[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08224479A - Production of catalyst for purifying exhaust gas - Google Patents

Production of catalyst for purifying exhaust gas

Info

Publication number
JPH08224479A
JPH08224479A JP7032471A JP3247195A JPH08224479A JP H08224479 A JPH08224479 A JP H08224479A JP 7032471 A JP7032471 A JP 7032471A JP 3247195 A JP3247195 A JP 3247195A JP H08224479 A JPH08224479 A JP H08224479A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
metal
loaded
porous carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7032471A
Other languages
Japanese (ja)
Inventor
Takahiro Hayashi
高弘 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP7032471A priority Critical patent/JPH08224479A/en
Publication of JPH08224479A publication Critical patent/JPH08224479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To produce an exhaust gas purifying catalyst capable of exhibiting each action of a transition metal, a NOx absorbing material, and a catalyst noble metal at the maximum and excellent in the durability of NOx purifying performance. CONSTITUTION: After a transition metal is loaded on a porous carrier, a catalyst noble metal is loaded an finally a NOx absorbing material is loaded. Then, since the reaction between the transition metal and the porous carrier occurs, the surface of the porous carrier is reformed, SOx is hardly stuck and the NOx absorbing material is carried at high dispersion. And trouble such as the elution of the carried metal at the time of carrying each metal does not occurs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車などの内燃機関
から排出される排ガスを浄化する排ガス浄化用触媒の製
造方法に関し、さらに詳しくは、酸素過剰の排ガス、す
なわち排ガス中に含まれる一酸化炭素(CO)、水素
(H2 )及び炭化水素(HC)等の還元性成分を完全に
酸化するのに必要な酸素量より過剰の酸素を含む排ガス
中の、窒素酸化物(NOx )を効率良く還元浄化できる
排ガス浄化用触媒の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an exhaust gas purifying catalyst for purifying exhaust gas emitted from an internal combustion engine such as an automobile. More specifically, the present invention relates to an exhaust gas with excess oxygen, that is, monoxide contained in the exhaust gas. Nitrogen oxides (NO x ) in exhaust gas containing oxygen in excess of the amount of oxygen required to completely oxidize reducing components such as carbon (CO), hydrogen (H 2 ) and hydrocarbon (HC) The present invention relates to a method for producing an exhaust gas-purifying catalyst that can be efficiently reduced and purified.

【0002】[0002]

【従来の技術】従来より、自動車の排ガス浄化用触媒と
して、CO及びHCの酸化とNOx の還元とを行って排
ガスを浄化する三元触媒が用いられている。このような
三元触媒としては、例えばコーディエライトなどからな
る耐熱性基材にγ−アルミナからなる多孔質担体層を形
成し、その多孔質担体層に白金(Pt)、ロジウム(R
h)などの触媒貴金属を担持させたものが広く知られて
いる。また、酸素吸蔵能をもつセリア(セリウム酸化
物)を併用し、低温活性を高めた三元触媒も知られてい
る。
2. Description of the Related Art Conventionally, a three-way catalyst for purifying exhaust gas by oxidizing CO and HC and reducing NO x has been used as a catalyst for purifying exhaust gas of automobiles. As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat resistant base material made of cordierite, and platinum (Pt) and rhodium (R) are formed on the porous carrier layer.
A catalyst carrying a precious metal such as h) is widely known. Also known is a three-way catalyst in which ceria (cerium oxide) having an oxygen storage capacity is used in combination to enhance low-temperature activity.

【0003】一方、近年、地球環境保護の観点から、自
動車などの内燃機関から排出される排ガス中の二酸化炭
素(CO2 )が問題とされ、その解決策として酸素過剰
雰囲気において希薄燃焼させるいわゆるリーンバーンが
有望視されている。このリーンバーンにおいては、燃料
の使用量が低減されるため燃費が向上し、また燃焼排ガ
スであるCO2 の発生を抑制することができる。
On the other hand, in recent years, from the viewpoint of protecting the global environment, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has become a problem, and as a solution to this problem, so-called lean combustion in which lean combustion is performed in an oxygen excess atmosphere is performed. Burn is promising. In this lean burn, the fuel consumption is reduced, so that the fuel efficiency is improved and the generation of CO 2 which is the combustion exhaust gas can be suppressed.

