JPH08259399A - Method for producing CdTe crystal - Google Patents
Method for producing CdTe crystalInfo
- Publication number
- JPH08259399A JPH08259399A JP9323495A JP9323495A JPH08259399A JP H08259399 A JPH08259399 A JP H08259399A JP 9323495 A JP9323495 A JP 9323495A JP 9323495 A JP9323495 A JP 9323495A JP H08259399 A JPH08259399 A JP H08259399A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- quartz ampoule
- cdte
- quartz
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
(57)【要約】
【構成】 チャンク状のTe原料がCd原料の下になる
ように石英アンプル中にチャ−ジした後、石英アンプル
を真空封入し、加熱昇温して、チャ−ジしたCd原料と
Te原料が反応して生成したCd−Te合金を融解した
後、垂直グラディエントフリ−ジング法により多結晶合
成する。
【効果】 合成時間を長くすることなく、また高圧炉の
ような高価な設備を使用しなくても、石英アンプルを破
損せずにCdTe多結晶を合成できる。
(57) [Summary] [Constitution] After charging the quartz-like ampoule so that the chunk-shaped Te raw material is below the Cd raw material, the quartz ampoule is vacuum-sealed, heated and heated to be charged. After melting the Cd-Te alloy produced by the reaction of the Cd raw material and the Te raw material, polycrystal synthesis is performed by the vertical gradient freezing method. [Effect] The CdTe polycrystal can be synthesized without damaging the quartz ampule without increasing the synthesis time and without using expensive equipment such as a high-pressure furnace.
Description
【0001】[0001]
【産業上の利用分野】本発明は、CdTe結晶の製造方
法に関し、特にCd原料とTe原料とからCdTe結晶
を合成する方法に関するものである。TECHNICAL FIELD The present invention relates to a method for producing a CdTe crystal, and more particularly to a method for synthesizing a CdTe crystal from a Cd raw material and a Te raw material.
【0002】[0002]
【従来の技術】CdTe単結晶は、放射線検出素子、赤
外線検出素子や太陽電池などの基板として使用されてい
る。CdTe単結晶は、まずCd原料とTe原料とから
CdTe多結晶を合成し、つぎにそのCdTe多結晶を
原料としてブリッジマン法やグラディエントフリ−ジン
グ法、トラベリングヒ−タ法(THM法)などにより製
造される。2. Description of the Related Art CdTe single crystals are used as substrates for radiation detecting elements, infrared detecting elements, solar cells and the like. The CdTe single crystal is prepared by first synthesizing a CdTe polycrystal from a Cd raw material and a Te raw material, and then using the CdTe polycrystal as a raw material by a Bridgman method, a gradient freezing method, a traveling heater method (THM method) or the like. Manufactured.
【0003】CdTe多結晶の合成は、99.9999
%以上の高純度Cd原料と高純度Te原料を石英アンプ
ル中に真空又は不活性ガス雰囲気で封入して、加熱反応
させてCdTe合金の融液とし、これを石英アンプルの
一端から冷却凝固させることによって行なわれている。The synthesis of CdTe polycrystals is 99.9999.
% Or more of high-purity Cd raw material and high-purity Te raw material are sealed in a quartz ampoule in a vacuum or an inert gas atmosphere, heated and reacted to form a CdTe alloy melt, which is cooled and solidified from one end of the quartz ampoule. It is done by.
【0004】しかしながら、Cd原料とTe原料が反応
するときに発熱して、石英アンプル内の温度が急激に上
昇し、石英アンプル内のCd蒸気圧が急増して石英アン
プルが破裂してしまうという問題があった。However, when the Cd raw material and the Te raw material react with each other, heat is generated, the temperature in the quartz ampoule rises rapidly, the Cd vapor pressure in the quartz ampoule increases rapidly, and the quartz ampule bursts. was there.
【0005】そのため、特公平2−4560では、石英
アンプルの一部だけが反応温度になるように炉の温度分
布を徐々に変化させるか、石英アンプルを徐々に反応温
度の領域に移動することによってこれを防ぐ方法が提案
されている。しかし、この方法では、反応を徐々に行な
わせるために、長時間を要し、同時にエネルギ−コスト
が大きくなるという欠点がある。Therefore, in Japanese Patent Publication No. 2-4560, the temperature distribution of the furnace is gradually changed so that only a part of the quartz ampule reaches the reaction temperature, or the quartz ampule is gradually moved to the reaction temperature region. A method for preventing this has been proposed. However, this method has a drawback that it takes a long time to cause the reaction to proceed gradually, and at the same time, the energy cost becomes large.
