[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08289684A - Plant raising facility - Google Patents

Plant raising facility

Info

Publication number
JPH08289684A
JPH08289684A JP7102297A JP10229795A JPH08289684A JP H08289684 A JPH08289684 A JP H08289684A JP 7102297 A JP7102297 A JP 7102297A JP 10229795 A JP10229795 A JP 10229795A JP H08289684 A JPH08289684 A JP H08289684A
Authority
JP
Japan
Prior art keywords
compartment
cooling
plant
nutrient solution
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7102297A
Other languages
Japanese (ja)
Inventor
Yoshihiko Mizushima
宜彦 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP7102297A priority Critical patent/JPH08289684A/en
Publication of JPH08289684A publication Critical patent/JPH08289684A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)

Abstract

PURPOSE: To provide a plant raising facility capable of controlling energy cost to low levels. CONSTITUTION: A 1st compartment 100 for plant hydroponics is fed with a nutrient fluid consisting of fertilizer-contg. water. The nutrient fluid is then guided to the outside of the 1st compartment 100, i.e., a 2nd compartment 200 where a part of the fluid is evaporated to effect cooling the fluid by the heat of vaporization. The cooled nutrient fluid is guided to the 1st compartment 100 and set to be served as a cooling medium for cooling the space of the compartment 100. If a 3rd compartment 300 is provide above and adjacently to the 1st compartment 100 in an air-permeable manner, air raised in its temperature is allowed to flow from the 1st compartment 100 into the 3rd compartment 300, resulting in cooling the 1st compartment 100. If the 2nd compartment 200 is provided adjacently to the 3rd compartment 300 through a wall 305 of good thermal conductivity, further reduction of space cooling energy cost becomes possible synergistically with the above effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、いわゆる植物工場に係
り、特に詳細には水に肥料等を含ませた養液により植物
を閉空間内で水耕栽培する完全制御型の植物栽培施設に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called plant factory, and more particularly to a completely controlled plant cultivation facility for hydroponically cultivating plants in a closed space with a nutrient solution containing water containing fertilizer. .

【0002】[0002]

【従来の技術】植物の水耕栽培施設は植物の成長が速い
こと、作業の集約性が高いこと等の長所を持つ。特に、
後でも述べるように完全制御型水耕施設は、上記の長所
に加えて、生産性が高いこと、栽培日数が制御ないし予
測可能で生産計画を立てやすいこと、無農薬・無病虫害
にできるため、付加価値性が高いという特長を持つこと
が知られている。
2. Description of the Related Art A hydroponic cultivation facility for plants has advantages such as rapid growth of plants and high work intensity. In particular,
As will be described later, in addition to the above advantages, the fully-controlled hydroponic facility has high productivity, can control or predict the number of cultivation days and is easy to make a production plan, and can prevent pesticides and disease-free pests. It is known to have the feature of high added value.

【0003】上記の従来の植物栽培施設の主たる問題点
は、運転に要するエネルギーのコストであり、そのうち
重要な部分を占めるのは、夏季の高温に対処するための
冷房コストである。したがって、冷房の高効率化は植物
栽培水耕施設にとって最大の問題点である。夏季の高温
は、通常の太陽光使用施設(いわゆるガラス温室ハウス
など)においては、太陽光の入射を防ぐための減光シー
トを展開することで対処されるが、その設備のためのコ
ストの外、植物に有益な波長の光も弱めるので、不利益
も大きい。
The main problem of the above-mentioned conventional plant cultivation facilities is the cost of energy required for operation, and an important part thereof is the cooling cost for coping with the high temperature in summer. Therefore, increasing the efficiency of cooling is the biggest problem for plant cultivation hydroponics facilities. The high temperature in summer is dealt with by deploying a dimmer sheet to prevent sunlight from entering in a facility using ordinary sunlight (a so-called glass greenhouse house, etc.). However, it also weakens the wavelength of light that is beneficial to plants, which is a big disadvantage.