【0004】これに対し、従来の三元触媒は、空燃比が
理論空燃比(ストイキ)の混合気が燃焼した排ガス中の
CO,HC,NOx を同時に酸化・還元し、浄化するも
のであって、リーンバーン時の排ガスの酸素過剰雰囲気
下におけるNOx の還元除去に対しては充分な浄化性能
を示さない。このため、酸素過剰雰囲気下においても効
率よくNOx を浄化しうる排ガス浄化用触媒及び排ガス
浄化システムの開発が望まれている。
On the other hand, the conventional three-way catalyst purifies by simultaneously oxidizing and reducing CO, HC, and NO x in the exhaust gas burned by the air-fuel ratio stoichiometric mixture. Therefore, it does not show sufficient purification performance for reducing and removing NO x in the oxygen rich atmosphere of exhaust gas during lean burn. Therefore, it is desired to develop an exhaust gas purifying catalyst and an exhaust gas purifying system that can efficiently purify NO x even in an oxygen excess atmosphere.

【0005】そこで本願出願人は、先にアルカリ土類金
属とPtをアルミナなどの多孔質担体に担持した排ガス
浄化用触媒(特開平5−317652号公報)や、ラン
タンとPtを多孔質担体に担持した排ガス浄化用触媒
(特開平5−168860号公報)を提案した。これら
の排ガス浄化用触媒によれば、リーン側ではNOx がア
ルカリ土類金属の酸化物やランタンの酸化物(NOx
収材)に吸収され、それがストイキ又はリッチ側で放出
されてHCやCOなどの還元性成分と反応するため、リ
ーン側においてもNOx の良好な浄化性能が得られる。
Therefore, the applicant of the present application has previously proposed an exhaust gas purifying catalyst in which an alkaline earth metal and Pt are supported on a porous carrier such as alumina (Japanese Patent Laid-Open No. 5-317652), or lanthanum and Pt on a porous carrier. A supported exhaust gas-purifying catalyst (Japanese Patent Laid-Open No. 5-168860) has been proposed. According to these exhaust gas-purifying catalysts, NO x is absorbed on the lean side by an oxide of an alkaline earth metal or an oxide of lanthanum (NO x absorbent), which is released on the stoichiometric or rich side to generate HC or Since it reacts with a reducing component such as CO, a good NO x purification performance can be obtained even on the lean side.

【0006】ところがアルカリ土類金属とPtをアルミ
ナ担体に担持した排ガス浄化用触媒では、耐久後のNO
x 浄化率が十分でない場合があった。これは処理すべき
排ガス中に存在するSOx がBaなどのNOx 吸収材と
反応して、例えばBaはNO x の吸収能のないBaSO
4 に転化するためである。この現象は「硫黄被毒」とし
て知られている。
However, the alkaline earth metal and Pt are aluminum.
In the exhaust gas purifying catalyst carried on the carrier, NO
xIn some cases, the purification rate was not sufficient. This should be processed
SO existing in exhaust gasxIs NO such as BaxWith absorber
Reacting, for example, Ba is NO xWithout absorption capacity of BaSO
FourThis is because it is converted to. This phenomenon is called "sulfur poisoning"
Is known.