【0006】また、特開昭64−22339では、石英
アンプルを圧力容器内に入れ、石英アンプルの内圧と外
圧を釣り合わせて反応をさせることによって、石英アン
プルの破裂を防ぐ方法が提案されている。しかし、この
方法では、特公平2−4560より多結晶合成に要する
時間が短いものの、高価な圧力容器(高圧炉)を必要と
し、コストが高くなってしまうという欠点がある。Further, Japanese Patent Laid-Open No. 64-22339 proposes a method of preventing the rupture of a quartz ampoule by placing a quartz ampoule in a pressure vessel and balancing the internal pressure and the external pressure of the quartz ampoule to cause a reaction. . However, this method has a drawback that it requires an expensive pressure vessel (high-pressure furnace), although the time required for polycrystal synthesis is shorter than that of Japanese Patent Publication No. 2-4560, resulting in high cost.
【0007】[0007]
【発明が解決しようとする課題】本発明は上記の問題点
を解決したもので、その目的は多結晶合成に長時間を要
することなく、また高価な圧力容器(高圧炉)を使用す
ることなく、石英アンプルの破裂を防ぐ方法を提供する
ものである。DISCLOSURE OF THE INVENTION The present invention has solved the above-mentioned problems, and its purpose is not to require a long time for polycrystal synthesis and to use an expensive pressure vessel (high pressure furnace). , A method of preventing the rupture of a quartz ampoule is provided.
【0008】[0008]
【課題を解決するための手段および作用】すなわち、本
発明は、CdTe結晶を製造する方法において、チャン
ク状のTe原料がCd原料の下になるように石英アンプ
ル中にチャ−ジした後、真空又は不活性ガス雰囲気で封
入し、該石英アンプルを加熱昇温して、チャ−ジしたC
d原料とTe原料が反応して生成したCd−Te合金を
融解した後、該石英アンプルの一端から冷却して、Cd
Te結晶を析出させることを特徴とするCdTe結晶の
製造方法を提供するものである。Means and Actions for Solving the Problems That is, according to the present invention, in a method of producing a CdTe crystal, a chunk-shaped Te raw material is charged in a quartz ampoule so that it is below the Cd raw material, and then vacuumed. Alternatively, it is sealed in an inert gas atmosphere, the quartz ampoule is heated and heated, and the charged C
After melting the Cd-Te alloy formed by the reaction of the d raw material and the Te raw material, the Cd-Te alloy was cooled from one end of the quartz ampoule to obtain Cd-Te alloy.
The present invention provides a method for producing a CdTe crystal, which comprises depositing a Te crystal.
【0009】また、前記チャンク状Te原料が前記Cd
原料の下になっている層が2層以上であることを特徴と
するCdTe結晶の製造方法を提供するものである。Further, the chunk-like Te raw material is the Cd.
It is intended to provide a method for producing a CdTe crystal, which is characterized in that the underlying layer is two or more layers.
【0010】さらに、前記チャンク状Te原料の一片の
重量が最大で50g以下であることを特徴とするCdT
e結晶の製造方法を提供するものである。Further, the weight of one piece of the chunk-like Te raw material is 50 g or less at the maximum, and CdT is characterized.
The present invention provides a method for producing an e crystal.
【0011】さらにまた、前記石英アンプルにチャ−ジ
するTe原料とCd原料のモル比(Te/Cd)が1以
上5以下であることを特徴とするCdTe結晶の製造方
法を提供するものである。Further, the present invention provides a method for producing a CdTe crystal characterized in that the molar ratio (Te / Cd) of the Te raw material and the Cd raw material charged in the quartz ampoule is 1 or more and 5 or less. .
【0012】まず、本発明者らは、CdとTeの合成反
応の機構を検討するために、合成反応時の石英アンプル
の温度変化の測定と1回目の発熱反応終了後のサンプル
の内部観察を行った。First, in order to study the mechanism of the synthetic reaction of Cd and Te, the present inventors measured the temperature change of the quartz ampoule during the synthetic reaction and observed the inside of the sample after the first exothermic reaction. went.
【0013】CdインゴットとTeインゴットを図5に
示すような状態で石英アンプル中に入れてこれを加熱昇
温していくと、石英アンプルは図6に示すような温度変
化を示した。図6より、Cdがまず321℃で融解し、
次にTeが450℃で融解したときに、第1回目の発熱
反応が生じており、つぎに800℃付近で2回目の発熱
反応が生じていることがわかる。石英アンプルが破裂す
るのはこのように2回目の発熱反応時に石英アンプル温
度が異常に高くなったときであると考えた。When the Cd ingot and the Te ingot were put in a quartz ampoule in a state as shown in FIG. 5 and heated and heated, the quartz ampoule exhibited a temperature change as shown in FIG. From FIG. 6, Cd first melts at 321 ° C.,
Next, when Te melts at 450 ° C., the first exothermic reaction occurs, and then the second exothermic reaction occurs at around 800 ° C. It was considered that the quartz ampule bursts when the quartz ampule temperature became abnormally high during the second exothermic reaction.