【0004】これに対し、完全制御型施設とは、太陽光
を使用しないで人工光照明を用いた水耕栽培施設であ
り、したがって断熱性のよい壁を持ち、夏季の熱の侵
入、冬季の熱の損失を防ぐ。また、炭酸ガスを施肥して
成長速度を高めることが行われるので、気密性も比較的
良好に作られている。このことは、暖気・冷気の外部と
の交流を防ぎ、病害虫の侵入を防ぐためにも有効であ
る。この場合の建屋の構造を略密閉構造ないし準気密的
構造ということとする。
On the other hand, the fully controlled facility is a hydroponic cultivation facility that uses artificial light illumination without using sunlight, and therefore has a well-insulated wall and is capable of invading heat in summer and in winter. Prevents heat loss. In addition, since carbon dioxide is applied to increase the growth rate, the airtightness is relatively good. This is also effective for preventing warm and cold air from interacting with the outside and preventing pests from entering. In this case, the structure of the building will be referred to as a substantially closed structure or a semi-airtight structure.

【0005】[0005]

【発明が解決しようとする課題】準気密的構造では、四
季を通じて外界の気温変動の影響が内部に及ぶことが少
なく、したがって良好な環境を保ちうる。ところが、人
工照明のための発熱源を内部に有するため、特に夏季に
おいての、しかし唯一の欠点として、内部温度の上昇は
避けがたい。そのため従来は、製氷機やヒートポンプな
どの冷房装置を併用することになっていた。このように
植物栽培施設においては、夏季の冷房コストが常に重要
な問題点となり、この冷房コストを節減する方法が望ま
れていた。
With the quasi-airtight structure, the influence of temperature fluctuations in the outside world does not affect the inside throughout the four seasons, and therefore a good environment can be maintained. However, since the interior has a heat source for artificial lighting, the rise in internal temperature is unavoidable, especially in summer, but as the only drawback. Therefore, conventionally, a cooling device such as an ice maker and a heat pump has been used together. As described above, in the plant cultivation facility, the cooling cost in summer has always been an important issue, and a method for reducing the cooling cost has been desired.

【0006】ところで、従来の簡易冷房方法として、例
えば蒸発冷却法がある。通常は水を細霧状となし、これ
を通過して冷却された空気を施設内に送風機によって送
り込むものである。冷却特性は水のエンタルピー曲線に
よって決定されることはよく知られており、夏季に条件
が良ければ、外気温より7℃程度、温度を下げられるこ
とが判っている。これはコストが安く、実用的な方法で
ある。
By the way, as a conventional simple cooling method, for example, there is an evaporative cooling method. Usually, water is made into a fine mist, and the air cooled through this is sent into the facility by a blower. It is well known that the cooling characteristics are determined by the enthalpy curve of water, and it has been known that the temperature can be lowered by about 7 ° C from the outside temperature if the conditions are good in summer. This is a low cost and practical method.

【0007】ただし、この蒸発冷却法の問題点は、施設
内の湿度が高まることであり、更に詳細には、湿度上昇
に伴って冷却効率が低下してしまうため、条件が劣化す
る場合には効果を失ってしまうことである。また、気密
を保つことができない欠点も持つ。
However, the problem with this evaporative cooling method is that the humidity inside the facility increases, and more specifically, the cooling efficiency decreases as the humidity increases, so if the conditions deteriorate. It means losing the effect. In addition, it also has the drawback that airtightness cannot be maintained.

【0008】そこで本発明は、この欠点を解消して、従
来の蒸発冷却法を利用した施設を改良し高効率で安価な
冷房を実現するものである。
Therefore, the present invention solves this drawback and improves the facility utilizing the conventional evaporative cooling method to realize highly efficient and inexpensive cooling.