【0007】そこで本願出願人は、特開平6−2620
40号公報に、アルカリ金属又は希土類金属からなるN
x 吸収材と、Fe、Ni、Co及びMnから選ばれる
少なくとも一種の遷移金属とを、触媒貴金属とともに担
持した排ガス浄化用触媒を開示している。この排ガス浄
化用触媒によれば、遷移金属とNOx 吸収材とがSO2
と反応して複合硫酸塩を生成する。この複合硫酸塩はN
x 吸収材の単独硫酸塩に比べて低温で分解するため、
生成した複合硫酸塩は容易に分解し、本来のNOx 吸収
材の機能が復活する。したがって耐久後においてもNO
x 浄化率を高く維持することができる。
Therefore, the applicant of the present application has filed Japanese Patent Application Laid-Open No. 6-2620.
No. 40 discloses N containing an alkali metal or a rare earth metal.
Disclosed is an exhaust gas-purifying catalyst that carries an O x absorbent and at least one transition metal selected from Fe, Ni, Co, and Mn together with a catalytic noble metal. According to this exhaust gas purifying catalyst, the transition metal and the NO x absorbent are SO 2
Reacts with to form complex sulfate. This complex sulfate is N
Since it decomposes at a lower temperature than the single sulfate of the O x absorbent,
The produced complex sulfate is easily decomposed, and the original function of the NO x absorbent is restored. Therefore, NO even after endurance
x High purification rate can be maintained.

【0008】そしてこの排ガス浄化用触媒を製造するに
は、特開平6−262040号公報の実施例に記載され
ているように、先ずアルミナなどの多孔質担体に触媒貴
金属を担持させ、次いでNOx 吸収材の水溶性化合物と
遷移金属の水溶性化合物の混合水溶液に浸漬して乾燥・
焼成することにより、NOx 吸収材と遷移金属を同時に
担持している。
In order to produce this exhaust gas-purifying catalyst, as described in the example of JP-A-6-262040, first, a catalytic precious metal is supported on a porous carrier such as alumina, and then NO x. Soak in a mixed aqueous solution of water-soluble compound of absorber and water-soluble compound of transition metal and dry
By firing, the NO x absorbent and the transition metal are supported simultaneously.

【0009】[0009]

【発明が解決しようとする課題】ところが特開平6−2
62040号公報に記載の製造方法で製造された排ガス
浄化用触媒でも、耐久後の耐硫黄被毒性が充分とはいえ
ず耐久後にNOx 吸収能が少なからず低下するという不
具合があった。本発明はこのような事情に鑑みてなされ
たものであり、遷移金属とNOx 吸収材及び触媒貴金属
のそれぞれの作用を最大に発揮でき、NOx 浄化性能の
耐久性に優れた排気ガス浄化触媒を製造することを目的
とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Even with the exhaust gas-purifying catalyst produced by the production method described in JP-A-62040, the sulfur poisoning resistance after endurance cannot be said to be sufficient, and the NO x absorption capacity after endurance is not a little lowered. The present invention has been made in view of such circumstances, and is an exhaust gas purification catalyst that can maximize the effects of the transition metal, the NO x absorbent, and the catalytic precious metal, and that has excellent durability of NO x purification performance. Is intended to be manufactured.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化用触媒の製造方法は、排ガス中の酸素濃
度が排ガス中の被酸化成分を酸化するのに必要な化学量
論比を超える酸素過剰雰囲気において排ガス中の窒素酸
化物を浄化する排ガス浄化用触媒の製造方法であって、
多孔質担体に遷移金属を担持し、その後触媒貴金属を担
持し、最後にNOx 吸収材を担持することを特徴とす
る。
The method for producing a catalyst for purifying exhaust gas of the present invention which solves the above-mentioned problems is such that the oxygen concentration in the exhaust gas has a stoichiometric ratio required to oxidize components to be oxidized in the exhaust gas. A method for producing an exhaust gas-purifying catalyst for purifying nitrogen oxides in exhaust gas in an excess oxygen excess atmosphere,
It is characterized in that the transition metal is loaded on the porous carrier, then the catalytic noble metal is loaded, and finally the NO x absorbent is loaded.

