and the load characteristics are improved.
The surface accuracy is improved and the adhesion between the piezoelectric elements is improved.
Moreover, since the electrodes can be formed at a temperature lower than the Curie temperature of the piezoelectric material, there is no fear of affecting the characteristics.

【0049】請求項7によれば、表裏面の主電極と、第
1または第2の端部電極のいずれかとを有する板状をな
す端部圧電素子を、表裏面の主電極のうち端部電極を有
する側の面を外側にして、複数の圧電素子の積層体の両
端に重畳し、前記各端部圧電素子に、それぞれ電気信号
入出力用の信号端子を有する電極板を介して絶縁板を重
畳したので、電極板を圧電素子に単に重ねるだけで引き
出し部の構成が行え、かつ圧電素子の電極に引き出し部
を設ける場合に比較して強度が大となる。
According to the seventh aspect, the plate-shaped end piezoelectric element having the main electrodes on the front and back surfaces and either the first or the second end electrode is provided. Insulating plates are stacked on both ends of a laminated body of a plurality of piezoelectric elements with the surface having electrodes as an outer side, and through the electrode plates having signal terminals for electric signal input / output on each of the end piezoelectric elements. Since the electrodes are superposed on each other, the lead-out portion can be constructed by simply overlapping the electrode plate on the piezoelectric element, and the strength is greater than that in the case where the lead-out portion is provided on the electrode of the piezoelectric element.

【0050】請求項8によれば、積層型圧電体装置に絶
縁樹脂を含浸することにより一体化したので、絶縁耐圧
を高め、耐湿性を向上させることができる。
According to the eighth aspect, since the laminated piezoelectric device is integrated by impregnating the insulating resin, the dielectric strength can be increased and the moisture resistance can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明による積層型圧電体装置の一実
施例をワイヤを付けていない状態を示す斜視図、(B)
は該実施例においてワイヤを付けた状態を示す斜視図で
ある。
FIG. 1A is a perspective view showing an embodiment of a laminated piezoelectric device according to the present invention in which no wire is attached, and FIG.
FIG. 4 is a perspective view showing a state in which a wire is attached in the embodiment.

【図2】(A)は該実施例の構成要素を示す分解斜視
図、(B)は該実施例の圧電素子の平面図、(C)はそ
の底面図、(D)は該実施例における圧電素子の相互の
位置関係を示す分解斜視図である。
2A is an exploded perspective view showing components of the embodiment, FIG. 2B is a plan view of a piezoelectric element of the embodiment, FIG. 2C is a bottom view thereof, and FIG. FIG. 3 is an exploded perspective view showing a mutual positional relationship of piezoelectric elements.

【図3】(A)、(B)はそれぞれ該実施例の上端の端
部圧電素子を示す平面図および底面図、(C)、(D)
はそれぞれ該実施例の下端の端部圧電素子を示す平面図
および底面図、(E)、(F)、(G)はそれぞれ回り
込み電極を有する圧電素子の平面図、底面図、断面図で
ある。
3A and 3B are respectively a plan view and a bottom view showing an end piezoelectric element at the upper end of the embodiment, and FIGS. 3C and 3D.
FIG. 3A is a plan view and a bottom view showing an end piezoelectric element at the lower end of the embodiment, and (E), (F), and (G) are a plan view, a bottom view, and a sectional view of a piezoelectric element having a wraparound electrode, respectively. .

【図4】該実施例のワイヤの配設構造の一例を示す断面
図である。
FIG. 4 is a cross-sectional view showing an example of a wire disposition structure of the embodiment.

【図5】本発明のワイヤの配設構造の他の例を示す断面
図である。
FIG. 5 is a cross-sectional view showing another example of the wire disposition structure of the present invention.

【図6】本発明のワイヤの配設構造のさらに他の例を示
す断面図である。
FIG. 6 is a cross-sectional view showing still another example of the wire disposition structure of the present invention.

【図7】(A)、(B)はそれぞれ図6の例における圧
電素子端面部構造を駆動していない状態で示す断面図お
よび駆動により歪みが発生した状態で示す断面図であ
る。
7A and 7B are a cross-sectional view showing a state in which the piezoelectric element end surface portion in the example of FIG. 6 is not driven and a cross-sectional view showing a state in which distortion is generated by driving.

【図8】(A)、(B)はそれぞれ本発明の他の実施例
を示す斜視図である。
8A and 8B are perspective views showing another embodiment of the present invention.