【0009】[0009]

【課題を解決するための手段】本発明は、養液により植
物を水耕栽培する完全制御型の植物栽培施設において、
略密閉構造をなし、植物を水耕栽培するための栽培装置
が内部に配置される第1の区画と、養液を前記栽培装置
に循環させると共に、当該養液を蒸発により冷却し、養
液を冷媒として第1の区画に送り込む処理装置が配置さ
れる第2の区画とを備えることを特徴とする。
The present invention provides a completely controlled plant cultivation facility for hydroponically growing a plant with a nutrient solution,
A first compartment, which has a substantially closed structure and in which a cultivation device for hydroponically cultivating a plant is arranged, and a nutrient solution is circulated through the cultivation device, and the nutrient solution is cooled by evaporation to obtain a nutrient solution. And a second section in which a processing device that sends the refrigerant to the first section is arranged.

【0010】また、本発明は、養液により植物を水耕栽
培する完全制御型の植物栽培施設において、略密閉構造
をなし、植物を水耕栽培するための栽培装置が内部に配
置される第1の区画と、第1の区画の上方に配置される
と共に、当該第1の区画との間で通気可能な構造をなす
第3の区画とを備えることを特徴とする。
The present invention is also a complete control type plant cultivation facility for hydroponically cultivating a plant with a nutrient solution, which has a substantially closed structure and in which a cultivating apparatus for hydroponically cultivating the plant is arranged. It is characterized by comprising one compartment and a third compartment arranged above the first compartment and having a structure capable of being ventilated between the first compartment and the first compartment.

【0011】また、本発明は、養液により植物を水耕栽
培する完全制御型の植物栽培施設において、略密閉構造
をなし、植物を水耕栽培するための栽培装置が内部に配
置される第1の区画と、養液を前記栽培装置に循環させ
ると共に、当該養液を蒸発により冷却し、養液を冷媒と
して第1の区画に送り込む処理装置が配置される第2の
区画と、第1の区画の上方に配置されると共に、当該第
1の区画との間で通気可能な構造をなし、かつ、第2の
区画との間の隔壁が熱伝導性の良好な材料で形成されて
いる第3の区画とを備えることを特徴とする。
The present invention is also a complete control type plant cultivation facility for hydroponically cultivating a plant with a nutrient solution, wherein a cultivation device for hydroponically cultivating a plant is disposed inside, which has a substantially closed structure. No. 1 section, a second section in which a nutrient solution is circulated in the cultivating apparatus, a treatment apparatus that cools the nutrient solution by evaporation and sends the nutrient solution to the first section as a refrigerant is provided. Of the first partition, and the partition wall between the second partition and the second partition is formed of a material having good thermal conductivity. And a third section.

【0012】[0012]

【作用】本発明の第1の態様によれば、養液を冷媒とし
て用いることで、冷房コストの低減という目的を達成し
得る。すなわち、水耕栽培装置においては植物培養液が
循環しているので、この一部を別に設けた蒸発室(第2
の区画)に導く。循環用のポンプも水も既存のものなの
で特別に新しく用意する必要がない。つまり、水耕栽培
と組合わせる利点が大きい。
According to the first aspect of the present invention, the purpose of reducing the cooling cost can be achieved by using the nutrient solution as the refrigerant. That is, since the plant culture solution circulates in the hydroponic cultivation apparatus, a part of this is separately provided in the evaporation chamber (second
Section). The circulation pump and water are already existing, so there is no need to prepare a new one. In other words, it has a great advantage in combination with hydroponics.

【0013】蒸発室は栽培室(第1の区画)とは別に設
置され、ここでは循環養液が細霧状あるいは広面積に展
開される。蒸発室内には除湿器ないし送風機が設けら
れ、これにより蒸発熱を奪うようになっている。
The evaporation chamber is installed separately from the cultivation chamber (first section), in which the circulating nutrient solution is spread in a fine mist or in a wide area. A dehumidifier or blower is provided in the evaporation chamber to remove the heat of evaporation.