【0011】[0011]

【作用】本発明の製造方法は各金属の担持順序に特色を
有し、多孔質担体に先ず遷移金属が担持される。すると
遷移金属と多孔質担体との間に反応が生じるため、これ
により多孔質担体の表面が改質され、SOx が付着しに
くくなるとともに触媒金属が高分散担持されるようにな
るものと考えられる。
The manufacturing method of the present invention has a feature in the order of loading each metal, and the transition metal is loaded on the porous carrier first. Then, since a reaction occurs between the transition metal and the porous carrier, it is considered that the surface of the porous carrier is modified by this, SO x is less likely to adhere, and the catalyst metal is supported in a highly dispersed manner. To be

【0012】遷移金属が担持された多孔質担体には、次
いで触媒貴金属が担持される。もしこの順序を逆にして
触媒貴金属の担持後に遷移金属を担持すると、担持され
た触媒貴金属を遷移金属が覆う現象が生じ、触媒貴金属
の触媒作用が低下してNOの酸化反応が阻害され、その
結果NOx 浄化性能が低下する。しかし本発明では、触
媒金属は遷移金属の後に担持されるので、上記のような
不具合が生じない。
The catalytic precious metal is then carried on the porous support carrying the transition metal. If the transition metal is loaded after the catalytic noble metal is loaded in the reverse order, a phenomenon occurs in which the loaded catalytic noble metal is covered with the transition metal, the catalytic activity of the catalytic noble metal is lowered, and the oxidation reaction of NO is inhibited. As a result, the NO x purification performance decreases. However, in the present invention, since the catalytic metal is supported after the transition metal, the above-mentioned problems do not occur.

【0013】そして本発明の製造方法では、その後NO
x 吸収材が担持される。もしこの順序を逆にしてNOx
吸収材の担持後に触媒貴金属を担持すると、触媒貴金属
の水溶液中に多孔質担体を浸漬した際に、触媒貴金属水
溶液は酸性側であるためアルカリ性側のNOx 吸収材が
触媒貴金属水溶液中に溶出するという不具合が生じ、N
x 吸収材の担持量が減少してしまう。しかし本発明で
は、担持された触媒貴金属はNOx 吸収材溶液に溶出し
ないので、担持量が変化することがない。
Then, in the manufacturing method of the present invention, NO
x Absorbent is carried. If you reverse this order NO x
When the catalytic noble metal is loaded after the absorbent is loaded, when the porous carrier is immersed in the aqueous solution of the catalytic noble metal, the aqueous solution of the catalytic noble metal is acidic so that the alkaline side NO x absorbent is eluted into the aqueous solution of the catalytic noble metal. The problem occurs, N
The amount of the O x absorbent carried decreases. However, in the present invention, the supported catalytic noble metal does not elute into the NO x absorbent solution, so the supported amount does not change.

【0014】また先に遷移金属が担持されて多孔質担体
表面が改質されているため、NOx吸収材は高分散で担
持される。本発明の製造方法により製造された排ガス浄
化用触媒では、遷移金属により多孔質担体表面が改質さ
れていると推察され、これによりSOx の付着が防止さ
れ硫黄被毒が防止される。
Further, since the transition metal is supported first and the surface of the porous carrier is modified, the NO x absorbent is supported in high dispersion. The exhaust gas purifying catalyst produced by the production method of the present invention, the porous carrier surface is presumed to have been modified, thereby SO x sulfur poisoning adhesion is prevented is prevented by a transition metal.

【0015】また遷移金属とNOx 吸収材とは、SOx
と反応して複合硫酸塩が生成する。この複合硫酸塩はN
x 吸収材単独の硫酸塩に比べてより低温で分解し、ま
たNOx 吸収材は高分散化されているので分解されやす
く、排ガス流通時に容易に分解しNOx 吸収材は本来の
NOx 吸収能が復活する。したがって硫黄被毒が防止さ
れている。さらに、NOx 吸収材は高分散担持されてい
るので、その触媒活性を最大に発揮する。
The transition metal and the NO x absorbent are SO x.
And complex sulfate is formed. This complex sulfate is N
O more decomposed at low temperatures as compared with the x absorber alone sulfates, also absorption of NO x material easily decomposed because it is highly dispersed, easily decomposed when the exhaust gas flow of absorption of NO x material originally of the NO x Absorbency is restored. Therefore, sulfur poisoning is prevented. Further, since the NO x absorbent is highly dispersed and supported, its catalytic activity is maximized.

