[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08189337A - Filter for scavenging fine particle in exhaust gas and method for processing exhaust gas - Google Patents

Filter for scavenging fine particle in exhaust gas and method for processing exhaust gas

Info

Publication number
JPH08189337A
JPH08189337A JP7032769A JP3276995A JPH08189337A JP H08189337 A JPH08189337 A JP H08189337A JP 7032769 A JP7032769 A JP 7032769A JP 3276995 A JP3276995 A JP 3276995A JP H08189337 A JPH08189337 A JP H08189337A
Authority
JP
Japan
Prior art keywords
exhaust gas
filter
fine particles
heat insulating
ventilation material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7032769A
Other languages
Japanese (ja)
Inventor
Koichi Murakawa
耕一 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAKUBUNSHIYA KK
Original Assignee
HAKUBUNSHIYA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAKUBUNSHIYA KK filed Critical HAKUBUNSHIYA KK
Priority to JP7032769A priority Critical patent/JPH08189337A/en
Publication of JPH08189337A publication Critical patent/JPH08189337A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE: To provide a filter for scavenging the particulates in exhaust gas of a diesel vehicle, which can be recycled in scavenging the particulates, and which can stabilize scavenging efficiency high, and which can be regenerated by a small power. CONSTITUTION: Plural filtering material 1 respectively provided with an opening part 9, through which at least a part of the exhaust gas can be flowed, are arranged along a low passage of the exhaust gas so as to form a filter for scavenging the fine particles in the exhaust gas. Each filtering material 1 has a heat insulating air-permeable material 2, a heater 3 and a scavenging air-permeable material 4. The air-permeable material 4 is positioned in the downstream of the heat insulating air-permeable material 2, and a clearance part 6 at 50mm or less of width is provided between the scavenging air-permeable material 4 and the heat insulating air-permeable material 2, and the heater 3 is positioned in this clearance part 6. Desirably, width of the clearance part 6 is formed at 1-20mm, and a shielding material 5 for cutting the flow of the exhaust gas is provided in a boundary of the clearance part 6 and the opening part, and the heat insulating air-permeable material 2 and the scavenging air-permeable material 4 are made of the non-conductive material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】ディーゼル車等から排出されるガ
スは、スス状の、パティキュレートとも称される炭素質
の微粒子(以下、「微粒子」と略称)を含んでおり、局
所大気汚染の主な原因の1つである。この微粒子の排出
量の低減は、地球環境問題における早期に解決すべき重
要な課題の1つとされている。本発明は、これらディー
ゼルエンジン等の内燃機関から排出される排ガスに含ま
れる微粒子を除去するためのフィルター及び排ガスの処
理方法に関する。
[Industrial application] Gas emitted from diesel vehicles, etc., contains soot-like carbonaceous fine particles, also called particulates (hereinafter abbreviated as "fine particles"). It is one of the causes. Reducing the emission amount of fine particles is one of the important issues to be solved at an early stage in global environmental problems. The present invention relates to a filter for removing fine particles contained in exhaust gas discharged from an internal combustion engine such as a diesel engine and a method for treating exhaust gas.

【0002】[0002]

【従来の技術】従来より、ディーゼルエンジン車から排
出される排ガス中の微粒子を捕集するフィルターとして
は、セラミックス製のハニカム構造体が主として検討さ
れている(例、特開昭57−7216)。ここでハニカ
ム構造体とは、隔壁により区分され、一方の端部が交互
の位置関係において閉じた多数のセルを有し、単位容積
あたりに濾過面積を多くとることができる構造体であ
る。ディーゼル乗用車の排ガスの微粒子捕集用として
は、セル密度が10〜15セル/cm、総セル数が1
500〜2500、隔壁の厚さ0.3〜0.5mm、濾
過面積約1.5mが例示されている。
2. Description of the Related Art Heretofore, a ceramic honeycomb structure has been mainly studied as a filter for collecting fine particles in exhaust gas discharged from a diesel engine vehicle (eg, Japanese Patent Laid-Open No. 57-7216). Here, the honeycomb structure is a structure that is divided by partition walls, has a large number of cells whose one end is closed in an alternating positional relationship, and can have a large filtration area per unit volume. For collecting fine particles of exhaust gas from diesel passenger cars, the cell density is 10 to 15 cells / cm 2 , and the total number of cells is 1.
500 to 2500, a partition wall thickness of 0.3 to 0.5 mm, and a filtration area of about 1.5 m 2 are exemplified.

【0003】微粒子を捕集したハニカム構造体を再生す
るには、ハニカム構造体の全体或いは一部に600℃以
上の高温を適用して微粒子を着火し、燃焼除去する方式
が主に検討されており、捕集・再生を繰り返すことによ
り継続的に排ガスが処理される。この方式では、上記の
ような隔壁の厚さが極めて薄く、セル数の多いハニカム
構造体が、微粒子が燃焼する時の高い温度に耐える性質
と、繰り返しの温度の変動に耐える性質を有することが
必要である。
In order to regenerate the honeycomb structure in which the fine particles are collected, a method of applying a high temperature of 600 ° C. or higher to the whole or a part of the honeycomb structure to ignite the fine particles and remove them by burning has been mainly studied. The exhaust gas is continuously treated by repeating collection and regeneration. In this method, the honeycomb structure having an extremely thin partition wall and a large number of cells as described above may have the property of withstanding a high temperature when fine particles burn and the property of withstanding repeated temperature fluctuations. is necessary.

【0004】しかしながら、上記のような隔壁の厚さが
極めて薄く、セル数の多いハニカム構造体をピンホール
などの欠陥を含まずに製造することは極めて困難であ
り、しかも微粒子を燃焼させる温度の変動の過程でハニ
カム構造体にクラックや割れが発生し、捕集効率が格段
に低下するというように、生産性及びフィルターとして
の信頼性に大きな問題がある。また、フィルターを再生
するにおいて、排ガスを流通させて微粒子を捕集しなが
ら再生する方式を採用しようしても、ハニカム構造体の
隔壁を貫通して流れる排ガスの温度は約150〜350
℃と、微粒子の燃焼可能な温度範囲よりもかなり低いた
め、大量の熱を与えて着火させたとしても吹き消えてし
まい、微粒子が充分に消失するまで燃焼を継続すること
ができないといった問題もある。このためフィルターを
二系列設け、一方のフィルターで捕集する間にもう一方
のフィルターを再生するといった、交互に捕集と再生を
繰り返す方式を採用せざるを得ないという問題があり、
微粒子捕集装置は全体として重装備で高価になってしま
うといった大きな問題がある。
However, it is extremely difficult to manufacture a honeycomb structure having a large number of cells and a thin partition wall as described above, without containing defects such as pinholes. There are major problems in productivity and reliability as a filter, such that the honeycomb structure is cracked or broken during the process of fluctuation and the collection efficiency is significantly reduced. Moreover, even if the method of regenerating the filter while regenerating the exhaust gas while collecting the fine particles is adopted, the temperature of the exhaust gas flowing through the partition walls of the honeycomb structure is about 150 to 350.
Since the temperature is ℃, which is considerably lower than the combustible temperature range of fine particles, even if a large amount of heat is applied and ignited, it blows off and there is a problem that combustion cannot be continued until the fine particles have sufficiently disappeared. . For this reason, there is a problem in that there is no choice but to adopt a method of alternately collecting and reproducing, such as providing two series of filters and regenerating the other filter while collecting with one filter.
There is a big problem that the particulate collection device is heavy and expensive as a whole.

【0005】更にまた、微粒子が異常に蓄積してフィル
ターを二系列共に閉塞させ、排ガスの流路が遮断してし
まうという非常事態に対する対策も設備の中に用意して
おく必要があった。このような問題を解決するために、
従来と全く異なるタイプのフィルターとして、本出願人
の特願平4−158004号が提案されている。本発明
はこの先の出願の排ガスフィルターにおいて、通電加熱
して微粒子を燃焼除去しながらフィルターを再生する方
式における捕集効率の安定性、再現性が不足しており、
長期間にわたって微粒子の高い捕集効率を得ることが困
難であり、更に通電加熱に必要な電力が大きいといった
未解決の問題を克服し、微粒子の捕集効率の安定性、再
生電力の低下に格段の進歩を与えたものである。
Furthermore, it is necessary to prepare in the equipment a countermeasure against an emergency situation in which fine particles are abnormally accumulated and the filters are blocked in two series, and the exhaust gas flow path is blocked. In order to solve such problems,
As a completely different type of filter from the conventional one, Japanese Patent Application No. 4-158004 of the present applicant has been proposed. The present invention, in the exhaust gas filter of this earlier application, stability of the collection efficiency in the method of regenerating the filter while electrically heating to burn and remove fine particles, reproducibility is insufficient,
It is difficult to obtain a high collection efficiency of fine particles for a long period of time, and overcoming unsolved problems such as a large amount of electric power required for energizing and heating, resulting in a stable collection efficiency of fine particles and a reduction in regeneration power. Is what gave the progress of.