【0014】冷却された水(冷却後の養液)は凝縮し
て、栽培室に還流する。この冷却液は栽培室内でその気
温を下げるために、つまり冷媒として使われる。一般に
水耕装置においては、循環ポンプのパワーが水にも与え
られるため、水温は気温より高くなる傾向がある。植物
によっては、低い方が好ましい場合も多いが、そのよう
には従来できなかった。本発明によって、蒸発の程度を
調節することにより、気温と水温との高低関係は自由に
設定できるようになった。
The cooled water (cooled nutrient solution) is condensed and returned to the cultivation room. This cooling liquid is used in the cultivation room to lower its temperature, that is, as a refrigerant. Generally, in a hydroponic device, the power of the circulation pump is also applied to water, so that the water temperature tends to be higher than the air temperature. Depending on the plant, the lower one is often preferable, but it has not been possible so far. According to the present invention, by adjusting the degree of evaporation, it becomes possible to freely set the height relationship between the air temperature and the water temperature.

【0015】蒸発室における除湿器は、蒸発冷却の効率
を高めることに目的があるので、その点で単なる除湿器
ではない。この目的のために、除湿器は栽培室でなく開
放された蒸発室にあっても、蒸発冷却装置の直接の内部
に除湿面があり、その駆動電源、発熱部は離して置くよ
うにされる。
Since the dehumidifier in the evaporation chamber has the purpose of increasing the efficiency of evaporative cooling, it is not a simple dehumidifier in that respect. For this purpose, the dehumidifier has a dehumidifying surface directly inside the evaporative cooling device even if the dehumidifier is not in the cultivation room but in the open evaporation chamber. .

【0016】このようにして、蒸発室内で製造された冷
水は栽培室に還流することで、栽培室の冷房に有効とな
る。栽培室内部の温度を過度に高めることなく、冷房が
できることになる。
In this way, the cold water produced in the evaporation chamber is returned to the cultivation room, which is effective for cooling the cultivation room. Cooling can be performed without excessively raising the temperature inside the cultivation room.

【0017】従来の蒸発式冷房システムは、既に説明し
たように、高温の外気を吸引し蒸発に使用して冷却する
もので、無駄が多い。かつまた、栽培室内に直接設置し
て、その空気を冷却して栽培室内を冷却せんとするもの
であった。
As described above, the conventional evaporative cooling system sucks hot outside air and uses it for evaporation to cool it, which is wasteful. Moreover, it was installed directly in the cultivation room to cool the air to cool the cultivation room.

【0018】これに対し、本発明では、空気でなく水を
冷却媒体として用いるもので、また、蒸発冷却装置は別
の第2の区画内に置くもので、同じ蒸発法でも、このよ
うな方法は、未だ提案されなかったのである。この方法
の特長は以下のようである。
On the other hand, in the present invention, water is used as a cooling medium instead of air, and the evaporative cooling device is placed in another second compartment. Even in the same evaporation method, such a method is used. Was not proposed yet. The features of this method are as follows.

【0019】特に完全制御型では植物に対して炭酸ガス
施肥の関係で準密閉構造をとる必要があって、従来方式
のように直接外気を取入れたり循環したりすることはで
きず、本発明のように水による冷却方式しかとることが
できない。
Particularly, in the case of the complete control type, it is necessary to take a semi-closed structure in relation to the fertilization of carbon dioxide with respect to the plant, and it is not possible to directly take in or circulate the outside air as in the conventional method. Only water cooling system can be used.

【0020】熱効率の点から、空気冷却と水冷却とを比
較することは、状況によって変るため決めにくいが、今
の場合には明瞭な差がある。即ち、大きな栽培施設に比
して小さな通風型蒸発室では内部の温度を下げやすいた
め、水の蒸発と凝縮が効率的に起るので、冷却効率が高
い。水の蒸発速度は凝縮部との距離と温度差によって決
まるので、第2の区画である別室の蒸発室は、栽培室と
は無関係に最適の熱設計を行うことができるからであ
る。
From the viewpoint of thermal efficiency, it is difficult to determine the comparison between air cooling and water cooling because it varies depending on the situation, but in the present case, there is a clear difference. That is, in a small ventilation type evaporation chamber as compared with a large cultivation facility, the internal temperature is easily lowered, so that water is efficiently evaporated and condensed, so that the cooling efficiency is high. This is because the evaporation rate of water is determined by the distance from the condensing part and the temperature difference, so that the evaporation chamber in the second compartment, which is a separate compartment, can perform optimum thermal design regardless of the cultivation room.