【0016】これらの作用により、本発明で製造された
排ガス浄化用触媒は耐久後にも優れたNOx 浄化性能を
有する。
Due to these actions, the exhaust gas-purifying catalyst produced according to the present invention has excellent NO x purification performance even after endurance.

【0017】[0017]

【実施例】【Example】

〔発明の具体例〕多孔質担体の材質は特に限定されず、
アルミナ、シリカ、シリカ・アルミナ、チタニアなどか
ら選択して用いることができる。中でも耐熱性及び貴金
属分散性に優れたアルミナを用いるのが特に好ましい。
この多孔質担体は、それ自体から担体基材を構成しても
よいし、モノリス担体基材表面にコートして用いること
もできる。
[Examples of the invention] The material of the porous carrier is not particularly limited,
Alumina, silica, silica-alumina, titania and the like can be selected and used. Above all, it is particularly preferable to use alumina which is excellent in heat resistance and noble metal dispersibility.
This porous carrier may be used as a carrier substrate or may be used by coating the surface of a monolith carrier substrate.

【0018】遷移金属としては、Ni,Fe,Co,M
n,Cuなどが例示される。中でもNiが特に好まし
い。この遷移金属の担持方法は、その塩化物や硝酸塩等
の溶液を用いて、含浸法、噴霧法、スラリー混合法など
を利用して多孔質担体に付着させ、それを乾燥・焼成し
て担持させることができる。遷移金属の担持量は多孔質
担体1リットルに対して0.01〜0.3molの範囲
が最適であり、これより少ないと担持効果が得られず、
多過ぎても耐久後のNOx 浄化性能の低下が大きい。
Transition metals include Ni, Fe, Co and M.
n, Cu, etc. are exemplified. Of these, Ni is particularly preferable. The method of supporting the transition metal is to use a solution of chloride or nitrate of the transition metal to adhere it to a porous carrier using an impregnation method, a spraying method, a slurry mixing method, etc., and dry and calcine it to support it. be able to. The amount of the transition metal supported is optimally in the range of 0.01 to 0.3 mol with respect to 1 liter of the porous carrier, and if it is less than this, the supporting effect cannot be obtained,
Even if the amount is too large, the NO x purification performance after endurance is greatly reduced.

【0019】触媒貴金属としては、Pt、Rh及びPd
の1種又は複数種を用いることができる。触媒貴金属の
担持方法は、その塩化物や硝酸塩等を用いて、含浸法、
噴霧法、スラリー混合法などを利用して付着させ、それ
を乾燥・焼成して従来と同様に担持させることができ
る。触媒貴金属の担持量は、いずれの貴金属でも、多孔
質担体1リットルに対して0.1〜20gが好ましく、
0.5〜10gが特に好ましい。触媒貴金属の担持量を
これ以上増加させても活性は向上せず、その有効利用が
図れない。また触媒貴金属の担持量がこれより少ない
と、実用上十分な活性が得られない。
As the catalyst noble metal, Pt, Rh and Pd are used.
1 type or multiple types of these can be used. The catalyst noble metal loading method is an impregnation method using a chloride or nitrate thereof.
The particles can be attached by using a spraying method, a slurry mixing method, etc., dried and fired to be carried as in the conventional case. The supported amount of the catalytic noble metal is preferably 0.1 to 20 g with respect to 1 liter of the porous carrier for any noble metal.
0.5 to 10 g is particularly preferable. Even if the supported amount of the catalytic noble metal is further increased, the activity is not improved, and the effective utilization cannot be achieved. Further, if the amount of the catalytic noble metal supported is less than this, sufficient activity for practical use cannot be obtained.