【0006】[0006]

【発明が解決しようとする課題】即ち、本発明は、上記
の従来技術の欠点を解決することを目的として、排ガス
中の微粒子を捕集しながら、並行して、捕集した微粒子
を燃焼除去するといった1系列で排ガス処理ができるフ
ィルターであって、構造が簡単で耐久性が高く、捕集効
率が安定して高く、通電加熱によるフィルターの再生を
低電力で安定して行うことができる排ガス中の微粒子捕
集用フィルターを提供するものであり、さらに、そのフ
ィルターを用いた排ガスの処理方法を提供するものであ
る。
That is, the present invention aims to solve the above-mentioned drawbacks of the prior art, while collecting fine particles in exhaust gas while burning and removing the collected fine particles. It is a filter that can treat exhaust gas in one line, such as, and has a simple structure, high durability, stable collection efficiency, and stable regeneration of the filter by electric heating with low power. The present invention provides a filter for collecting fine particles, and further provides a method for treating exhaust gas using the filter.

【0007】[0007]

【課題を解決するための手段】本発明は、排ガスの少な
くとも一部が流通することができる開口部を備えた複数
の濾過材を、排ガスの流路にそって配置して構成した排
ガス中の微粒子捕集用フィルターであって、各々の濾過
材は、断熱性通気材、発熱体、及び捕集用通気材を有
し、捕集用通気材は断熱性通気材の下流に位置し、捕集
用通気材と断熱用通気材の間に幅が50mm以下の間隙
部を設け、発熱体はその間隙部に位置するフィルターで
あり、好ましくは、間隙部の幅が1〜20mmであり、
間隙部と開口部の境界に排ガスの流れを遮る遮蔽材を設
け、断熱性通気材と捕集用通気材を非導電性材料で作成
し、間隙部に仕切り壁を設け、各々の濾過材が備える開
口部の大きさが排ガスの下流側に漸減したフィルターで
ある。濾過材の構造の例を図1〜4に略図で示した。複
数の濾過材を外筒(排ガスダクト)内に配置して構成し
たフィルターを図5に略図で示した。
DISCLOSURE OF THE INVENTION The present invention provides an exhaust gas in which a plurality of filter media having an opening through which at least a part of the exhaust gas can flow are arranged along a flow path of the exhaust gas. A filter for collecting particulates, wherein each filter material has a heat insulating ventilation material, a heating element, and a collection ventilation material, and the collection ventilation material is located downstream of the heat insulating ventilation material. A gap portion having a width of 50 mm or less is provided between the collecting ventilation member and the heat insulating ventilation member, and the heating element is a filter located in the gap portion, preferably, the width of the gap portion is 1 to 20 mm,
A shielding material that blocks the flow of exhaust gas is provided at the boundary between the gap and the opening, and the heat insulating ventilation material and the collection ventilation material are made of a non-conductive material. It is a filter in which the size of the opening provided is gradually reduced to the downstream side of the exhaust gas. An example of the structure of the filter medium is shown schematically in FIGS. A filter constructed by disposing a plurality of filter media inside an outer cylinder (exhaust gas duct) is schematically shown in FIG.

【0008】さらに本発明は、開口部を備え、断熱性通
気材、発熱体、及び捕集用通気材を有する複数の濾過材
を排ガスの流路にそって配置したフィルターを用い、排
ガス中の微粒子を捕集し、並行して、発熱体によって捕
集した微粒子を加熱して燃焼除去する排ガスの処理方法
であって、各々の濾過材において、微粒子を含む排ガス
の少なくとも一部は開口部を通過し、その他の排ガスは
断熱用通気材を通過し、断熱用通気材を通過した排ガス
を捕集用通気材で濾過して微粒子を捕集し、各々の濾過
材の発熱体を逐次間欠的に通電加熱し、主として捕集用
通気材の上に付着して捕集用通気材と断熱用通気材の幅
50mm以下の間隙部に存在する捕集した微粒子を、捕
集用通気材と断熱用通気材の断熱性を利用して燃焼温度
以上まで加熱し、微粒子の燃焼に必要な酸素は排ガス中
に含まれる酸素を利用する排ガスの処理方法であり、好
ましくは、捕集用通気材の表面にそって開口部へ流れる
排ガスの流路が間隙部において実質的に存在しない状態
で、発熱体により発生する熱、及び捕集用通気材と断熱
用通気材の断熱性を利用し、間隙部に存在する微粒子を
燃焼温度以上に加熱して燃焼除去し、また、フィルター
の前後の差圧を検出し、それによって各々の濾過材の発
熱体を逐次間欠的に通電加熱する単位時間あたりの頻度
を変化させ、差圧が高いときの方が差圧が低いときより
も単位時間あたりの頻度を多くする方法である。
Further, according to the present invention, a filter having an opening and having a heat-insulating ventilation material, a heating element, and a collection ventilation material and arranged along the exhaust gas passage is used. A method for treating exhaust gas in which fine particles are collected and, in parallel, heated fine particles collected by a heating element are burned and removed, in which at least a part of the exhaust gas containing fine particles has an opening in each filter medium. The other exhaust gas passes through the heat-insulating ventilation material, and the exhaust gas that has passed through the heat-insulating ventilation material is filtered by the collection ventilation material to collect fine particles, and the heating elements of each filtration material are sequentially intermittently And heat the collected ventilation fine particles present in the gap of 50 mm or less in width between the collection ventilation material and the heat insulation ventilation material by adhering to the collection ventilation material to insulate the collection ventilation material from the collection ventilation material. Use the heat insulation of the ventilation material to heat above the combustion temperature, Oxygen required for combustion of particles is a method of treating exhaust gas using oxygen contained in the exhaust gas, and preferably the flow path of the exhaust gas flowing to the opening along the surface of the trapping ventilation material is substantially in the gap portion. In the absence of heat, the heat generated by the heating element and the heat insulating properties of the collection ventilation material and the heat insulation ventilation material are used to heat and remove the particulates present in the gap to a temperature above the combustion temperature for combustion removal. In addition, the differential pressure before and after the filter is detected, and the frequency per unit time for intermittently energizing and heating the heating elements of each filter medium is changed accordingly, and the differential pressure is lower when the differential pressure is higher. This is a method of increasing the frequency per unit time more than the time.

【0009】本発明のフィルターを構成する複数の濾過
材は、その各々が断熱性通気材、発熱体、及び捕集用通
気材を含む。ここで、断熱性通気材とは、発熱体が発生
する熱の散逸を抑えるに必要な適切に低い熱伝導率を有
し、併せて排ガスが通過できる通気性を有する構成材料
を言う。断熱性通気材は捕集した微粒子を燃焼するとき
の温度に耐える性質が必要であり、少なくとも断熱性通
気材の発熱体に面した部分は500℃以上の耐熱性を有
することが望ましい。この断熱性通気材の材料と構造は
広範囲に選択することができる。
Each of the plurality of filtration media constituting the filter of the present invention includes a heat insulating ventilation material, a heating element, and a collection ventilation material. Here, the adiabatic ventilation material refers to a constituent material that has an appropriately low thermal conductivity necessary for suppressing the dissipation of heat generated by the heating element, and also has a ventilation property through which exhaust gas can pass. The heat insulating vent material needs to have a property of withstanding the temperature at which the collected fine particles are burned, and it is desirable that at least the portion of the heat insulating vent material facing the heating element has a heat resistance of 500 ° C. or higher. The material and structure of this insulating vent material can be selected in a wide range.

【0010】例えば、いろいろな耐熱性材料の適切に低
い熱伝導率を有する低密度の多孔質体があり、具体的に
は、アルミナ、シリカ、種々のケイ酸塩ガラス、窒化ア
ルミニウム、窒化ホウ素、炭化ホウ素、炭化ケイ素等の
耐熱性のある各種無機材料の低密度の焼結体や発泡体、
或いはアルミナ繊維、シリカ繊維、アルミナシリケート
繊維、チタン酸カリウム繊維、窒化アルミニウム繊維等
のようなセラミック繊維の成形体が好ましい例である。
また、適切に低い熱伝導率を有するが、材料そのものに
は充分な通気性がない成形体に、通気性を付与するため
の例えば直径が数mmの孔を1個以上開けた材料を断熱
性通気材として使用することもできる。典型的な例とし
て、断熱性が高い材料に通気孔を1つだけ開け、それを
例えば図3、4のようにして断熱性通気材として使用す
ることもできる。さらに、例えば上記の無機材料の低密
度の焼結体又はセラミック繊維成形体のような断熱性の
高い成形体に金属板を接合して強度と保形性を向上さ
せ、それらを貫通する適当な大きさと数の通気用の孔を
開けた複合材料も好適である。
For example, there are low density porous materials having appropriately low thermal conductivity of various heat resistant materials, and specifically, alumina, silica, various silicate glasses, aluminum nitride, boron nitride, Low density sintered bodies and foams of various heat-resistant inorganic materials such as boron carbide and silicon carbide,
Alternatively, a preferable example is a molded body of ceramic fiber such as alumina fiber, silica fiber, alumina silicate fiber, potassium titanate fiber, aluminum nitride fiber and the like.
In addition, a material that has an appropriately low thermal conductivity, but the material itself does not have sufficient air permeability, for example, has a material that has one or more holes with a diameter of several mm for providing air permeability. It can also be used as a ventilation material. As a typical example, it is also possible to open only one ventilation hole in a highly heat insulating material and use it as a heat insulating ventilation material as shown in FIGS. Furthermore, for example, a metal plate is joined to a molded body having a high heat insulating property such as a low-density sintered body of the above-mentioned inorganic material or a ceramic fiber molded body to improve strength and shape retention, and a suitable penetrating therethrough. Also suitable are composite materials which are perforated in size and number for ventilation.