【図9】図8(A)の縦断面図である。FIG. 9 is a vertical cross-sectional view of FIG.

【図10】本発明の他の実施例を示す縦断面図である。FIG. 10 is a vertical sectional view showing another embodiment of the present invention.

【図11】図10の実施例の製造工程図である。FIG. 11 is a manufacturing process diagram of the embodiment in FIG.

【図12】(A)、(B)はそれぞれ従来例および本発
明の実施例における圧電素子の端面構造を積層方向の歪
み分布を付属させて示す断面図、(C)は圧電素子の内
外方向の歪み分布を従来例と本発明とで対比して示す図
である。
12A and 12B are cross-sectional views showing the end face structures of the piezoelectric element in the conventional example and the example of the present invention with the strain distribution in the stacking direction attached, and FIG. FIG. 5 is a diagram showing the strain distribution of the conventional example in comparison with the conventional example.

【図13】従来の積層型圧電体装置を示す縦断面図であ
る。
FIG. 13 is a vertical cross-sectional view showing a conventional laminated piezoelectric device.

【図14】(A)、(B)はそれぞれ図13の従来例に
おける圧電素子端面部構造を駆動していない状態で示す
断面図および駆動により歪みが発生した状態を示す断面
図である。
14A and 14B are a cross-sectional view showing a state where the piezoelectric element end face structure in the conventional example of FIG. 13 is not driven and a cross-sectional view showing a state where distortion is generated by driving.

【符号の説明】[Explanation of symbols]

1:圧電材、1a:端部、2、3:主電極、4:第1の
端部電極、5:第2の端部電極、6、6A、6B:圧電
素子、7、8:電極板、9、10:絶縁板、11:絶縁
樹脂、12:導電性接着剤、13:ワイヤ、14:溶接
部、15、16:リード線
1: Piezoelectric material, 1a: Edge, 2, 3: Main electrode, 4: First edge electrode, 5: Second edge electrode, 6, 6A, 6B: Piezoelectric element, 7, 8: Electrode plate , 9, 10: insulating plate, 11: insulating resin, 12: conductive adhesive, 13: wire, 14: welded part, 15, 16: lead wire