【0021】一方、大きな栽培室を直接冷房するとき
は、蒸発冷却ないし通常冷房の如何を問わず、空気の伝
熱・水蒸気の拡散・流通のいずれにおいても、必ずしも
良好でなく、また内部湿度不均一ないし内部過湿を生じ
やすい。
On the other hand, when directly cooling a large cultivation room, regardless of whether it is evaporative cooling or normal cooling, neither heat transfer of air nor diffusion / distribution of water vapor is necessarily good, and the internal humidity is not sufficient. Uniform or easy to generate internal overhumidity.

【0022】除湿器にも電力が必要であるが、小さい蒸
発室ではその冷却効率は高くなる。実際、栽培室を直接
蒸発冷却する場合には、前記理想値(たとえば7℃冷
却)に比べその半分(たとえば4℃)にも達しないこと
が多かったのに対し、小型で別の蒸発室を設けた場合に
は、ほとんど理想状態で運転できることになる。すなわ
ち、冷房のコストをそれだけ節減することができる。例
えば、同じ冷房能力では、消費電力を2/3程度にでき
ると見積ることができる。
Although the dehumidifier requires electric power, its cooling efficiency is high in a small evaporation chamber. In fact, when directly evaporating and cooling the cultivation room, it was often less than half (for example, 4 ° C) of the ideal value (for example, 7 ° C cooling). If it is provided, it can be operated in an almost ideal state. That is, the cooling cost can be reduced accordingly. For example, with the same cooling capacity, it can be estimated that the power consumption can be reduced to about 2/3.

【0023】[0023]

【実施例】本発明による水耕栽培施設の具体的構造は、
第1図に示すように、準密閉的構造を有する第1の区画
100であり、ここに水耕栽培施設101と、人工照明
施設102が収容されている。これに隣接して第2の区
画200があり、ここには外気を採り入れる通風設備2
01があって、密閉されていない。第1の区画100か
ら養液の配管105が第2の区画200に接続され、こ
こで、この液を使って蒸発冷却装置204により蒸発冷
却が行われる。冷却された液は、別の配管106により
第1の区画100に還流する。蒸発により養液の濃度が
濃くなるので、それを検知して修正すべく、水を補給す
る装置107が通常は第1の区画100に設けられてい
る。
EXAMPLES The concrete structure of the hydroponic cultivation facility according to the present invention is as follows.
As shown in FIG. 1, it is a first compartment 100 having a semi-enclosed structure, in which a hydroponic cultivation facility 101 and an artificial lighting facility 102 are housed. Adjacent to this, there is a second compartment 200, in which ventilation equipment 2 that takes in outside air is provided.
There is 01 and it is not sealed. The nutrient solution pipe 105 from the first compartment 100 is connected to the second compartment 200, and the evaporative cooling is performed by the evaporative cooling device 204 using this solution. The cooled liquid flows back to the first compartment 100 through another pipe 106. Since the concentration of the nutrient solution becomes high due to evaporation, a device 107 for replenishing water is usually provided in the first compartment 100 in order to detect and correct it.

【0024】第1の区画100と第2の区画200は、
上記配管105、106以外では相互に独立しており、
冷却水のみによって第1の区画100から熱を排出する
ようになされる。もちろん、夏期以外の冷却不要な時期
においては、上記配管105,106を遮断休止するよ
うになされている。
The first compartment 100 and the second compartment 200 are
Except for the pipes 105 and 106, they are independent of each other,
The cooling water alone is used to dissipate heat from the first compartment 100. Of course, the pipes 105 and 106 are cut off and suspended at times when cooling is not required except during summer.

【0025】次に、本発明の第2の応用例を第2図を用
いて説明する。今までの説明では、液体によってのみ第
1の区画100の冷却を行うものであったが、この例で
は、雰囲気の冷却も同時に行うことによって、さらに冷
却を有効ならしめんとするものである。
Next, a second application example of the present invention will be described with reference to FIG. In the above description, the first compartment 100 was cooled only by the liquid, but in this example, the atmosphere is also cooled at the same time so that the cooling is further effective.