【0011】捕集用通気材とは、排ガスを濾過し、含ま
れる微粒子を捕集することができる構成材料を言い、断
熱性通気材と同様に適当な通気性と耐熱性を有する材料
より作成する必要があるが、さらに、微粒子を捕集する
ために、適切な細孔径の大きさを有する必要もある。ま
た、捕集した微粒子は殆どが捕集用通気材に接触してい
るため、微粒子を燃焼するときに加熱される温度が断熱
性通気材よりも高く、好ましくは800℃以上、さらに
好ましくは900℃以上の耐熱性を有する。また、濾過
するときの捕集用通気材の表裏面間の差圧に耐える機械
的強度も必要である。
The collecting ventilation material is a constituent material capable of filtering exhaust gas and collecting fine particles contained therein, and is made of a material having appropriate ventilation and heat resistance like the heat insulating ventilation material. However, in order to collect the fine particles, it is also necessary to have an appropriate pore size. Further, since most of the collected fine particles are in contact with the collecting ventilation material, the temperature to be heated when burning the fine particles is higher than that of the heat insulating ventilation material, preferably 800 ° C. or higher, and more preferably 900. Has heat resistance of ℃ or above. Further, it is also necessary to have mechanical strength to withstand a pressure difference between the front and back surfaces of the collecting ventilation material during filtration.

【0012】このような条件に適する材料には、上記と
同様に多孔質体である各種無機材料の低密度の焼結体や
発泡体、セラミック繊維の成形体であって適切な細孔径
の大きさを有する材料等があるが、耐熱性と機械的強度
の面からは、アルミナ繊維、シリカ繊維、アルミナシリ
ケート繊維、窒化アルミニウム繊維、炭化ケイ素繊維等
のようなセラミック繊維の成形体がより適切である。一
般に、これらセラミック繊維の成形体は断熱性が高い。
捕集用通気材の平均細孔径の大きさは1〜100μmが
適切であり、より好ましくは10〜50μmである。
Materials suitable for such conditions include, as described above, low density sintered bodies or foams of various inorganic materials which are porous bodies, and molded bodies of ceramic fibers, which have an appropriate pore size. However, from the viewpoint of heat resistance and mechanical strength, a molded body of ceramic fiber such as alumina fiber, silica fiber, alumina silicate fiber, aluminum nitride fiber, silicon carbide fiber is more suitable. is there. In general, the molded body of these ceramic fibers has a high heat insulating property.
The size of the average pore diameter of the collecting ventilation material is appropriately 1 to 100 μm, and more preferably 10 to 50 μm.

【0013】断熱性通気材と捕集用通気材の通気性は、
例えばJIS−L1096の方法を用い、差圧が12.
7mm(0・5インチ)水柱における通気材の面積1c
あたりの空気透過量で表すことができる。捕集用通
気材のこの通気性の値は、微粒子が付着していない状態
で1〜100cm/(cm・秒)が一応の目安であ
り、より実用的には、約3〜30cm/(cm
秒)である。断熱性通気材のこの値は、フィルターの圧
力損失を必要以上に大きくしないために断熱性通気材の
値の少なくとも2倍以上の通気性を有することが好まし
く、より好ましくは5〜500倍の通気性を有する。
The air permeability of the heat insulating ventilation material and the collection ventilation material is
For example, using the method of JIS-L1096, the differential pressure is 12.
Area of ventilation material 1c in 7 mm (0.5 inch) water column
It can be represented by the amount of air permeation per m 2 . The air permeability value of the collecting ventilation material is 1 to 100 cm 3 / (cm 2 · sec) in the state where fine particles are not adhered, and more practically, it is about 3 to 30 cm 3. / (Cm 2 ·
Seconds). This value of the heat insulating ventilation material preferably has at least twice the air permeability of the heat insulating ventilation material in order to prevent the pressure loss of the filter from unnecessarily increasing, and more preferably 5 to 500 times. Have sex.

【0014】この通気性は、細孔径の大きさ、各々の通
気材の厚さによって調節することができ、断熱性通気材
の場合は、前記のように、必要により例えば数mm以下
の径の孔を適当な数だけ開けることによって通気性を高
く調節することもできる。
This air permeability can be adjusted by the size of the pore size and the thickness of each air permeable material. In the case of a heat insulating air permeable material, as described above, if necessary, for example, a diameter of several mm or less is used. It is also possible to adjust the air permeability to a high level by opening an appropriate number of holes.

【0015】断熱性通気材と捕集用通気材の間に、幅が
50mm以下の間隙部を設ける。即ち、50mm以下の
間隔を設けて2つの通気材を離して配置し、好ましくは
この間隙部の幅を1〜20mmとし、断熱性通気材を排
ガスの上流側に配置する。間隙部と開口部の境界には、
図1〜4に示すように、間隙部から開口部への排ガスの
通路を遮るための遮蔽材を設けることが望ましい。この
遮蔽材は実質的にガス透過性のない任意の材料で作成す
ることができる。好ましくは、断熱性通気材と捕集用通
気材との間隙部と同じ幅で数mm以下の比較的薄肉に作
成し、断熱性通気材と捕集用通気材に固定する。
A gap having a width of 50 mm or less is provided between the heat insulating ventilation material and the collection ventilation material. That is, the two ventilation materials are arranged at a distance of 50 mm or less, preferably the width of the gap is 1 to 20 mm, and the heat insulating ventilation material is arranged on the upstream side of the exhaust gas. At the boundary between the gap and the opening,
As shown in FIGS. 1 to 4, it is desirable to provide a shielding material for blocking the passage of the exhaust gas from the gap to the opening. The shield can be made of any material that is substantially gas impermeable. Preferably, it is made relatively thin with a width of several mm or less having the same width as the gap between the heat insulating ventilation material and the collection ventilation material, and fixed to the heat insulation ventilation material and the collection ventilation material.

【0016】発熱体は、主としてこの間隙部に位置し、
ニッケル−クロム系合金、鉄−クロム−アルミニウム系
合金(カンタル)、炭化ケイ素、二ケイ化モリブデン、
ランタンクロマイト等の素材を線状や帯状等に加工した
発熱体が使用可能である。捕集用通気材の上に捕集した
微粒子がなるべく均等に全て燃焼温度まで効率よく加熱
されるように、発熱体は、例えば排ガスの流れ方向から
見て図1や図3に示したような形状に作成し、捕集され
るべき微粒子の近隣の間隙部に主として位置するように
配置する。隣に延びる発熱体との間隔が3cm以下とな
るような形状にすることが1つの目安である。なお、1
つの濾過材を1つの発熱体で加熱する必要は必ずしもな
く、1つの濾過材に発熱体を2本以上取り付けて濾過材
を分割して加熱することもできる。
The heating element is mainly located in this gap,
Nickel-chromium alloy, iron-chromium-aluminum alloy (kanthal), silicon carbide, molybdenum disilicide,
It is possible to use a heating element obtained by processing a material such as lanthanum chromite into a linear shape or a band shape. The heating element is, for example, as shown in FIG. 1 or FIG. 3 when viewed from the flow direction of the exhaust gas so that all the fine particles collected on the collecting ventilation material are efficiently heated to the combustion temperature as uniformly as possible. It is formed into a shape and arranged so as to be mainly located in the gap portion in the vicinity of the fine particles to be collected. One guideline is to make the shape such that the space between adjacent heating elements is 3 cm or less. In addition, 1
It is not always necessary to heat one filter element with one heating element, and two or more heating elements may be attached to one filtering element to heat the filtering element in a divided manner.

【0017】通電加熱する発熱体が断熱性通気材や捕集
用通気材と接触し、電流が通気材に流れ、発熱体の温度
が上がらないことや不安定になることを防ぐために、こ
れら通気材は、本来の性質が非導電性であることが好ま
しい。即ち、本発明の濾過材を構成する材料として、断
熱性通気材は、非導電性と耐熱性を有するアルミナ、シ
リカ、種々のケイ酸塩ガラス、窒化アルミニウム、窒化
ホウ素等のセラミック材料の低密度の焼結体や発泡体、
又はセラミック繊維の成形体が好適な例であり、捕集用
通気材は、非導電性と耐熱性を有し、比較的機械的強度
が高いアルミナ繊維、シリカ繊維、アルミナシリケート
繊維、窒化アルミニウム繊維等のセラミック繊維の成形
体が好適な例である。これらの通気材の強度を改良する
ため、金網、孔開き金属板、パンチングメタル等の比較
的強度が高く、通気性も高い金属材料を、発熱体に面す
る側の反対側に配置して通気性材料を補強することも本
発明の好ましい態様の例である。
In order to prevent the heating element to be electrically heated from coming into contact with the heat-insulating ventilation material or the collection ventilation material and causing an electric current to flow through the ventilation material to prevent the temperature of the heating element from rising or becoming unstable, The material is preferably non-conductive in nature. That is, as a material constituting the filter medium of the present invention, the heat insulating ventilation material is a low density of ceramic materials such as alumina, silica, various silicate glasses, aluminum nitride, and boron nitride, which have non-conductivity and heat resistance. Of sinter or foam,
Or, a molded article of ceramic fiber is a preferable example, and the ventilation material for collection has a non-conductive property and heat resistance, and has a relatively high mechanical strength such as alumina fiber, silica fiber, alumina silicate fiber, aluminum nitride fiber. A preferable example is a molded body of ceramic fiber such as. In order to improve the strength of these ventilation materials, metal materials such as wire mesh, perforated metal plate, punching metal, etc., which have relatively high strength and high air permeability, are placed on the opposite side of the side facing the heating element to ventilate. Reinforcing the permeable material is also an example of a preferred embodiment of the present invention.