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】厚み方向に分極した複数の板状圧電素子を
備え、 各圧電素子は成形された板状の圧電材の表裏面に膜状の
主電極を形成し、かつ圧電材の表面、裏面に形成した主
電極にそれぞれ接続して前記圧電材の端面に形成された
膜状の第1の端部電極と第2の端部電極とを有してな
り、 隣接する圧電素子の第1の端部電極と第2の端部電極と
が積層方向に連なるように配列し、かつ隣接する圧電素
子の分極方向が逆方向となるように複数枚の圧電素子を
積層し、 圧電素子の積層方向に連なる同一配列内の端部電極間を
ワイヤボンディングにより接続したことを特徴とする積
層型圧電体装置。
1. A plurality of plate-shaped piezoelectric elements polarized in the thickness direction, each piezoelectric element having a film-shaped main electrode formed on the front and back surfaces of a molded plate-shaped piezoelectric material, and a surface of the piezoelectric material, A first end electrode and a second end electrode, which are film-like and are connected to the main electrodes formed on the back surface and are formed on the end faces of the piezoelectric material, respectively. End electrodes and second end electrodes are arranged so as to be continuous in the stacking direction, and a plurality of piezoelectric elements are stacked such that the polarization directions of adjacent piezoelectric elements are opposite to each other. A laminated piezoelectric device, characterized in that end electrodes in the same array extending in the same direction are connected by wire bonding.
【請求項2】厚み方向に分極した複数の板状圧電素子を
備え、 各圧電素子は成形された板状の圧電材の表裏面に膜状の
主電極を形成し、かつ圧電材の表面、裏面に形成した主
電極にそれぞれ接続して前記圧電材の端面に形成された
膜状の第1の端部電極と第2の端部電極とを有してな
り、 隣接する圧電素子の第1の端部電極と第2の端部電極と
が積層方向に連なるように配列し、かつ隣接する圧電素
子の分極方向が逆方向となるように複数枚の圧電素子を
積層し、 前記圧電材の外周部を面取りし、 同一配列内の端部電極間を導電性接着剤により接続した
ことを特徴とする積層型圧電体装置。
2. A plurality of plate-shaped piezoelectric elements polarized in the thickness direction, each piezoelectric element having a film-shaped main electrode formed on the front and back surfaces of a molded plate-shaped piezoelectric material, and a surface of the piezoelectric material, A first end electrode and a second end electrode, which are film-like and are connected to the main electrodes formed on the back surface and are formed on the end faces of the piezoelectric material, respectively. End electrodes and second end electrodes are arranged so as to be continuous in the stacking direction, and a plurality of piezoelectric elements are stacked such that adjacent piezoelectric elements have opposite polarization directions. A laminated piezoelectric device, wherein the outer peripheral portion is chamfered, and end electrodes in the same array are connected by a conductive adhesive.
【請求項3】請求項2において、 同一配列内の端部電極間を導電性接着剤に加えてワイヤ
ボンディングにより接続したことを特徴とする積層型圧
電体装置。
3. The laminated piezoelectric device according to claim 2, wherein the end electrodes in the same array are connected by a wire bonding in addition to a conductive adhesive.
【請求項4】請求項2または3において、 前記同一配列内の積層方向に連なる端部電極を複数の端
部電極からなるグループに分け、それぞれのグループ内
の端部電極間が電気的に接続されるように、導電性接着
剤を塗布したことを特徴とする積層型圧電体装置。
4. The end electrode according to claim 2, wherein the end electrodes connected in the stacking direction in the same array are divided into a group of a plurality of end electrodes, and the end electrodes in each group are electrically connected. As described above, a laminated piezoelectric device in which a conductive adhesive is applied.
【請求項5】請求項2から4までのいずれかにおいて、 隣接する2つの圧電素子間で対向しない面の主電極にそ
れぞれ接続された端部電極間が電気的に接続されるよう
に、導電性接着剤を塗布したことを特徴とする積層型圧
電体装置。
5. The conductive material according to claim 2, wherein the end electrodes that are respectively connected to the main electrodes on the surfaces that do not face each other between two adjacent piezoelectric elements are electrically connected to each other. A laminated piezoelectric device characterized by being coated with a conductive adhesive.
【請求項6】請求項1から5までのいずれかにおいて、 圧電素子の表裏面の主電極および端部電極をスパッタリ
ングにより同時かつ一体に形成したことを特徴とする積
層型圧電体装置。
6. A laminated piezoelectric device according to claim 1, wherein the main electrodes and the end electrodes on the front and back surfaces of the piezoelectric element are formed simultaneously and integrally by sputtering.
【請求項7】請求項1から6までのいずれかにおいて、 表裏面の主電極と、第1または第2の端部電極のいずれ
かとを有する板状をなす端部圧電素子を、端部電極を有
する主電極の面を外側にして、複数の圧電素子の積層体
の両端に重畳し、 前記各端部圧電素子に、それぞれ電気信号入出力用の電
極板を介して絶縁板を重畳したことを特徴とする積層型
圧電体装置。
7. The end-portion piezoelectric element according to claim 1, wherein the end-portion piezoelectric element is a plate having main electrodes on the front and back surfaces and one of the first and second end electrodes. With the main electrode surface on the outside, superposed on both ends of a laminated body of a plurality of piezoelectric elements, and on each end piezoelectric element, an insulating plate is superposed via electrode plates for inputting and outputting electric signals. A laminated piezoelectric device characterized by the following.
【請求項8】請求項1から7までのいずれかにおいて、 積層型圧電体装置に絶縁樹脂を含浸することにより該積
層型圧電体装置を一体化したことを特徴とする積層型圧
電体装置。
8. A laminated piezoelectric device according to claim 1, wherein the laminated piezoelectric device is integrated by impregnating the laminated piezoelectric device with an insulating resin.
JP7137140A 1995-05-11 1995-05-11 Multilayer piezoelectric device Withdrawn JPH08306979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7137140A JPH08306979A (en) 1995-05-11 1995-05-11 Multilayer piezoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7137140A JPH08306979A (en) 1995-05-11 1995-05-11 Multilayer piezoelectric device

Publications (1)

Publication Number Publication Date
JPH08306979A true JPH08306979A (en) 1996-11-22

Family

ID=15191760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7137140A Withdrawn JPH08306979A (en) 1995-05-11 1995-05-11 Multilayer piezoelectric device

Country Status (1)