【0020】NOx 吸収材を担持するには、その塩化物
や硝酸塩等の溶液を用いて、含浸法、噴霧法、スラリー
混合法などを利用して付着させ、それを乾燥・焼成して
担持させることができる。NOx 吸収材としては、アル
カリ金属、アルカリ土類金属及び希土類元素から選ばれ
る少なくとも一種を用いることができる。アルカリ金属
としてはリチウム、ナトリウム、カリウム、ルビジウ
ム、セシウム、フランシウムが挙げられる。また、アル
カリ土類金属とは周期表2A族元素をいい、バリウム、
ベリリウム、マグネシウム、カルシウム、ストロンチウ
ムが挙げられる。また希土類元素としては、スカンジウ
ム、イットリウム、ランタン、セリウム、プラセオジ
ム、ネオジムなどが例示される。
To carry the NO x absorbent, a solution of its chloride, nitrate or the like is used to adhere it by using an impregnation method, a spraying method, a slurry mixing method, etc., and it is dried and baked to carry it. Can be made. As the NO x absorbent, at least one selected from alkali metals, alkaline earth metals and rare earth elements can be used. Examples of the alkali metal include lithium, sodium, potassium, rubidium, cesium and francium. Also, the alkaline earth metal means an element of Group 2A of the periodic table, barium,
Examples include beryllium, magnesium, calcium, and strontium. Examples of rare earth elements include scandium, yttrium, lanthanum, cerium, praseodymium, and neodymium.

【0021】NOx 吸収材の含有量は、多孔質担体の材
料100gに対して0.05〜1.0モルの範囲が望ま
しい。含有量が0.05モルより少ないとNOx 吸収能
力が小さくNOx 浄化性能が低下し、1.0モルを超え
て含有しても、NOx 吸収能力が飽和すると同時にHC
のエミッションが増加するなどの不具合が生じる。 〔実施例〕以下、実施例により具体的に説明する。なお
以下にいう「部」は「重量部」を意味する。 (実施例1)先ず、アルミナ粉末(「MI−386」W
Rグレース社製)を用意し、所定濃度の硝酸ニッケル水
溶液を所定量含浸させ、250℃で乾燥後500℃で1
時間焼成してNiを担持した。Niの担持量は、アルミ
ナ粉末120g当たり0.1モルである。
The content of the NO x absorbent is preferably in the range of 0.05 to 1.0 mol with respect to 100 g of the material of the porous carrier. When the content is less than 0.05 mol, the NO x absorption capacity is small and the NO x purification performance is lowered, and even when it exceeds 1.0 mol, the NO x absorption capacity is saturated and at the same time HC
However, problems such as an increase in the emission of [Examples] Hereinafter, specific examples will be described. The "parts" mentioned below mean "parts by weight". (Example 1) First, alumina powder ("MI-386" W
(Made by R Grace Co., Ltd.), impregnated with a predetermined amount of nickel nitrate aqueous solution of a predetermined concentration, dried at 250 ° C., and then dried at 500 ° C. for 1 hour.
Ni was supported by firing for a time. The amount of Ni supported is 0.1 mol per 120 g of alumina powder.

【0022】次に、Niが担持されたアルミナ粉末に所
定濃度のジニトロジアンミン白金水溶液を所定量含浸さ
せ、250℃で乾燥後500℃で1時間焼成してPtを
担持した。Ptの担持量は、アルミナ粉末120g当た
り2.0gである。そしてNiとPtが担持されたアル
ミナ粉末に、所定濃度の硝酸ナトリウム水溶液を所定量
含浸させ、250℃で乾燥後500℃で1時間焼成して
Naを担持した。Naの担持量は、アルミナ粉末120
g当たり0.3モルである。
Next, a predetermined amount of a dinitrodiammine platinum aqueous solution having a predetermined concentration was impregnated into Ni-supported alumina powder, dried at 250 ° C., and baked at 500 ° C. for 1 hour to support Pt. The supported amount of Pt is 2.0 g per 120 g of alumina powder. Then, the alumina powder carrying Ni and Pt was impregnated with a predetermined amount of an aqueous sodium nitrate solution having a predetermined concentration, dried at 250 ° C., and then baked at 500 ° C. for 1 hour to support Na. The amount of supported Na is 120 alumina powder.
It is 0.3 mol per gram.