【0018】これら断熱性通気材、発熱体、捕集用通気
材を含む濾過材の形状は特に限定する必要はなく、排ガ
スの流れ方向から見た濾過材全体の形状としては、図1
のような円形、図3のような長方形、その他に正方形、
楕円形、三角形等の任意の形状であってよい。排ガスの
流れの直角方向から見た濾過材の形状も限定する必要は
ないが、捕集用通気材と断熱性通気材をそれぞれ実質的
に同じ厚みとし、それらの間隙部も同じ幅とした、濾過
材全体として同じ厚さの形状が1つの好ましい態様であ
る。断熱性通気材の厚さは1〜20mm、捕集用通気材
の厚さは0.5〜10mmが一応の目安である。
The shape of the filter material including the heat insulating vent material, the heating element, and the collecting vent material is not particularly limited, and the shape of the entire filter material viewed from the flow direction of the exhaust gas is shown in FIG.
Such as a circle, a rectangle as shown in Fig. 3, a square as well,
It may have any shape such as an ellipse or a triangle. Although it is not necessary to limit the shape of the filter material as viewed from the direction perpendicular to the flow of the exhaust gas, the trapping ventilation material and the heat insulating ventilation material have substantially the same thickness, and their gaps have the same width, A shape having the same thickness as the entire filter medium is one preferable embodiment. It is a guideline that the thickness of the heat insulating ventilation material is 1 to 20 mm and the thickness of the collection ventilation material is 0.5 to 10 mm.

【0019】濾過材の面積は排気量、微粒子の濃度、濾
過材の枚数等によって設計すべきであるが、排気量10
000ccの大型ディーゼル車の排ガスフィルターで5
00〜1500cm、排気量3000ccのディーゼ
ル車で100〜400cmが排ガスの流れ方向から見
た濾過材の面積の一応の目安であろう。
The area of the filter medium should be designed according to the amount of exhaust gas, the concentration of fine particles, the number of filter media, etc.
5 with an exhaust gas filter of a large diesel vehicle of 000 cc
A diesel vehicle having an exhaust capacity of 00 to 1500 cm 2 and a displacement of 3000 cc is 100 to 400 cm 2 as a rough guideline for the area of the filter medium as seen from the flow direction of the exhaust gas.

【0020】捕集用通気材上に付着した微粒子は、例え
ば1mm以上の厚さに達した場合、振動等によってまと
まって脱落し、間隙部の下方に蓄積することがある。こ
のため、濾過材の面積が例えば1000cmと大きく
なると、脱落して移動する距離も長くなり、微粒子に対
する発熱体からの熱と排ガス中の酸素の供給が不均一に
なることがある。この熱と酸素の供給の不均一化は、例
えば、発熱体の間の間隙部に図3に示すような位置に仕
切り壁を設け、間隙部を区分して微粒子が移動できる距
離を短くすることによって軽減することができる。仕切
り壁は、例えば厚さ1mm程度とし、幅は間隙部と同じ
に作成し、図3に示すようにして2本の平行な発熱体の
間に水平に延びるようにして配置することが1つの好ま
しい例である。仕切り壁の材料は、ガス透過性がない又
は少ない、約600℃以上の耐熱性を有する材料であれ
ば任意である。
The fine particles adhering to the collecting air-permeable material may fall off together when they reach a thickness of, for example, 1 mm due to vibration or the like, and accumulate below the gap. For this reason, when the area of the filter medium becomes large, for example, 1000 cm 2 , the distance that it falls and moves becomes long, and the heat from the heating element to the fine particles and the supply of oxygen in the exhaust gas may become non-uniform. To make the supply of heat and oxygen non-uniform, for example, a partition wall is provided in the gap between the heating elements as shown in FIG. 3, and the gap is divided to shorten the distance that the fine particles can move. Can be reduced by The partition wall has a thickness of, for example, about 1 mm, a width that is the same as that of the gap portion, and is arranged so as to extend horizontally between two parallel heating elements as shown in FIG. This is a preferred example. The material of the partition wall may be any material as long as it has no or little gas permeability and has heat resistance of about 600 ° C. or higher.

【0021】各々の濾過材は開口部を備える。ここで、
開口部は、図1のように断熱性通気材及び捕集用通気材
の一部をくり抜いた任意の位置にあることができ、或い
は図3のように断熱性通気材及び捕集用通気材と外筒
(排ガスダクト)の間の任意の位置にあることもでき
る。開口部はこのような任意の位置にあることができる
が、複数の濾過材で排ガスの流れ方向に重ならないこと
が好ましく、濾過材の中央部からずらして開口部を位置
させ、その位置を例えば180度ずつ回転させて排ガス
の流れ方向から見て互い違いに開口部が位置することが
好ましい態様の1例である。また、各々の濾過材が複数
の開口部を有してもよい。
Each filter medium has an opening. here,
The opening can be located at an arbitrary position where a part of the heat insulating ventilation material and the collection ventilation material is hollowed out as shown in FIG. 1, or the heat insulation ventilation material and the collection ventilation material as shown in FIG. It can also be at any position between the outer cylinder and the outer cylinder (exhaust gas duct). The opening can be located at such an arbitrary position, but it is preferable that the plurality of filter media do not overlap with each other in the flow direction of the exhaust gas, and the position of the opening is located offset from the center of the filter media. This is an example of a preferred mode in which the openings are rotated 180 degrees and the openings are alternately positioned when viewed from the flow direction of the exhaust gas. Further, each filter medium may have a plurality of openings.

【0022】濾過材は、微粒子が捕集用通気材に付着し
ていない状態で、開口部を約60〜95%の排ガスが通
過し、捕集用通気材を約5〜40%の排ガスが貫通する
ように設計することが好ましい。具体的には、フィルタ
ーの圧損と微粒子捕集率の所望とする値を考慮して設計
される。これらの開口部の流量と捕集用通気材の流量の
関係に対応する捕集用通気材の面積と開口部の大きさの
関係は、捕集用通気材の特性によっても異なるが、排ガ
スの流れ方向から見て捕集用通気材の面積の1/10〜
1/40の大きさの開口部が一応の目安であり、排気量
10000ccの大型ディーゼル車の排ガスフィルター
で50〜200cm、排気量3000ccのディーゼ
ル乗用車で10〜40cmが開口部の大きさの目安で
ある。
In the filter medium, about 60 to 95% of the exhaust gas passes through the opening and about 5 to 40% of the exhaust gas passes through the opening in the state where the fine particles are not attached to the collecting ventilation member. It is preferably designed to penetrate. Specifically, it is designed in consideration of the pressure loss of the filter and the desired values of the particulate collection rate. The relationship between the area of the collection ventilation material and the size of the opening corresponding to the relationship between the flow rate of these openings and the flow rate of the collection ventilation material varies depending on the characteristics of the collection ventilation material. 1/10 of the area of the collecting ventilation material when viewed from the flow direction
Is the magnitude opening tentative standard of 1/40, a large diesel exhaust gas filter exhaust amount 10000cc 50~200cm 2, in diesel cars exhaust amount 3000cc 10 to 40 cm 2 is the opening size of the It is a guide.

【0023】本発明のフィルターは、排ガス中の微粒子
濃度を各濾過材で徐々に下げる方式であり、下流の濾過
材ほど排ガス中の微粒子濃度が低くなる。このため、濾
過材の面積と開口部の大きさの関係が復数の濾過材でい
ずれも同じであれば、下流の濾過材は上流の濾過材より
も微粒子の蓄積が少なくなるが、開口部の大きさを下流
にいくほど漸減させることによって、濾過材の表裏面間
の差圧は下流にいくほど大きくすることができ、下流の
濾過材を通過する排ガスの量をより多くすることも可能
である。この結果、上流と下流の間での微粒子の堆積速
度の差を少なくすることができる。最も下流の濾過材の
大きさは、限定するものではないが、最も上流の濾過材
の開口部の大きさの20〜80%とすることが比較的好
ましい。
The filter of the present invention is a system in which the concentration of fine particles in the exhaust gas is gradually reduced by each filter medium, and the concentration of fine particles in the exhaust gas becomes lower in the downstream filter medium. Therefore, if the relationship between the area of the filter media and the size of the opening is the same for all the filter media of the same number, the downstream filter media will accumulate less fine particles than the upstream filter media, By gradually reducing the size of the filter downstream, the pressure difference between the front and back surfaces of the filter can be increased further downstream, and the amount of exhaust gas passing through the filter downstream can be increased. Is. As a result, it is possible to reduce the difference in particle deposition rate between the upstream side and the downstream side. The size of the most downstream filter medium is not limited, but is preferably 20 to 80% of the size of the opening of the most upstream filter medium.

【0024】濾過材の枚数は目標とする微粒子の捕集率
によっても異なるが、5〜100枚が好ましく、より好
ましくは10〜40枚である。また、複数の濾過材の前
後の間隙は5〜50mmが適切である。
The number of the filtering materials varies depending on the target collection rate of the fine particles, but is preferably 5 to 100, more preferably 10 to 40. Further, the gap between the front and rear of the plurality of filter media is appropriately 5 to 50 mm.