【0014】そこで1回目の反応の終了後、石英アンプ
ルを冷却し、サンプルをとりその内部を観察した。その
組織の概略図を図7に示す。図7より、CdとTeの界
面にCdTeが生じていることがわかる。このことか
ら、Cd融液とTe融液との界面に生じたCdTeがそ
の温度では固体であるため、Cd融液とTe融液のさら
なる接触による反応を妨害し、さらに石英アンプル温度
を上げていくときに、CdTeがCd融液およびTe融
液中に溶解し、ついには再びCd融液とTe融液とが接
触することによって、2回目の発熱反応が生じると考え
た。Therefore, after the completion of the first reaction, the quartz ampoule was cooled, a sample was taken, and the inside thereof was observed. A schematic diagram of the structure is shown in FIG. It can be seen from FIG. 7 that CdTe is generated at the interface between Cd and Te. From this, since CdTe generated at the interface between the Cd melt and the Te melt is solid at that temperature, it interferes with the reaction due to the further contact between the Cd melt and the Te melt, and the quartz ampoule temperature is further raised. It was considered that CdTe was dissolved in the Cd melt and the Te melt when going, and finally the Cd melt and the Te melt were brought into contact with each other, so that the second exothermic reaction occurred.
【0015】そこで、石英アンプルの破裂は、2回目の
発熱反応の前に未反応のCd融液とTe融液が多く残っ
ていて、これが一度に反応した時に、その大きな反応熱
で石英アンプルが異常な高温になり、結果的に内容物
(特にCd)の蒸気圧がアンプルの強度を越えてしまう
ことで起こると考え、石英アンプルを破裂させないため
には、1回目の発熱反応の量を多くして、2回目の発熱
反応時の反応量を減らせばよく、その方法として、1回
目の反応直前におけるCd融液とTeの接触面積を多く
することに着目し本発明を考えついた。Therefore, as for the rupture of the quartz ampoule, a large amount of unreacted Cd melt and Te melt remain before the second exothermic reaction, and when these react at once, the large reaction heat causes the quartz ampoule to react. It is thought that this will occur when the vapor pressure of the contents (especially Cd) exceeds the strength of the ampoule as a result of an abnormally high temperature. To prevent the quartz ampoule from bursting, the amount of the first exothermic reaction is increased. Then, the reaction amount at the time of the second exothermic reaction may be reduced, and as a method therefor, the present invention was conceived by focusing on increasing the contact area between the Cd melt and Te immediately before the first reaction.
【0016】本発明によるTe原料およびCd原料の石
英アンプルへチャ−ジしたときの状態を図1に示す。本
発明ではCd原料がTe原料の上になるようにチャ−ジ
するが、加熱昇温していって、融点がTeより低いCd
がまず溶解し、重力によってTe原料の充填された隙間
に流れ込んでいき、Cd融液とTeとの接触面積を大き
くできるからである。また、Te原料をチャンク状とす
るのはインゴットのままよりもCd融液とTeとの接触
面積を大きくできるからである。なお、チャンク状とは
Teインゴットをハンマ−などで砕いたものであり、T
eインゴットは割れやすく図1に示すような形状にな
る。FIG. 1 shows a state in which a Te raw material and a Cd raw material according to the present invention are charged into a quartz ampoule. In the present invention, the Cd raw material is charged so that it is on top of the Te raw material, but the temperature is increased by heating, and the melting point of Cd is lower than that of Te.
Is melted first and flows into the gap filled with the Te raw material by gravity, so that the contact area between the Cd melt and Te can be increased. Further, the reason why the Te raw material is made into a chunk shape is that the contact area between the Cd melt and Te can be made larger than that of the ingot as it is. It should be noted that the chunk shape is a Te ingot crushed by a hammer or the like.
The e-ingot is easily broken and has a shape as shown in FIG.
【0017】なお、原料のチャ−ジ量を多くするとき
は、図2に示すようにこれを2層以上重ねて石英アンプ
ルにチャ−ジすることがより好ましい。なお、Te原料
の充填層の厚さは1層あたり200mm以下に、より好
ましくは100mm以下になるようにして、Cd融液と
Teとの接触面積を大きくすることが望ましい。When the amount of charge of the raw material is increased, it is more preferable to stack two or more layers and charge the quartz ampoule as shown in FIG. In addition, it is desirable to increase the contact area between the Cd melt and Te by setting the thickness of the filling layer of the Te raw material to 200 mm or less per layer, and more preferably 100 mm or less.