【0023】得られた担持アルミナ粉末を常法によりペ
レット化し、実施例1のペレット触媒とした。 (比較例1)先ずPtを担持し、次にNiを担持し、最
後にNaを担持したこと以外は実施例1と同様である。 (比較例2)先ずPtを担持し、次にNaを担持し、最
後にNiを担持したこと以外は実施例1と同様である。 (比較例3)先ずNaを担持し、次にNiを担持し、最
後にPtを担持したこと以外は実施例1と同様である。 (比較例4)先ずNaを担持し、次にPtを担持し、最
後にNiを担持したこと以外は実施例1と同様である。 (比較例5)先ずNiを担持し、次にNaを担持し、最
後にPtを担持したこと以外は実施例1と同様である。 (比較例6)Niを担持せずに先ずNaを担持し、次に
Ptを担持したこと以外は実施例1と同様である。 (比較例7)Niを担持せずに先ずPtを担持し、次に
Naを担持したこと以外は実施例1と同様である。 (試験)得られたそれぞれのペレット触媒を触媒コンバ
ータに配置し、SO2 を300ppm含むリーン排ガス
(A/F=20)を4分間流通させ、次いでSO2 を3
00ppm含むリッチ排ガス(A/F=14)を1分間
流通させるのを2時間繰り返す耐久試験を行った。それ
ぞれの排ガスの触媒入りガス温度は500℃であり、空
間速度(SV)は10万/Hrである。
The resulting supported alumina powder was pelletized by a conventional method to obtain a pellet catalyst of Example 1. (Comparative Example 1) The same as Example 1 except that Pt was loaded first, Ni was loaded next, and Na was loaded last. (Comparative Example 2) The same as Example 1 except that Pt was loaded first, Na was loaded next, and Ni was loaded last. (Comparative Example 3) The same as Example 1 except that Na was loaded first, Ni was loaded next, and Pt was loaded last. (Comparative Example 4) The same as Example 1 except that Na was loaded first, Pt was loaded next, and Ni was loaded last. (Comparative Example 5) The same as Example 1 except that Ni was loaded first, Na was loaded next, and Pt was loaded last. (Comparative Example 6) The same as Example 1 except that Na was first supported and then Pt was then supported without supporting Ni. (Comparative Example 7) The same as Example 1 except that Pt was first loaded without Ni, and then Na was loaded. (Test) Each of the obtained pellet catalysts was placed in a catalytic converter, and lean exhaust gas (A / F = 20) containing 300 ppm of SO 2 was passed for 4 minutes, and then SO 2 was added to 3
A durability test was conducted in which flowing of rich exhaust gas (A / F = 14) containing 00 ppm for 1 minute was repeated for 2 hours. The temperature of the gas entering the catalyst of each exhaust gas is 500 ° C., and the space velocity (SV) is 100,000 / Hr.

【0024】耐久後の各触媒について、A/F=20相
当のモデル排ガスを、入りガス温度300℃で30分間
流通させた時のNOx 吸収量(モル数)を測定した。そ
のNOx 吸収量を触媒中に存在するNOx 吸収材のモル
数で除して、NOx 吸収材1モル当たりのNOx 吸収量
を算出し、結果を表1に示す。
With respect to each of the catalysts after the endurance, the NO x absorption amount (the number of moles) was measured when the model exhaust gas corresponding to A / F = 20 was allowed to flow at the inlet gas temperature of 300 ° C. for 30 minutes. The absorption of NO x amount is divided by the moles of the NO x absorbent present in the catalyst, it calculates the absorption of NO x amount of the NO x absorbent per mole, and the results are shown in Table 1.

【0025】[0025]

【表1】 (評価)表1より、各金属を実施例1の順序で担持した
場合にのみ、耐久後にも著しく高いNOx 吸収量が得ら
れることが明らかである。
[Table 1] (Evaluation) From Table 1, it is clear that a significantly high NO x absorption amount can be obtained even after the endurance only when each metal is supported in the order of Example 1.