【0025】フィルターの再生は、捕集した微粒子を、
間隙部に位置する発熱体で加熱して燃焼除去することに
より行う。微粒子は、主として捕集用通気材の上に付着
して捕集用通気材と断熱性通気材の間の幅50mm以下
の間隙部に存在する状態で加熱される。断熱性通気材は
前記のように、熱伝導率が低く、密度も低い多孔質体で
作成し、捕集用通気材も同様に多孔質体の1種である熱
伝導率が低い、例えばセラミック繊維の成形体であるこ
とができる。したがって、微粒子は熱伝導率の低い材料
に挟まれた狭い空間の中で加熱されることができる。
To regenerate the filter, the collected fine particles are
It is carried out by heating with a heating element located in the gap to remove by combustion. The fine particles are heated mainly in a state where they adhere to the collecting ventilation material and are present in a gap portion having a width of 50 mm or less between the collecting ventilation material and the heat insulating ventilation material. As described above, the heat insulating ventilation material is made of a porous material having low thermal conductivity and low density, and the ventilation material for collection is also a kind of porous material having low thermal conductivity, for example, ceramic. It can be a shaped body of fibers. Therefore, the fine particles can be heated in a narrow space sandwiched by materials having low thermal conductivity.

【0026】微粒子の燃焼に必要な酸素は、排ガス中の
酸素を利用することができる。車に搭載したディーゼル
エンジンの排ガス中の酸素は、エンジンの負荷や走行状
態によっても異なるが、概して5体積%以上、時間平均
で10体積%程度含まれる。ここで、微粒子を燃焼する
場合において、捕集用通気材の表面にそって開口部に流
れる排ガスの流路が実質的に存在しない状態で加熱する
ことが好ましい。この理由は、排ガスの流れによって熱
を奪われることを出来るだけ抑え、少ない電力で微粒子
を燃焼温度まで到達させるためである。この流路を遮る
方策の1つとして、前記のように間隙部と開口部の境界
に排ガスの流路を遮る遮蔽材を設ける仕方がある。
Oxygen in exhaust gas can be used as oxygen required for combustion of fine particles. Oxygen in the exhaust gas of a diesel engine mounted on a vehicle is generally 5% by volume or more and about 10% by volume on a time average, although it varies depending on the load and running condition of the engine. Here, in the case of burning the fine particles, it is preferable to heat the fine particles in a state where there is substantially no flow path of the exhaust gas flowing to the opening along the surface of the collecting ventilation material. The reason for this is to suppress heat deprivation by the flow of exhaust gas as much as possible, and to make the particles reach the combustion temperature with a small amount of electric power. As one of the measures for blocking the flow path, there is a method of providing a shielding material for blocking the flow path of the exhaust gas at the boundary between the gap and the opening as described above.

【0027】尚、本発明は、排ガス中に微粒子燃焼用の
空気又は酸素を導入する仕方を除くものではなく、排ガ
スの流量のかなりの増加、したがってフィルターの差圧
のかなりの増加を防ぐため、発熱体を通電する期間にの
み空気を導入する、或いは微粒子が存在する間隙部に直
接少量の空気を導入する仕方も本発明のフィルターにお
いて実施可能である。
It should be noted that the present invention does not exclude the method of introducing air or oxygen for combustion of fine particles into the exhaust gas, and in order to prevent a considerable increase in the flow rate of the exhaust gas and thus a significant increase in the differential pressure of the filter, A method of introducing air only during the period when the heating element is energized or a method of introducing a small amount of air directly into the gaps where the fine particles are present can be implemented in the filter of the present invention.

【0028】濾過材の開口部を通過する排ガスの量と断
熱性通気材及び捕集用通気材を通過する排ガスの量は、
それぞれの流れの抵抗によって決まる。例えば、開口部
を小さく作成すると、開口部を流れる排ガスの流れの抵
抗が高く、捕集用通気材を貫通する排ガスの割合が比較
的多くなり、濾過材としての圧力損失は大きくなり、逆
は逆である。即ち、微粒子が付着していない状態のフィ
ルター前後の差圧は、開口部の大きさによって調節する
ことができ、微粒子が付着していない状態でのフィルタ
ー前後の差圧を測定することにより容易に求めることが
できる。
The amount of exhaust gas passing through the openings of the filter medium and the amount of exhaust gas passing through the heat insulating ventilation material and the collection ventilation material are
It depends on the resistance of each flow. For example, if the opening is made small, the resistance of the flow of the exhaust gas flowing through the opening is high, the proportion of the exhaust gas passing through the collection ventilation material is relatively large, and the pressure loss as the filtering material is large, and vice versa. The opposite is true. That is, the differential pressure before and after the filter in the state where no fine particles adhere can be adjusted by the size of the opening, and can be easily measured by measuring the differential pressure before and after the filter in the state where no fine particles adhere. You can ask.

【0029】また、捕集用通気材に微粒子が蓄積すると
通過抵抗が増して捕集用通気材を流れる割合が少なくな
り、微粒子の捕集率が下がり、微粒子が全体的に濾過材
に蓄積するとフィルター前後の差圧が高くなる。このよ
うに、運転途中のフィルター前後の差圧は微粒子の蓄積
量と正の関係があり、フィルター前後の差圧によって蓄
積量を判断することができる。蓄積量が多く、微粒子の
捕集率が下がっているときは早期に蓄積量を減らすこと
が望ましい。したがって、差圧が大きい期間は再生周期
を短くし、発熱体を通電加熱する単位時間あたりの頻度
を多くし、差圧が低く戻ると逆にその頻度を下げること
が微粒子の捕集率と電気効率の両方の面から都合がよ
い。
When fine particles are accumulated in the collecting ventilation material, the passage resistance is increased and the ratio of the particles flowing through the collecting ventilation material is reduced, the collection rate of the fine particles is lowered, and the fine particles are entirely accumulated in the filtering material. The differential pressure before and after the filter becomes high. As described above, the differential pressure before and after the filter during operation has a positive relationship with the accumulated amount of fine particles, and the accumulated amount can be determined by the differential pressure before and after the filter. When the accumulated amount is large and the collection rate of fine particles is low, it is desirable to reduce the accumulated amount early. Therefore, during the period when the differential pressure is large, the regeneration cycle is shortened, the frequency per unit time for heating the heating element by energization is increased, and when the differential pressure returns to a low level, the frequency may be reduced. It is convenient in terms of both efficiency.

【0030】断熱性通気材、発熱体、捕集用通気材、及
び随意の遮蔽材、仕切り壁を有する濾過材は、溶接、接
着、締めつけ等の通常の任意の方法によってこれらを一
体に固定したものを単位とし、その複数の単位を外筒内
に固定することが好ましい態様の1例である。この固定
の方式としては、例えば、外筒に濾過材を溶接等によっ
て直接固定する、或いは濾過材を取り付け易い支持材を
外筒の内側に固定し、その支持材に濾過材を例えばボル
ト締め、溶接等で固定する方式でよい。或いは、外筒内
に丁度収まる積み重ね可能な支持体を用意し、支持体に
濾過材を取り付け、外筒の中に重ねて配置してもよい。
The heat-insulating ventilation material, the heating element, the collection ventilation material, and the optional shielding material, and the filtering material having the partition wall are integrally fixed by any ordinary method such as welding, adhesion, and tightening. This is an example of a preferred embodiment in which one unit is used and a plurality of units are fixed in the outer cylinder. Examples of this fixing method include, for example, directly fixing the filter medium to the outer cylinder by welding or the like, or fixing a support member to which the filter medium is easily attached inside the outer cylinder, and bolting the filter medium to the support member, for example. It may be fixed by welding or the like. Alternatively, a stackable support that fits exactly in the outer cylinder may be prepared, a filter medium may be attached to the support, and the stack may be arranged in the outer cylinder.

【0031】[0031]

【作用】本発明のフィルターが、ディーゼルエンジンの
排ガスに含まれる微粒子を捕集するフィルターとして適
し、安定して高い微粒子捕集効率と低い再生電力を可能
にする作用、及び技術的思想について述べる。
The function and technical concept of the filter of the present invention, which is suitable as a filter for collecting fine particles contained in the exhaust gas of a diesel engine and enables stable high particle collection efficiency and low regeneration power, will be described.

【0032】本発明のフィルターの微粒子の捕集機構
は、開口部を備えた複数の濾過材で排ガスの流路を遮蔽
し、排ガスが流れる過程で生じる濾過材の表裏面間の差
圧を利用し、一部の排ガス中の微粒子を捕集する操作を
連続して複数回繰り返す捕集方法である。即ち、図5の
ような排ガスの流れにおいて、開口部を備えた複数の濾
過材を排ガスの流路に配置することによって、流れが絞
られること、流れの向きが変わること等によって濾過材
の表裏面間で排ガスの差圧が生じ、その差圧に対応した
流量で排ガスが濾過材の捕集用通気材を貫通し、含まれ
る微粒子が濾過される。
The fine particle collecting mechanism of the filter of the present invention uses the pressure difference between the front and back surfaces of the filter medium, which is generated in the process of flowing the exhaust gas, by shielding the flow path of the exhaust gas with a plurality of filter media having openings. However, this is a collection method in which the operation of collecting some of the fine particles in the exhaust gas is repeated a plurality of times in succession. That is, in the flow of exhaust gas as shown in FIG. 5, by disposing a plurality of filter media having openings in the flow path of the exhaust gas, the flow is narrowed, the direction of the flow is changed, etc. A differential pressure of the exhaust gas is generated between the back surfaces, and the exhaust gas penetrates the trapping ventilation material of the filter material at a flow rate corresponding to the differential pressure, and the contained fine particles are filtered.