Country Link
JP (1) JPH08306979A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101271A (en) * 2003-09-25 2005-04-14 Kyocera Corp Piezoelectric element manufacturing method and piezoelectric ceramic manufacturing method
US6940213B1 (en) * 1999-03-04 2005-09-06 Robert Bosch Gmbh Piezoelectric actuator
US6994762B2 (en) * 2003-02-10 2006-02-07 The Boeing Company Single crystal piezo (SCP) apparatus and method of forming same
JP2006185932A (en) * 2004-12-24 2006-07-13 Denso Corp Multilayer piezoelectric element and method for manufacturing the same
JP2008034542A (en) * 2006-07-27 2008-02-14 Kyocera Corp Multilayer piezoelectric element and jetting apparatus using the same
JP2010103977A (en) * 2008-09-25 2010-05-06 Kyocera Corp Vibrator
JP2010518596A (en) * 2007-02-02 2010-05-27 エプコス アクチエンゲゼルシャフト Multilayer component and method of manufacturing multilayer component
WO2012132660A1 (en) * 2011-03-28 2012-10-04 日本碍子株式会社 Piezoelectric device and production method for green compact being molded body of piezoelectric device prior to sintering

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940213B1 (en) * 1999-03-04 2005-09-06 Robert Bosch Gmbh Piezoelectric actuator
US6994762B2 (en) * 2003-02-10 2006-02-07 The Boeing Company Single crystal piezo (SCP) apparatus and method of forming same
JP2005101271A (en) * 2003-09-25 2005-04-14 Kyocera Corp Piezoelectric element manufacturing method and piezoelectric ceramic manufacturing method
JP2006185932A (en) * 2004-12-24 2006-07-13 Denso Corp Multilayer piezoelectric element and method for manufacturing the same
DE102005061816B4 (en) * 2004-12-24 2014-02-06 Denso Corporation Method for producing a stacked piezoelectric element
JP2008034542A (en) * 2006-07-27 2008-02-14 Kyocera Corp Multilayer piezoelectric element and jetting apparatus using the same
JP2010518596A (en) * 2007-02-02 2010-05-27 エプコス アクチエンゲゼルシャフト Multilayer component and method of manufacturing multilayer component
US9728706B2 (en) 2007-02-02 2017-08-08 Epcos Ag Method for producing a multilayer element
JP2010103977A (en) * 2008-09-25 2010-05-06 Kyocera Corp Vibrator
WO2012132660A1 (en) * 2011-03-28 2012-10-04 日本碍子株式会社 Piezoelectric device and production method for green compact being molded body of piezoelectric device prior to sintering
JP5877195B2 (en) * 2011-03-28 2016-03-02 日本碍子株式会社 Piezoelectric device and method for producing green molded body which is molded body before firing
US9608194B2 (en) 2011-03-28 2017-03-28 Ngk Insulators, Ltd. Piezoelectric device and production method for green compact being molded body of piezoelectric device prior to sintering

Similar Documents

Publication Publication Date Title
US4780639A (en) Electrostriction effect element
JPH08242025A (en) Piezoelectric actuator
US11393972B2 (en) Multi-layer piezoelectric ceramic component and piezoelectric device
JPH08306979A (en) Multilayer piezoelectric device
US6452312B1 (en) Piezoelectric laminate body
JP6717222B2 (en) Vibrating device
JPH0740613B2 (en) Method for manufacturing laminated piezoelectric material
JPH055387B2 (en)
JPS59145583A (en) Laminated piezoelectric displacement element
JP2003324223A (en) Multilayer piezoelectric element
JP2892672B2 (en) Stacked displacement element
JP5472218B2 (en) Piezoelectric element
JPH01261879A (en) Laminated displacement element
JPS63299384A (en) Layer-built type piezoelectric actuator
JPH03106082A (en) Laminated piezoelectric actuator element
JP3250918B2 (en) Multilayer piezoelectric element
JP2941456B2 (en) Stacked displacement element
JP3017784B2 (en) Stacked displacement element
JPS61276278A (en) Laminated piezoelectric material
JPH02203578A (en) Manufacturing method of laminated displacement element
JP2505024Y2 (en) Multilayer ceramic electrostrictive element
JP3184991B2 (en) Multilayer piezoelectric actuator
JPH02251186A (en) Laminated displacement element
JPH0372684A (en) Laminated piezoelectric element
JP2001036156A (en) Electrode for laminated oscillator and laminated oscillator using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806