【0018】また、チャンク状Te原料の一片の最大の
重量は50g以下とすることが好ましく、より好ましく
は20g以下とする。50gを超えると、Cd融液との
接触面積が小さくなり、第1回目の発熱反応が終了した
ときに未反応のCd融液とTe融液が多くなり第2回目
の発熱反応による石英アンプルの破裂が生じやすくなる
からである。なお、あまり細かくして粉末にすると表面
が酸化しやすくなるため、粉末状のTeはあまり使用す
べきではない。The maximum weight of one piece of the chunk-like Te raw material is preferably 50 g or less, more preferably 20 g or less. When it exceeds 50 g, the contact area with the Cd melt becomes small, and when the first exothermic reaction ends, the amount of unreacted Cd melt and Te melt increases and the quartz ampoule due to the second exothermic reaction This is because bursting is likely to occur. It should be noted that powdered Te should not be used so much because the surface is likely to be oxidized if the powder is made too fine.
【0019】本発明では石英アンプルにチャ−ジするT
e原料とCd原料のモル比(Te/Cd)は1以上5以
下とすることが好ましい。モル比(Te/Cd)が5を
超えると、TeがCdTe結晶中に析出するため好まし
くない。また、モル比(Te/Cd)が1未満のCdが
Teよりも過剰になるようにチャ−ジすると、石英アン
プル内のCd蒸気圧が高くなり、石英アンプルが破裂し
やすくなるため好ましくない。In the present invention, the T charged into the quartz ampoule is
The molar ratio (Te / Cd) of the e raw material and the Cd raw material is preferably 1 or more and 5 or less. When the molar ratio (Te / Cd) exceeds 5, Te precipitates in the CdTe crystal, which is not preferable. If the Cd having a molar ratio (Te / Cd) of less than 1 is excessive than Te, the vapor pressure of Cd in the quartz ampoule becomes high and the quartz ampoule is likely to burst, which is not preferable.
【0020】なお、モル比(Te/Cd)が1のとき、
石英アンプルはCdTeの融点の1092℃以上まで加
熱する必要がある。一方、モル比(Te/Cd)を1よ
り大きくすると、完全に溶解するために必要な温度はそ
の組成により異なり、例えば、モル比(Te/Cd)が
2のとき約930℃以上、5のとき約800℃以上、9
のとき、約700℃以上となりより低くできるが、過剰
のTeは無駄になるのでモル比(Te/Cd)は1.1
以上4.0以下とするのがより好ましい。Te過剰に原
料をチャ−ジした場合は、石英アンプルの低温側に純粋
なCdTeが析出し、反対側にTe過剰のCd−Te合
金が残るので、これを切り離すことによって、CdTe
結晶が得られる。When the molar ratio (Te / Cd) is 1,
The quartz ampoule needs to be heated to 1092 ° C. or higher, which is the melting point of CdTe. On the other hand, when the molar ratio (Te / Cd) is greater than 1, the temperature required for complete dissolution depends on the composition. For example, when the molar ratio (Te / Cd) is 2, it is about 930 ° C or higher and 5 or less. When about 800 ℃ or higher, 9
At that time, it can be lowered to about 700 ° C or higher, but excess Te is wasted, so the molar ratio (Te / Cd) is 1.1.
More preferably, it is 4.0 or less. When the raw material is charged in excess of Te, pure CdTe is deposited on the low temperature side of the quartz ampoule, and a Te-rich Cd-Te alloy remains on the opposite side. Therefore, by separating this, CdTe is separated.
Crystals are obtained.
【0021】本発明のCdTe結晶は、塩素などの微量
のド−パントを加えたCdTe結晶やCd096Zn004T
eなどのCdTeを主体とした混晶をも含む意味であ
る。例えば、塩化カドミウムを加えて塩素をド−プした
り、Cd原料と一緒にZn原料をチャ−ジして混晶を製
造する。The CdTe crystal of the present invention is a CdTe crystal to which a trace amount of dopant such as chlorine is added or Cd 096 Zn 004 T.
It is meant to include a mixed crystal mainly composed of CdTe such as e. For example, cadmium chloride is added to dope chlorine, or a Zn raw material is charged together with a Cd raw material to produce a mixed crystal.