【0033】また、各々の濾過材の発熱体は構造的に別
個であるため、微粒子を燃焼させるための加熱は、それ
ぞれの発熱体を独立に通電して行うことが可能である。
即ち、或る瞬間においては、一部の発熱体、例えば発熱
体を1つだけ通電し、逐次別の発熱体を通電する仕方が
可能である。
Further, since the heating elements of the respective filter media are structurally distinct, the heating for burning the fine particles can be carried out by energizing the heating elements independently.
That is, it is possible to energize only one of the heating elements, for example, one heating element at a certain moment, and then sequentially energize another heating element.

【0034】上記の捕集方式において、例えば1枚の濾
過材の開口部に90%の排ガスが流れ、10%の排ガス
が捕集用通気材を貫通し、1枚の濾過材について10%
の微粒子が捕集されるとした場合、n枚の濾過材を排ガ
スの流路にそって配置したフィルターにおいて、理想的
には未捕集の微粒子は0.9のn乗となり、nが10で
あれば未捕集の微粒子は35%に低下し、nが20であ
れば12%まで低下する。
In the above collection method, for example, 90% of the exhaust gas flows through the opening of one filter medium, 10% of the exhaust gas penetrates the collecting ventilation material, and 10% of one filter medium is used.
In the filter in which n pieces of filter media are arranged along the flow path of the exhaust gas, the uncollected particles are ideally 0.9 power of n, and n is 10 If so, the uncollected fine particles are reduced to 35%, and if n is 20, the fine particles are reduced to 12%.

【0035】この方式でこのような理想的な捕集効率を
得るためには、自明ながら、濾過材に捕集された微粒子
が濾過材から離れて再度排ガスの流れに同伴しないこと
が必要である。ここで、濾過材の面と平行な方向の大き
な速度の排ガスの流れは、捕集した微粒子を濾過材から
吹き飛ばそうとする作用を及ぼす。即ち、上記の例にお
いて、90%の排ガスは濾過材を貫通せずに濾過材の面
にそって流れ、捕集した微粒子を濾過材から離そうとす
る力を及ぼす。
In order to obtain such an ideal trapping efficiency in this system, it is obvious that it is necessary that the fine particles trapped in the filter medium do not leave the filter medium and accompany again with the flow of the exhaust gas. . Here, the flow of the exhaust gas at a high velocity in the direction parallel to the surface of the filter medium acts to blow the collected fine particles from the filter medium. That is, in the above example, 90% of the exhaust gas flows along the surface of the filter medium without penetrating the filter medium, and exerts a force to separate the collected fine particles from the filter medium.

【0036】このような濾過材の表面にそった、捕集し
た微粒子の近傍の排ガスの流れは、濾過材を2種類の通
気材によって構成し、上流側に断熱性が高く、適当な通
気性がある断熱性通気材を配置し、下流側に微粒子を捕
集するに適切な微細な平均細孔径を有する捕集用の通気
材を配置し、これら2種類の通気材の間に適当な幅の間
隙部を設けることによって著しく減少させることが可能
であり、さらに、間隙部と開口部の境界に排ガスの流れ
を遮る遮蔽材を設けることによって、より一段と減少さ
せることが可能である。この結果、前記の理想状態に近
い微粒子の捕集率が達成できることが明らかになった。
この理由は、間隙部の外部の排ガスの流れと捕集用通気
材との間に距離を設けることによって外部から捕集用通
気材の表面近傍への影響を効果的に減らすことができ、
さらに、間隙部から開口部への排ガスの流路を実質的に
遮ることにより、捕集用通気材を貫通する方向以外の流
れを効果的に顕著に減少させることができるためと考え
られる。
The flow of the exhaust gas along the surface of the filter medium in the vicinity of the collected fine particles is constituted by two kinds of ventilation materials, and the upstream side has a high heat insulating property and an appropriate ventilation property. There is a heat insulating ventilation material, and a collection ventilation material having a fine average fine pore diameter suitable for collecting fine particles is arranged on the downstream side, and an appropriate width is provided between these two kinds of ventilation materials. It is possible to remarkably reduce the amount by providing the gap portion, and it is possible to further reduce the amount by providing a shielding material for blocking the flow of the exhaust gas at the boundary between the gap portion and the opening portion. As a result, it became clear that the fine particle collection rate close to the ideal state can be achieved.
The reason for this is that by providing a distance between the flow of exhaust gas outside the gap and the collection ventilation material, it is possible to effectively reduce the influence on the surface vicinity of the collection ventilation material from the outside.
Further, it is considered that by substantially blocking the flow path of the exhaust gas from the gap portion to the opening portion, the flow other than in the direction of penetrating the collection ventilation material can be effectively and significantly reduced.

【0037】発熱体を通電加熱し濾過材を再生するに要
する電力は、最終的にディーゼル車の燃費に影響するた
め、出来るだけ少ないことが望ましく、通電加熱に供給
できる電力は、一般に、時間平均で大型トラックでは2
kw以下、乗用車では1kw以下とされている。本発明
のフィルターにおいては充分に少ない電力で再生が可能
であることが明らかになったが、これは次の理由による
ものと考えられる。
The electric power required to heat the heating element by energization to regenerate the filter material finally affects the fuel efficiency of the diesel vehicle, and therefore it is desirable to be as small as possible. 2 for large trucks
kW or less, and 1 kW or less for passenger cars. It has been clarified that the filter of the present invention can be regenerated with a sufficiently low electric power, which is considered to be due to the following reason.

【0038】第1に、本発明のフィルターの濾過材を再
生するときの微粒子の状態は、熱伝導率の低い2種類の
多孔質体で形成した間隙部に主として存在し、放熱の少
ない幅の狭い間隙部の空間の中に発熱体と一緒に存在す
る状態である。したがって、発熱体の熱や微粒子の燃焼
熱の散逸を効果的に遮断することができ、さらに、間隙
部の空間は輻射による伝熱空間を提供し、被加熱体の温
度の均一化を助長するといったように、熱が微粒子全体
に効率よく伝わるに理想的な状態にあるためと考えられ
る。
First, when the filter material of the filter of the present invention is regenerated, the state of fine particles is mainly present in the gap portion formed by two kinds of porous bodies having low thermal conductivity, and has a width of less heat radiation. It is a state where it exists together with a heating element in the space of a narrow gap. Therefore, it is possible to effectively block the dissipation of the heat of the heating element and the combustion heat of the fine particles, and further, the space of the gap provides a heat transfer space by radiation and promotes the uniformization of the temperature of the heated object. As described above, it is considered that the heat is in an ideal state for being efficiently transmitted to the entire particles.

【0039】第2に、捕集用通気材の表面と平行な方向
の、間隙部の排ガスの流れは、遮蔽材を用いることによ
って抑制される。また、上記のように本来1枚の濾過材
を貫通する排ガスは、全体の例えばわずか10%である
ことに加え、濾過材の再生が必要な状態では微粒子によ
る目詰まりのために濾過材を貫通する排ガス量はさらに
少なくなっており、したがって発熱体、及び発熱体によ
って加熱されている微粒子や通気材から排ガスの流れが
奪う熱量も少なくなるためと考えられる。
Secondly, the flow of the exhaust gas in the gap portion in the direction parallel to the surface of the collecting ventilation material is suppressed by using the shielding material. Further, as described above, the exhaust gas that originally penetrates one filter medium is, for example, only 10% of the whole, and when the filter medium needs to be regenerated, it penetrates the filter medium due to clogging by fine particles. It is considered that the amount of exhaust gas generated is further reduced, and therefore the amount of heat taken by the flow of exhaust gas from the heating element and the fine particles and the ventilation material heated by the heating element is also reduced.

【0040】これら高い捕集率と低い再生電力を実現す
るための作用に加え、間隙部は、本方式のフィルターが
成立するに不可欠な基本的な役割を果たしているように
思われる。即ち、本方式のフィルターが有益であるため
には、濾過材のわずかな一部のみが濾過に利用され、微
粒子の付着の偏りが大きいといったことがなく、濾過材
の全体が有効に利用されることが必要である。しかしな
がら、図5に示すようなフィルター構成と排ガスの流れ
において、濾過材表面の近傍の排ガスの流れの方向や速
度は濾過材各部で同等ではない。例えば、開口部の直ぐ
下流の濾過材の表面付近の流速は濾過材表面に垂直な方
向の成分が大きく、開口部に遠い濾過材の表面付近の流
速は濾過材表面に平行な成分が大きいと考えられる。こ
のような流れの速度と方向の違いは、濾過材の差圧の部
分的な違いや微粒子の剥離を生じさせ、そのままであれ
ば微粒子の付着の偏りと低い捕集率に帰着することが本
発明者らによって経験されている。
In addition to the effect of realizing the high collection rate and the low regeneration power, the gap seems to play an indispensable basic role for establishing the filter of this system. That is, in order for the filter of this system to be beneficial, only a small part of the filter medium is used for filtration, and the deviation of the adhesion of fine particles is not large, and the entire filter medium is effectively used. It is necessary. However, in the filter structure and the flow of exhaust gas as shown in FIG. 5, the direction and speed of the flow of exhaust gas in the vicinity of the surface of the filter medium are not equal in each part of the filter medium. For example, if the flow velocity near the surface of the filter medium immediately downstream of the opening has a large component in the direction perpendicular to the filter surface, and the flow velocity near the surface of the filter far from the opening has a large component parallel to the filter surface. Conceivable. Such a difference in flow velocity and direction causes a partial difference in the differential pressure of the filter medium and separation of fine particles, and if left as it is, it is possible to result in uneven adhesion of fine particles and a low collection rate. Experienced by the inventors.