【0026】本実施例においては、第1の区画100の
うち、天井に近い部分を第3の区画300と名付ける。
第1の区画100とは完全に独立しておらず、第1の区
画100における人工照明102、その他の熱による上
昇気流によって昇温した大気の集まる部分を指すものと
する。これは、炭酸ガス施肥の必要上、第1の区画10
0と、第3の区画300とを併せて準密封とする必要か
らであり、第1の区画100と第3の区画300の境界
は、特になくてもよい。また、二階構造の建物の場合に
は、下階に栽培照明施設を収容し、上階に昇温大気を集
め、その中間の下階の天井、上階の床に開口部を設けた
配置でもよく、この場合には、下階が第1の区画10
0、上階が第3の区画300に相当する。
In this embodiment, the portion of the first compartment 100 near the ceiling is named the third compartment 300.
It is not completely independent of the first section 100, but refers to the artificial lighting 102 in the first section 100 and other portions where the atmosphere heated by the ascending air current due to heat gathers. This is because of the need for carbon dioxide fertilization, the first section 10
This is because it is necessary to combine 0 and the third section 300 together to form a semi-sealed state, and the boundary between the first section 100 and the third section 300 may not be particularly necessary. In the case of a building with a two-story structure, a cultivation lighting facility is housed on the lower floor, heated atmosphere is collected on the upper floor, and an opening is provided on the ceiling of the lower floor in the middle and the floor of the upper floor. Well, in this case, the lower floor is the first section 10
0, the upper floor corresponds to the third section 300.

【0027】第3の区画300は既述の第2の区画20
0に壁305を介して隣接しており、この壁305は熱
伝導のよい材料たとえばアルミニウム板で構成される。
この場合、第3の区画300の昇温部から、熱伝導によ
って第2の蒸発冷却され(但し湿度の高い)を雰囲気に
熱が移行する。これは、第1応用例の液体冷却と異な
り、空気冷却を併用することであり、冷却効果を総合的
に増すことになる。
The third section 300 is the above-mentioned second section 20.
0 through a wall 305, which is made of a material having good heat conductivity, such as an aluminum plate.
In this case, the heat is transferred from the temperature rising portion of the third section 300 to the atmosphere by the second evaporation and cooling (however, the humidity is high) by heat conduction. This differs from the liquid cooling of the first application example in that air cooling is also used, and the cooling effect is comprehensively increased.

【0028】上記熱伝導を増進するために壁305を薄
くし、壁面積を広くすることは有効である。また、第2
の区画200の内部において区画内通風によって、蒸発
冷却風によって、蒸発冷却風が直接に上記壁305に接
触するようになされることは有効である。また、壁30
5の構造を単なる平面でなく、複雑な形状ないし管降状
として空気を循環させ、熱交換をはかること等に関し
て、通常考えられる種々の手法を適用することができ
る。
It is effective to make the wall 305 thin and widen the wall area in order to enhance the heat conduction. Also, the second
It is effective that the evaporative cooling air is brought into direct contact with the wall 305 by the evaporative cooling air inside the compartment 200 of FIG. Also, the wall 30
Various conceivable methods can be applied to the structure of No. 5 in which the air is circulated in a complicated shape or a pipe descending shape instead of a simple plane to perform heat exchange.