【0022】本発明に使用する石英アンプルは、カ−ボ
ン皮膜でコ−ティングされているものを使用するのが好
ましい。内容物が直接石英アンプルの表面に接触する
と、内容物が石英と反応、付着し、アンプルが冷却中に
割れることがあり、カ−ボン皮膜でコ−ティングされて
いるものを使用することで防止できる。カ−ボン皮膜
は、メタンガスやベンゼン、アセトン等の有機物を熱分
解して得ることができる。また、カ−ボン皮膜なしでも
石英アンプルの内側に内容物が反応付着しない坩堝を入
れて、アンプルの石英表面と溶解した内容物が直接接触
しない構造としても良い。坩堝は熱分解BN製が最も好
ましく、その他、カ−ボン製などでも良い。The quartz ampoule used in the present invention is preferably one coated with a carbon film. If the contents come into direct contact with the surface of the quartz ampoule, the contents may react with and adhere to the quartz, causing the ampoule to crack during cooling, which is prevented by using the one coated with a carbon film. it can. The carbon film can be obtained by thermally decomposing organic substances such as methane gas, benzene and acetone. It is also possible to put a crucible in which the contents do not react and adhere even inside the quartz ampoule even without the carbon film so that the quartz surface of the ampoule does not come into direct contact with the melted contents. The crucible is most preferably made of pyrolyzed BN, or may be made of carbon.
【0023】石英アンプルに封入する不活性ガスとして
は、窒素、Ar、ヘリウム、水素、又はこれらの混合ガ
スとを使用でき、内容物が酸化しないようにする。As the inert gas sealed in the quartz ampoule, nitrogen, Ar, helium, hydrogen, or a mixed gas thereof can be used so that the contents are not oxidized.
【0024】石英アンプルの一端から冷却して、CdT
e結晶を析出させる方法としては、図3に示すように石
英アンプルを固定して炉の温度分布を石英アンプルの一
端から順次低温になるように制御する方法(垂直グラデ
ィエントフリ−ジング法)か、図4に示すように石英ア
ンプルを炉の低温部に移動する方法(垂直ブリッジマン
法)などによって行われる。CdT was cooled from one end of the quartz ampoule.
As a method for precipitating the e crystal, as shown in FIG. 3, a quartz ampule is fixed and the temperature distribution of the furnace is controlled so that the temperature becomes lower sequentially from one end of the quartz ampule (vertical gradient freezing method), or As shown in FIG. 4, it is carried out by a method of moving the quartz ampoule to the low temperature part of the furnace (vertical Bridgman method) or the like.
【0025】この方法で得られた結晶から単結晶を切り
出して、そのまま放射線検出素子、赤外線検出素子、太
陽電池などの基板として使用することもできるし、さら
に、新たにブリッジマン法、グラジエントフリ−ジング
法、THM法などによる単結晶成長の原料として使用す
ることもできる。A single crystal can be cut out from the crystal obtained by this method and used as it is as a substrate for a radiation detecting element, an infrared detecting element, a solar cell, or the like, and a Bridgman method or a gradient free method is newly added. It can also be used as a raw material for single crystal growth by the ing method, the THM method, or the like.
【0026】[0026]
(実施例1)カ−ボン皮膜を設けた石英アンプルに、9
9.9999%のCdインゴットを300gと99.9
999%のチャンク状Teを640gを図2に示すよう
に、Cdインゴットがチャンク状Teの充填層の上にな
るようにチャ−ジし、真空封入した。チャンク状Teは
一片の重量が最大でも15g以下となるような大きさま
で破砕して使用した。この石英アンプルを図4に示すよ
うにブリッジマン炉の均熱部に入るように固定し、10
00℃まで昇温して反応させ、融液を作製した。引き続
いて、この石英アンプルを1.2mm/hrの速度で低
温部に移動した。石英アンプルを約300mm移動した
ところで電気炉を降温した。石英アンプルを割って内容
物を取り出したところ、石英アンプルの低温側に約55
0gのCdTe結晶が析出していた。(Example 1) A quartz ampoule provided with a carbon film was coated with 9
300g of 99999% Cd ingot and 99.9%
As shown in FIG. 2, 640 g of 999% chunk-shaped Te was charged so that the Cd ingot was on the packed layer of chunk-shaped Te, and vacuum-sealed. The chunk-like Te was used by crushing it to a size such that the weight of one piece was 15 g or less at the maximum. This quartz ampoule was fixed so as to enter the soaking section of the Bridgman furnace as shown in FIG.
The temperature was raised to 00 ° C. and the reaction was carried out to prepare a melt. Subsequently, the quartz ampoule was moved to a low temperature part at a speed of 1.2 mm / hr. The temperature of the electric furnace was lowered when the quartz ampoule was moved about 300 mm. When the quartz ampoule was broken and the contents were taken out, about 55
0 g of CdTe crystals were precipitated.