【0041】しかしながら、捕集用通気材の上流に設け
た間隙部によって捕集用通気材の表面の近傍の排ガスの
流れの状況を大きく変えることができる。即ち、前記の
ように、間隙部には排ガスの一部のみが流入するため、
間隙部における流速は間隙部の外部より絶対値において
かなり小さく、したがって、捕集用通気材の表面近傍に
各所で流速に違いがあったとしても小さい絶対値の範囲
の中での違いに過ぎなくなる。さらに、遮蔽材の作用に
よって捕集用通気材の表面にそって間隙部から出ていく
流れが抑えられ、捕集用通気材の表面近傍での表面にそ
った強制的な流れを極めて少ない又は実質的にない状態
にまですることができる。
However, the condition of the flow of the exhaust gas in the vicinity of the surface of the collecting ventilation material can be largely changed by the gap portion provided upstream of the collecting ventilation material. That is, as described above, since only part of the exhaust gas flows into the gap,
The flow velocity in the gap is much smaller in absolute value than in the outside of the gap, so even if there is a difference in flow velocity at various places near the surface of the collection ventilation material, it will only be a difference within the range of small absolute values. . Further, the action of the shielding material suppresses the flow flowing out of the gap along the surface of the collection ventilation material, and the forced flow along the surface near the surface of the collection ventilation material is extremely small or It can be brought to a substantially nonexistent state.

【0042】このように、間隙部に流入した排ガスは、
外部の影響が少なく、流速の小さい状態で捕集用通気材
の表裏面間の差圧に供されることになる。一方で、濾過
材は一般な性質として、表面に微粒子が堆積すると通気
抵抗が増加し、その領域での貫通ガスは少なくなる。こ
のことは、排ガスの流れが不均一等の理由で、捕集用通
気材にガスが比較的貫通し易い領域が局部的に存在して
いたとしても、最初にその領域を優先的に排ガスが貫通
して濾過されるものの、微粒子の堆積が進むと貫通速度
が減り、未だ堆積してしない別な部分に比較的貫通し易
い領域が移行する性質を本来的に濾過材が有することを
意味する。
Thus, the exhaust gas flowing into the gap is
It is used for the differential pressure between the front and back surfaces of the collecting ventilation material in the state where the influence of the outside is small and the flow velocity is small. On the other hand, as a general property of the filter material, when fine particles are deposited on the surface, ventilation resistance increases, and the amount of penetrating gas in that area decreases. This means that even if there is a region where the gas is relatively easily penetrated in the collecting ventilation material due to the non-uniform flow of the exhaust gas, the exhaust gas is preferentially discharged in that region first. Although it is penetrated and filtered, it means that the penetration rate decreases as the accumulation of fine particles progresses, and that the filter material inherently has the property of migrating a relatively easy-to-penetrate region to another part that has not yet accumulated. .

【0043】この本来的に堆積量が均一化し易い濾過材
の性質が発現するためには、濾過材の表裏面間の差圧以
外の影響が少ないことが必要であり、また流れ易い部分
に排ガスが移動できるための空間が必要なはずである。
間隙部の空間はこの役割を担い、捕集用通気材の微粒子
の堆積が少ない領域を排ガスが自ら選択するように、排
ガスが自由に移動できる空間を提供するものと考えられ
る。このため、開口部の位置によらず、例えば図3のよ
うに開口部が極端に偏在していても、また発熱体が捕集
用通気材の上流に捕集用通気材に対して不均一に位置し
ていても、捕集用通気材の実質的に全面が濾過に利用で
きるようになるものと考えられる。
In order for the property of the filter medium to be easily obtained that the deposition amount is originally uniformed, the influence other than the pressure difference between the front surface and the back surface of the filter medium is required to be small, and the exhaust gas is easily discharged to the flowable portion. There should be a space to move around.
It is considered that the space of the gap portion plays this role and provides a space in which the exhaust gas can freely move so that the exhaust gas itself selects a region in which the accumulation of the fine particles of the ventilation material is small. Therefore, irrespective of the positions of the openings, even if the openings are extremely unevenly distributed as shown in FIG. 3, the heating element is not upstream of the collection ventilation material and is uneven with respect to the collection ventilation material. Even if it is located at, it is considered that substantially the entire surface of the collection ventilation material becomes available for filtration.

【0044】これらの作用により、微粒子の高い捕集効
率が可能になり、排ガスを流しながらでも充分に少ない
電力で微粒子を燃焼温度まで加熱することが可能にな
り、したがって、微粒子を捕集しながら再生できる1系
列のフィルターの提供が可能になるのである。
By these actions, high collection efficiency of fine particles becomes possible, and it becomes possible to heat the fine particles to the combustion temperature with a sufficiently small electric power while flowing the exhaust gas. Therefore, while collecting the fine particles. It is possible to provide a series of filters that can be reproduced.

【0045】[0045]

【実施例】実施例1 次の仕方で15枚の濾過材を作成した。断熱性通気材と
して、市販の断熱材であるアルミナ−シリカ繊維のフェ
ルト状の厚さ3mmの成形体(組成:アルミナ45%、
シリカ53%、繊維直径:3μm、熱伝導率:約0.1
0W/(m・℃)、嵩密度:0.15g/cm)を、
厚さ約0.7mmのSUS304製の孔開き板(直径1
mmの孔を中心間で3mm間隔に格子状に穿孔)に接合
し、前記フェルト状成形体も金属の孔の部分と同じ位置
に直径1mmの孔を関けた板状の材料を使用した。
EXAMPLES Example 1 Fifteen filter media were prepared in the following manner. As a heat insulating ventilation material, a commercially available heat insulating material alumina-silica fiber felt-shaped molded product having a thickness of 3 mm (composition: 45% alumina,
Silica 53%, fiber diameter: 3 μm, thermal conductivity: about 0.1
0 W / (m · ° C.), bulk density: 0.15 g / cm 3 )
Perforated plate made of SUS304 with a thickness of about 0.7 mm (diameter 1
mm holes were joined in a grid pattern at intervals of 3 mm between the centers), and the felt-shaped molded product also used a plate-shaped material having holes with a diameter of 1 mm at the same positions as the metal holes.

【0046】捕集用通気材として、直径約10μmのア
ルミナ質長繊維を朱子織りにした厚さ約1.0mmアル
ミナ質布帛(表示組成:アルミナ99.5%、平均細孔
径:約30μm、気孔率:約65%)を使用した。JI
S−L1096にしたがって測定した12.7mm水柱
の差圧におけるこれらの通気材の空気透過量は、断熱性
通気材で約160cm/(cm・秒)、捕集用通気
材で約14cm/(cm・秒)であった。発熱体は
直径1.5mmの鉄−ニッケルークロム系合金の線状発
熱体を使用した。
As a ventilation material for collection, an alumina cloth having a thickness of about 1.0 mm obtained by satin weaving alumina long fibers having a diameter of about 10 μm (display composition: alumina 99.5%, average pore diameter: about 30 μm, pores) Rate: about 65%). JI
The air permeation amount of these ventilation materials at a pressure difference of 12.7 mm water column measured according to S-L1096 is about 160 cm 3 / (cm 2 · sec) for the heat insulating ventilation material and about 14 cm 3 for the collection ventilation material. It was / (cm 2 · sec). As the heating element, an iron-nickel-chromium alloy linear heating element having a diameter of 1.5 mm was used.

【0047】断熱性通気材と捕集用通気材をそれぞれ直
径200mmの円形に切り取り、発熱体は図1に示すよ
うな形状で、平行に延びる線の間隔が約20mmになる
ように曲げ加工し、図1と2に示すような濾過材を作成
した。開口部は、円形の濾過材の中心から50mmに中
心が位置する直径55mmの円形の穴とした。断熱性通
気材と捕集用通気材の間に外径198mm、長さ7m
m、厚さ1mmのSUS304製のリングを配置して、
幅約7mmの間隙部を提供するスペーサーとした。開口
部の周囲に、遮蔽材として内径55mm、厚さ1mm、
長さ12mmのSUS304製のリングを配置した。直
径0.8mmのSUS304製の線材で作成した目開き
2mmの金網を直径200mmの円形に裁断し、捕集用
通気材の下流側の表面に接触させて配置し、捕集用通気
材を補強した。
The heat insulating vent material and the trapping vent material were each cut into a circle with a diameter of 200 mm, and the heating element was shaped so as to have a shape as shown in FIG. A filter medium as shown in FIGS. 1 and 2 was prepared. The opening was a circular hole having a diameter of 55 mm, the center of which was located 50 mm from the center of the circular filter medium. Outer diameter of 198 mm and length of 7 m between heat insulating ventilation material and collection ventilation material
m, 1mm thick SUS304 ring is placed,
The spacer provided a gap having a width of about 7 mm. Around the opening, as a shielding material, inner diameter 55 mm, thickness 1 mm,
A 12 mm long SUS304 ring was placed. Reinforce the collection ventilation material by cutting a wire mesh with a 2 mm opening made of SUS304 wire material with a diameter of 0.8 mm into a circle with a diameter of 200 mm and making contact with the downstream surface of the collection ventilation material. did.