【0029】本発明の具体的構成例を第2図について述
べれば、第1の区画100に水耕栽培施設101本体と
人工照明施設102が収容されている。第1の区画10
0の天井近くの層が簡単に仕切りされ、昇温大気がここ
に集まるようになっている。ここの開口部は季節によっ
て開閉できるようになっている。この上部が第3の区画
300である。第1と第3の区画100、300の関係
は、本発明者の先の出願(特願平6−316657号)
と同様である。
A concrete configuration example of the present invention will be described with reference to FIG. 2. In the first section 100, a hydroponic cultivation facility 101 main body and an artificial lighting facility 102 are housed. First compartment 10
The layers near the 0 ceiling are easily partitioned so that the warmed atmosphere gathers here. The opening here can be opened and closed depending on the season. This upper part is the third section 300. The relationship between the first and third sections 100 and 300 is related to the prior application of the present inventor (Japanese Patent Application No. 6-316657).
Is the same as

【0030】第1および第3の100、300区画は、
第2の区画200と隣接しており、第1の区画100と
第2の区画200とは養液配管105、106によっ
て、第3の区画300と第2の区画200とは熱伝導壁
305によってのみ接続している。
The first and third 100, 300 compartments are
Adjacent to the second compartment 200, the first compartment 100 and the second compartment 200 are provided by the nutrient solution pipes 105 and 106, and the third compartment 300 and the second compartment 200 are provided by the heat transfer wall 305. Only connected.

【0031】第2の区画200は、養液の蒸発冷却装置
204と、そのための外気取入通風装置201があり、
冷却された養液を第1の区画100に還流し、また、冷
却された大気により第3の区画300の壁305を介し
て雰囲気を冷却する。このために、第2の区画200内
には上部壁305に冷風を運ぶための送風機を設けるこ
とが好ましい。
The second compartment 200 has an evaporative cooling device 204 for nutrient solution and an outside air intake ventilation device 201 therefor.
The cooled nutrient solution is returned to the first compartment 100, and the atmosphere is cooled by the cooled atmosphere through the wall 305 of the third compartment 300. For this reason, it is preferable to provide a blower for conveying cold air to the upper wall 305 in the second compartment 200.

【0032】上記第2の応用例においては、第1の応用
例とくらべて概算で約2割の冷房能力が増大するので、
その分、エネルギ−コストが安くて済む。もちろん、設
備の状況の状況によって大差があるので、これは一例に
すぎない。
In the second application example, the cooling capacity is increased by about 20% as compared with the first application example.
Therefore, the energy cost is low. Of course, this is only an example, as there are large differences depending on the conditions of the equipment.

【0033】[0033]

【発明の効果】以上、種々説明したように本発明は、比
較的簡易な構造によって実用的な冷房を行うことがで
き、特に完全制御型植物工場においてその有効性が著る
しく、その植物生産コストを低下させ経済性を増すこと
ができるので、産業上きわめて有用である。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, practical cooling can be performed with a relatively simple structure, and its effectiveness is remarkable especially in a completely controlled plant factory. It is extremely useful in industry because it can reduce costs and increase economic efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の概念図である。FIG. 1 is a conceptual diagram of a first embodiment of the present invention.