【0027】このような方法で15回CdTe結晶を製
造したが、1回も石英アンプルは破裂しなかった。The CdTe crystal was manufactured 15 times by such a method, but the quartz ampoule never burst even once.
【0028】(実施例2)カ−ボン皮膜を設けた石英ア
ンプルに99.9999%のCdインゴットを400g
と99.9999%のチャンク状Teを455gを図4
に示すように、Cdインゴットがチャンク状Teの充填
層の上になるように真空封入した。チャンク状Teは一
片の重量が最大でも10g以下となるような大きさまで
破砕して使用した。この石英アンプルを図4に示すよう
にブリッジマン炉の均熱部に入るように固定し、112
0℃まで昇温して反応させ、CdTe融液を作製した。
引き続いて、この石英アンプルを3mm/hrの速度で
低温部に移動した。石英アンプルを300mm移動した
ところで電気炉を降温し、石英アンプルを割って内容物
を取り出した。大きな単結晶粒を含むCdTe結晶が得
られた。(Example 2) 400 g of 99.9999% Cd ingot was added to a quartz ampoule provided with a carbon film.
And 455 g of 99.9999% chunked Te is shown in FIG.
As shown in, the Cd ingot was vacuum-sealed so that it was on the packed layer of the chunk-like Te. The chunk-like Te was crushed to a size such that the weight of one piece was 10 g or less at the maximum and used. As shown in FIG. 4, the quartz ampoule was fixed so as to enter the soaking section of the Bridgman furnace, and 112
The temperature was raised to 0 ° C. and the reaction was carried out to prepare a CdTe melt.
Subsequently, this quartz ampoule was moved to a low temperature part at a speed of 3 mm / hr. When the quartz ampule was moved by 300 mm, the temperature of the electric furnace was lowered, the quartz ampule was broken, and the contents were taken out. CdTe crystals containing large single crystal grains were obtained.
【0029】このような方法で9回CdTe結晶を製造
したが、1回も石英アンプルは破裂しなかった。The CdTe crystal was manufactured 9 times by such a method, but the quartz ampoule never burst even once.
【0030】[0030]
【発明の効果】以上のように、本発明によれば、合成時
間を長くすることなく、また高圧炉のような高価な設備
を使用しなくても、石英アンプルを破損せずにCdTe
結晶を簡単に製造できるという効果がある。As described above, according to the present invention, CdTe can be obtained without damaging the quartz ampoule without increasing the synthesis time and without using expensive equipment such as a high pressure furnace.
There is an effect that crystals can be easily manufactured.
【図1】 本発明による石英アンプルへのCd原料とT
e原料の充填方法(Cd原料とTe原料がそれぞれ1層
づつの場合)を示す図である。FIG. 1 Cd raw material and T for a quartz ampoule according to the present invention
It is a figure which shows the filling method of e raw material (when each of Cd raw material and Te raw material is one layer).
【図2】 本発明による石英アンプルへのCd原料とT
e原料の充填方法(Cd原料とTe原料がそれぞれ2層
づつの場合)を示す図である。FIG. 2 Cd raw material and T for a quartz ampoule according to the present invention
It is a figure which shows the filling method of e raw material (when each of Cd raw material and Te raw material has two layers).
【図3】 本発明によるCdTe結晶の析出方法を示す
図で、アンプルを炉の中に固定し、炉の温度分布を変化
させる方法である。FIG. 3 is a diagram showing a method of depositing a CdTe crystal according to the present invention, which is a method of fixing an ampoule in a furnace and changing a temperature distribution of the furnace.
【図4】 本発明によるCdTe結晶の析出方法を示す
図で、アンプルを炉の低温部に移動させる方法である。FIG. 4 is a diagram showing a method of depositing a CdTe crystal according to the present invention, which is a method of moving an ampoule to a low temperature part of a furnace.
【図5】 従来のCd原料とTe原料の充填方法を示す
図である。FIG. 5 is a diagram showing a conventional filling method of Cd raw material and Te raw material.
【図6】 Cd原料とTe原料をチャ−ジした石英アン
プルを一定の昇温速度で加熱した時のアンプルの温度変
化を示す図である。FIG. 6 is a diagram showing a temperature change of a quartz ampoule obtained by charging a Cd raw material and a Te raw material at a constant temperature rising rate.