【0026】また実施例1と比較例5の比較と、比較例
6と比較例7の比較より、PtよりNaを先に担持した
方が好ましいことがわかる。そして実施例1と比較例7
の比較より、Niを先に担持することでNOx 吸収量が
大きく増大していることが明らかである。
From the comparison between Example 1 and Comparative Example 5 and the comparison between Comparative Example 6 and Comparative Example 7, it is understood that it is preferable to support Na before Pt. And Example 1 and Comparative Example 7
From the comparison, it is clear that the NO x absorption amount is greatly increased by supporting Ni first.

【0027】[0027]

【発明の効果】すなわち本発明の排ガス浄化用触媒の製
造方法によれば、従来と同種類で同量の担持金属の担持
順序を変えるだけで、工数や原料コストの増大なくNO
x 浄化性能の耐久性に優れた排ガス浄化用触媒を安定し
て製造することができる。
According to the method for producing an exhaust gas purifying catalyst of the present invention, the NOx can be reduced without increasing man-hours and raw material cost by simply changing the loading order of the same type and the same amount of supported metal as the conventional method.
x It is possible to stably manufacture an exhaust gas purifying catalyst having excellent durability of purification performance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 排ガス中の酸素濃度が該排ガス中の被酸
化成分を酸化するのに必要な化学量論比を超える酸素過
剰雰囲気において該排ガス中の窒素酸化物を浄化する排
ガス浄化用触媒の製造方法であって、 多孔質担体に遷移金属を担持し、その後触媒貴金属を担
持し、最後にNOx 吸収材を担持することを特徴とする
排ガス浄化用触媒の製造方法。
1. A catalyst for purifying exhaust gas, which purifies nitrogen oxides in exhaust gas in an oxygen-excess atmosphere in which the oxygen concentration in the exhaust gas exceeds the stoichiometric ratio required to oxidize components to be oxidized in the exhaust gas. A method for producing an exhaust gas-purifying catalyst, which comprises supporting a transition metal on a porous carrier, then supporting a catalytic noble metal, and finally supporting an NO x absorbent.
JP7032471A 1995-02-21 1995-02-21 Production of catalyst for purifying exhaust gas Pending JPH08224479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7032471A JPH08224479A (en) 1995-02-21 1995-02-21 Production of catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7032471A JPH08224479A (en) 1995-02-21 1995-02-21 Production of catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH08224479A true JPH08224479A (en) 1996-09-03

Family

ID=12359898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7032471A Pending JPH08224479A (en) 1995-02-21 1995-02-21 Production of catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH08224479A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147027A (en) * 1997-09-24 2000-11-14 Toyota Jidosha Kabushiki Kaisha Alloy catalyst and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147027A (en) * 1997-09-24 2000-11-14 Toyota Jidosha Kabushiki Kaisha Alloy catalyst and process for producing the same

Similar Documents

Publication Publication Date Title
JP3409894B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP3544400B2 (en) Exhaust gas purification catalyst
JP3685463B2 (en) Exhaust gas purification catalyst
JP3789231B2 (en) Exhaust gas purification catalyst
JP3555694B2 (en) Exhaust gas purification device
JPH07155601A (en) Exhaust gas purifying catalyst
JP3446915B2 (en) Exhaust gas purification catalyst
JP3624277B2 (en) Exhaust gas purification catalyst
JP4330666B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2007330879A (en) Exhaust gas purification catalyst
JP3551346B2 (en) Exhaust gas purification equipment
JPH07171349A (en) Exhaust gas purification
JP3622893B2 (en) NOx absorbent and exhaust gas purification catalyst using the same
JP4135698B2 (en) Method for producing sulfur oxide absorbent
JPH0871424A (en) Exhaust gas purification catalyst
JP2000271428A (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH08224479A (en) Production of catalyst for purifying exhaust gas
JP3830011B2 (en) Exhaust gas purification catalyst
JP2000325787A (en) Method for producing exhaust gas purifying catalyst
JP2001009288A (en) Exhaust gas purification catalyst
JPH0985092A (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2000042370A (en) Catalyst device for purifying exhaust gas and its using method
JPH0889801A (en) Catalyst for purification of exhaust gas
JP4985499B2 (en) Sulfur oxide absorber and exhaust gas purification device