【図2】本発明の第2実施例の概念図である。FIG. 2 is a conceptual diagram of a second embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 養液により植物を水耕栽培する完全制御
型の植物栽培施設において、 略密閉構造をなし、植物を水耕栽培するための栽培装置
が内部に配置される第1の区画と、 前記養液を前記栽培装置に循環させると共に、当該養液
を蒸発により冷却し、前記養液を冷媒として前記第1の
区画に送り込む処理装置が配置される第2の区画とを備
えることを特徴とする植物栽培施設。
1. A completely controlled plant cultivation facility for hydroponically cultivating a plant with a nutrient solution, which comprises a first section having a substantially closed structure and having a cultivating device for hydroponically cultivating the plant therein. A second compartment in which a treatment device is disposed, in which the nutrient solution is circulated through the cultivation apparatus, the nutrient solution is cooled by evaporation, and the nutrient solution is sent to the first compartment as a refrigerant. A characteristic plant cultivation facility.
【請求項2】 養液により植物を水耕栽培する完全制御
型の植物栽培施設において、 略密閉構造をなし、植物を水耕栽培するための栽培装置
が内部に配置される第1の区画と、 前記第1の区画の上方に配置されると共に、当該第1の
区画との間で通気可能な構造をなす第3の区画とを備え
ることを特徴とする植物栽培施設。
2. A completely controlled plant cultivation facility for hydroponically cultivating a plant with a nutrient solution, which comprises a first section having a substantially closed structure and having a cultivating device for hydroponically cultivating the plant therein. A plant cultivation facility, comprising: a third compartment that is arranged above the first compartment and has a structure that allows ventilation with the first compartment.
【請求項3】 養液により植物を水耕栽培する完全制御
型の植物栽培施設において、 略密閉構造をなし、植物を水耕栽培するための栽培装置
が内部に配置される第1の区画と、 前記養液を前記栽培装置に循環させると共に、当該養液
を蒸発により冷却し、前記養液を冷媒として前記第1の
区画に送り込む処理装置が配置される第2の区画と、 前記第1の区画の上方に配置されると共に、当該第1の
区画との間で通気可能な構造をなし、かつ、前記第2の
区画との間の隔壁が熱伝導性の良好な材料で形成されて
いる第3の区画とを備えることを特徴とする植物栽培施
設。
3. A completely controlled plant cultivation facility for hydroponically cultivating a plant with a nutrient solution, comprising a first section having a substantially closed structure and having a cultivating device for hydroponically cultivating the plant therein. A second compartment in which a treatment device is disposed, in which the nutrient solution is circulated in the cultivation apparatus, the nutrient solution is cooled by evaporation, and the nutrient solution is sent to the first section as a refrigerant; Of the first partition, and the partition wall between the second partition and the second partition is made of a material having good thermal conductivity. A plant cultivation facility, characterized by comprising a third compartment that is present.
JP7102297A 1995-04-26 1995-04-26 Plant raising facility Pending JPH08289684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7102297A JPH08289684A (en) 1995-04-26 1995-04-26 Plant raising facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7102297A JPH08289684A (en) 1995-04-26 1995-04-26 Plant raising facility

Publications (1)

Publication Number Publication Date
JPH08289684A true JPH08289684A (en) 1996-11-05

Family

ID=14323690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7102297A Pending JPH08289684A (en) 1995-04-26 1995-04-26 Plant raising facility

Country Status (1)

Country Link
JP (1) JPH08289684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101136032B1 (en) * 2011-07-20 2012-04-18 공주대학교 산학협력단 Plant factory system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101136032B1 (en) * 2011-07-20 2012-04-18 공주대학교 산학협력단 Plant factory system

Similar Documents

Publication Publication Date Title
JP5193235B2 (en) Fully controlled plant factory system
JP2004129621A (en) Apparatus for automatic growing of vegetable
JP2009529124A (en) Apparatus and method for dehumidifying greenhouse air and temperature
US20220192105A1 (en) Hvac system for hydroponic farm
KR101934482B1 (en) Plant Grower Cooling System with Vaporizing Heat Cooling
KR20100067156A (en) Hybrid heat transfer system with heat pump for green house
JP7382229B2 (en) Cultivation method
CN110149976A (en) A kind of plant factor and its ring prosecutor method
JP2005221213A (en) Air circulation and dehumidifier system
JP2011188785A (en) Heat pump type air conditioning machine for protected horticulture greenhouse
JPH03236723A (en) Plant cultivation using thermal exhaust from thermal-power generation and system therefor
JPH08289684A (en) Plant raising facility
JPH0779647A (en) Treating apparatus for germination and grafting of plant and controlling method therefor
CN116965266A (en) Energy-saving temperature regulating system for large multi-span greenhouse and operation method
JPH09223809A (en) Environment control equipment
RU2581213C1 (en) Installation for growing mushrooms "rune"
KR100354963B1 (en) Chilly wind apparatus with pad-box
CN209949998U (en) Plant factory
Zhang et al. Environmental control of PFALs
CN203388000U (en) Water curtain cooling system for enclosed seedling raising device
CN112931176A (en) Soilless culture equipment
CN101644472A (en) Novel water curtain application technology for breeding farm
KR20060032737A (en) Electric heating germ cart and mushroom growing-house using the same
CN111011064A (en) Multifunctional greenhouse environment adjusting system and operation method
JPS6374429A (en) Hydroponic facilities for leaf vegetables