【図7】 Cd原料とTe原料をチャ−ジした石英アン
プルを加熱し、1回目の発熱反応が終了した後の内容物
の状態を示す図である。FIG. 7 is a diagram showing a state of contents after heating a quartz ampoule obtained by charging a Cd raw material and a Te raw material and completing the first exothermic reaction.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成7年5月23日[Submission date] May 23, 1995
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0021[Correction target item name] 0021
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0021】本発明のCdTe結晶は、塩素などの微量
のドーパントを加えたCdTe結晶やCd0.96Zn
0.04TeなどのCdTeを主体とした混晶をも含む
意味である。例えば、塩化カドミウムを加えて塩素をド
ープしたり、Cd原料と一緒にZn原料をチャージして
混晶を製造する。The CdTe crystal of the present invention is a CdTe crystal or Cd 0 . 96 Zn
0 . It is also meant to include a mixed crystal mainly composed of CdTe such as 04 Te. For example, cadmium chloride is added to dope chlorine, or a Zn raw material is charged together with a Cd raw material to produce a mixed crystal.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0028[Correction target item name] 0028
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0028】(実施例2)カーボン皮膜を設けた石英ア
ンプルに99.9999%のCdインゴットを400g
と99.9999%のチャンク状Teを455gを図2
に示すように、Cdインゴットがチャンク状Teの充填
層の上になるように真空封入した。チャンク状Teは一
片の重量が最大でも10g以下となるような大きさまで
破砕して使用した。この石英アンプルを図4に示すよう
にブリッジマン炉の均熱部に入るように固定し、112
0℃まで昇温して反応させ、CdTe融液を作製した。
引き続いて、この石英アンプルを3mm/hrの速度で
低温部に移動した。石英アンプルを300mm移動した
ところで電気炉を降温し、石英アンプルを割って内容物
を取り出した。大きな単結晶粒を含むCdTe結晶が得
られた。Example 2 400 g of 99.9999% Cd ingot was added to a quartz ampoule provided with a carbon film.
And 99.9999% chunk-like Te 455g Fig. 2
As shown in, the Cd ingot was vacuum-sealed so that it was on the packed layer of the chunk-like Te. The chunk-like Te was crushed to a size such that the weight of one piece was 10 g or less at the maximum and used. As shown in FIG. 4, the quartz ampoule was fixed so as to enter the soaking section of the Bridgman furnace, and 112
The temperature was raised to 0 ° C. and the reaction was carried out to prepare a CdTe melt.
Subsequently, this quartz ampoule was moved to a low temperature part at a speed of 3 mm / hr. When the quartz ampule was moved by 300 mm, the temperature of the electric furnace was lowered, the quartz ampule was broken, and the contents were taken out. CdTe crystals containing large single crystal grains were obtained.
Claims (4)
チャンク状のTe原料がCd原料の下になるように石英
アンプル中にチャ−ジした後、真空又は不活性ガス雰囲
気で封入し、該石英アンプルを加熱昇温して、チャ−ジ
したCd原料とTe原料が反応して生成したCd−Te
合金を融解した後、該石英アンプルの一端から冷却し
て、CdTe結晶を析出させることを特徴とするCdT
e結晶の製造方法1. A method for producing a CdTe crystal, comprising:
After charging in a quartz ampoule so that the chunk-shaped Te raw material is below the Cd raw material, it is sealed in a vacuum or an inert gas atmosphere, and the quartz ampoule is heated and heated to charge the Cd raw material. Cd-Te produced by the reaction of the Te raw material with Te
After melting the alloy, it is cooled from one end of the quartz ampoule to precipitate a CdTe crystal.
Method for producing e crystal
の下になっている層が2層以上であることを特徴とする
請求項1記載のCdTe結晶の製造方法。2. The method for producing a CdTe crystal according to claim 1, wherein the chunk-shaped Te raw material has two or more layers below the Cd raw material.
最大で50g以下であることを特徴とする請求項1また
は2記載のCdTe結晶の製造方法。3. The method for producing a CdTe crystal according to claim 1, wherein the weight of one piece of the chunk-like Te raw material is 50 g or less at the maximum.
料とCd原料のモル比(Te/Cd)が1以上5以下で
あることを特徴とする請求項1、2または3記載のCd
Te結晶の製造方法。4. The Cd according to claim 1, 2 or 3, wherein the molar ratio (Te / Cd) of the Te raw material and the Cd raw material charged in the quartz ampoule is 1 or more and 5 or less.
Method for manufacturing Te crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09323495A JP3153436B2 (en) | 1995-03-28 | 1995-03-28 | Method for producing CdTe crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09323495A JP3153436B2 (en) | 1995-03-28 | 1995-03-28 | Method for producing CdTe crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08259399A true JPH08259399A (en) | 1996-10-08 |
JP3153436B2 JP3153436B2 (en) | 2001-04-09 |
Family
ID=14076851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09323495A Expired - Lifetime JP3153436B2 (en) | 1995-03-28 | 1995-03-28 | Method for producing CdTe crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3153436B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003078703A1 (en) * | 2002-03-19 | 2003-09-25 | Nikko Materials Co., Ltd. | CdTe SINGLE CRYSTAL AND CdTe POLYCRYSTAL, AND METHOD FOR PREPARATION THEREOF |
JP2008546625A (en) * | 2005-06-21 | 2008-12-25 | レドレン テクノロジーズ インコーポレイティッド | Cold wall container method for compounding, homogenizing and compacting semiconductor compounds |
WO2011122301A1 (en) * | 2010-03-29 | 2011-10-06 | Jx日鉱日石金属株式会社 | Method for synthesizing group ii-vi compound semiconductor polycrystals |
-
1995
- 1995-03-28 JP JP09323495A patent/JP3153436B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003078703A1 (en) * | 2002-03-19 | 2003-09-25 | Nikko Materials Co., Ltd. | CdTe SINGLE CRYSTAL AND CdTe POLYCRYSTAL, AND METHOD FOR PREPARATION THEREOF |
US7211142B2 (en) | 2002-03-19 | 2007-05-01 | Nippon Mining & Metals Co., Ltd. | CdTe single crystal and CdTe polycrystal, and method for preparation thereof |
CN1318662C (en) * | 2002-03-19 | 2007-05-30 | 日矿金属株式会社 | CdTe single crystal and CdTe polycrystal, and method for preparation thereof |
JP2008546625A (en) * | 2005-06-21 | 2008-12-25 | レドレン テクノロジーズ インコーポレイティッド | Cold wall container method for compounding, homogenizing and compacting semiconductor compounds |
WO2011122301A1 (en) * | 2010-03-29 | 2011-10-06 | Jx日鉱日石金属株式会社 | Method for synthesizing group ii-vi compound semiconductor polycrystals |
JP5469742B2 (en) * | 2010-03-29 | 2014-04-16 | Jx日鉱日石金属株式会社 | II-VI compound semiconductor polycrystal synthesis method |
Also Published As
Publication number | Publication date |
---|---|
JP3153436B2 (en) | 2001-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103409800B (en) | Major diameter cadmium telluride or tellurium zinc cadmium polycrystalline bar synthesizer and preparation method | |
JPS5914440B2 (en) | Method for doping boron into CaAs single crystal | |
WO2003078703A1 (en) | CdTe SINGLE CRYSTAL AND CdTe POLYCRYSTAL, AND METHOD FOR PREPARATION THEREOF | |
WO1990007021A1 (en) | Process for producing single crystal | |
US4446120A (en) | Method of preparing silicon from sodium fluosilicate | |
Ivanov | The growth of single crystals by the self-seeding technique | |
US5312506A (en) | Method for growing single crystals from melt | |
US4141777A (en) | Method of preparing doped single crystals of cadmium telluride | |
JP3153436B2 (en) | Method for producing CdTe crystal | |
US3494730A (en) | Process for producing cadmium telluride crystal | |
JP3465853B2 (en) | Manufacturing method of ZnSe bulk single crystal | |
CN105133004A (en) | USb2 monocrystal fluxing agent growth method and product prepared in same | |
CN102689928B (en) | Preparation method of near-stoichiometric lithium tantalate crystals | |
JP2010059052A (en) | METHOD AND APPARATUS FOR PRODUCING SEMI-INSULATING GaAs SINGLE CRYSTAL | |
US3933990A (en) | Synthesization method of ternary chalcogenides | |
JPH0688866B2 (en) | Boron nitride coated crucible and method of manufacturing the same | |
EP0321576B1 (en) | Method for growing single crystal from molten liquid | |
JP2004203721A (en) | Apparatus and method for growing single crystal | |
RU2209260C2 (en) | Substrate for growing epitaxial layers of gallium arsenide | |
JP2887978B2 (en) | Method for synthesizing III-V compound semiconductor composition | |
KR100945668B1 (en) | A method of growth for gaas single crystal by vgf | |
CN116695245A (en) | Device and method for preparing cadmium zinc telluride or cadmium telluride polycrystal material | |
CN116695246A (en) | Device and method for preparing cadmium zinc telluride or cadmium telluride polycrystal material | |
JPS59162199A (en) | Crystal growth using silicon nitride and manufacture of parts therefor | |
RU2642890C2 (en) | Method for thermoelectric material production for thermoelectric generator devices on basis of lead telluride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010116 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120126 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120126 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130126 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130126 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140126 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term |