【0048】上記のリング状スペーサーに、上記のSU
S304製の孔開き板及びSUS304製の金網を局部
的に溶接することによって断熱性通気材と捕集用通気材
を固定し、同様に遮蔽材も上記の孔開き板及び金網に溶
接して固定した。発熱体は、上記のスペーサーに孔を開
けて間隙部に導き、孔の周りを絶縁材でシールした。発
熱体は間隙部の中でほぼ捕集用通気材に接触して位置し
た。作成した直径200mmで厚さ約12mmの円盤状
の濾過材の15枚を、開口部の位置を180度ずつ回転
して内径203mmの外筒の中に、前後の間隔を20m
mとして配置し、局部的に溶接して固定し、濾過材と外
筒内側の隙間は耐熱性のシール材でシールして本発明の
フィルターを作成した。発熱体は外筒に孔を開けて外に
導き、外筒から数mm出た箇所でリード線に接続し、孔
の周りは絶縁材でシールした。
The above ring-shaped spacer is attached to the above SU.
The S304 perforated plate and the SUS304 wire mesh are locally welded to fix the heat insulating ventilation material and the collection ventilation material. Similarly, the shielding material is also welded and fixed to the perforated plate and wire mesh. did. The heating element was made by forming a hole in the above spacer and guiding it to the gap, and sealing the periphery of the hole with an insulating material. The heating element was located in the gap almost in contact with the collecting ventilation material. Fifteen disc-shaped filter media with a diameter of 200 mm and a thickness of about 12 mm were created by rotating the position of the opening by 180 degrees in an outer cylinder with an inner diameter of 203 mm, with a front and rear spacing of 20 m.
m was fixed locally by welding, and the gap between the filter medium and the outer cylinder was sealed with a heat-resistant seal material to prepare the filter of the present invention. The heating element was introduced to the outside by making a hole in the outer cylinder, and was connected to a lead wire at a position several mm from the outer cylinder, and the periphery of the hole was sealed with an insulating material.

【0049】デーゼルエンジンとして、排気量3300
cc、圧縮比23、最大出力約45kW/2000rp
mの横型水冷式単気筒エンジンを用い、負荷を75%に
して運転し、その排ガスを上記の本発明のフィルターに
導いて処理を行った。
As a diesel engine, the displacement is 3300
cc, compression ratio 23, maximum output approx. 45 kW / 2000 rp
A horizontal water-cooled single-cylinder engine of m was operated with a load of 75%, and the exhaust gas was guided to the filter of the present invention for treatment.

【0050】濾過の開始5分後のフィルターの前後の差
圧は5.9kPa、フィルター入口の排ガス汚染度(J
IS−D8004に準じたスモークメーターDSM−1
0型で測定)は44%、フィルター出口の排ガス汚染度
は15%であった。そのまま排ガスをフィルターに導い
た状態を継続して排ガスを処理すると、フィルター前後
の差圧とフィルター出口の排ガス汚染度は徐々に増加
し、2時間後に差圧が8.8kPa、フィルター出口の
排ガス汚染度は22%に達した。このときのフィルター
入口の排ガス汚染度は44%であり、濾過の開始直後と
同じであった。排ガス中の酸素濃度は9〜11体積%で
あった。濾過開始より2時間10分後にフィルターに排
ガスを導入しながらの、発熱体の間欠的な通電を開始し
た。濾過材の各々の発熱体の両端に24ボルトの電圧を
印加し、供給電力を810ワットとし、通電を3分間ず
つ各々の発熱体について逐次行い、この状態を20時間
継続した。この間のフィルター前後の差圧は6.6〜
7.8kPa、フィルター入口の排ガス汚染度は41〜
45%、フィルター出口の排ガス汚染度は16〜19%
の範囲でそれぞれ安定していた。
Five minutes after the start of filtration, the differential pressure before and after the filter was 5.9 kPa, and the exhaust gas pollution degree (J
Smoke meter DSM-1 according to IS-D8004
(Measured with 0 type) was 44%, and the exhaust gas pollution degree at the filter outlet was 15%. If the exhaust gas is continuously treated while being guided to the filter, the differential pressure before and after the filter and the exhaust gas pollution degree at the filter outlet will gradually increase, and after 2 hours the differential pressure will be 8.8 kPa and the exhaust gas pollution at the filter outlet. The degree reached 22%. The exhaust gas pollution degree at the filter inlet at this time was 44%, which was the same as immediately after the start of filtration. The oxygen concentration in the exhaust gas was 9 to 11% by volume. Two hours and 10 minutes after the start of filtration, intermittent energization was started while introducing exhaust gas into the filter. A voltage of 24 V was applied to both ends of each heating element of the filter medium, the supply power was set to 810 watts, electricity was sequentially applied to each heating element for 3 minutes, and this state was continued for 20 hours. The differential pressure before and after the filter is 6.6-
7.8 kPa, exhaust gas pollution degree at the filter inlet is 41-
45%, exhaust gas pollution degree at the filter outlet is 16-19%
It was stable in each range.

【0051】比較例1 断熱性通気材を使用しない以外は、実施例1で作成した
濾過材と実質的に全く同様にして、発熱体、捕集用通気
材を含む15枚の濾過材を作成し、それらを外筒内に固
定してフィルターを作成した。そのフィルターに実施例
1と同様にしてディーゼルエンジンの排ガスを導きなが
ら、各々の発熱体を実施例1と同様にして通電加熱し、
10時間の運転を行った。その結果、フィルター出口の
排ガス汚染度は37〜45%と、顕著な低下は見られな
かった。
Comparative Example 1 Fifteen filter media including a heating element and a collecting ventilation material were prepared in substantially the same manner as the filtration material prepared in Example 1 except that the heat insulating ventilation material was not used. Then, they were fixed in the outer cylinder to prepare a filter. While introducing exhaust gas of a diesel engine to the filter in the same manner as in Example 1, each heating element is electrically heated in the same manner as in Example 1,
The operation was performed for 10 hours. As a result, the exhaust gas pollution degree at the filter outlet was 37 to 45%, which was not significantly decreased.

【0052】実施例2 断熱性通気材として、実施例1で使用したと同じアルミ
ナ−シリカ繊維のフェルト状の厚さ3mmの成形体と、
厚さ約0.7mmの通気性のないSUS304の薄板と
を接合した材料を用い、通気用の穴を1箇所にのみ設け
た板状材料を図3と4のような状態で使用した。捕集用
通気材は、実施例1で使用したと同じ厚さ約1.0mm
アルミナ質の布帛を使用し、発熱体も実施例1と同じ線
状発熱体を使用した。
Example 2 As a heat insulating air-permeable material, the same alumina-silica fiber molding as used in Example 1 and having a felt-like shape and having a thickness of 3 mm,
A plate-like material having a thickness of about 0.7 mm joined to a non-breathable SUS304 thin plate and provided with only one ventilation hole was used in the state shown in FIGS. 3 and 4. The collecting ventilation material has the same thickness as that used in Example 1, about 1.0 mm.
An alumina cloth was used, and the same heating element as in Example 1 was used as the heating element.

【0053】断熱性通気材と捕集用通気材をそれぞれ1
50mm×180mm、150mm×200mmの長方
形に裁断し、発熱体は図3に示す形状にし、平行な線の
間隔を約15mmにして曲げ加工した。実施例1と同様
に、SUS304製の線材で作成した目開き2mmの金
網を150mm×200mmに裁断し、捕集用通気材の
下流側の表面に接触させて配置し、捕集用通気材を補強
した。外形が148mm×198mm、長さ10mm、
肉厚2mmの四角いSUS304製のリングをスペーサ
ーとして用い、実施例1と同様にして、上記の断熱性通
気材のSUS304の薄板及びSUS304製の金網を
前記のスペーサーに局部的に溶接することによって幅約
10mmの間隙部を有する濾過材を形成した。
1 heat-insulating ventilation material and 1 collection ventilation material
It was cut into a rectangle of 50 mm × 180 mm and 150 mm × 200 mm, the heating element was formed into the shape shown in FIG. 3, and the parallel lines were bent at intervals of about 15 mm. In the same manner as in Example 1, a wire mesh made of SUS304 wire and having an opening of 2 mm was cut into 150 mm × 200 mm, and the wire was placed in contact with the downstream surface of the collection ventilation material to obtain the collection ventilation material. Reinforced. The outer shape is 148 mm x 198 mm, the length is 10 mm,
Using a square SUS304 ring having a wall thickness of 2 mm as a spacer, the width is obtained by locally welding the thin plate of SUS304 of the above-mentioned heat insulating ventilation material and the wire mesh made of SUS304 to the spacer in the same manner as in Example 1. A filter medium having a gap of about 10 mm was formed.

【0054】この濾過材の15枚を、内側寸法が152
mm×215mmの外筒に挿入し、開口部の位置を交互
にし、前後の間隔を20mmとして濾過材を外筒に局部
的に溶接して固定し、濾過材と外筒の隙間は耐熱性のシ
ール材でシールして本発明のフィルターを作成した。こ
の場合、開口部は、捕集用通気材及び断熱性通気材と外
筒との150mm×15mmの間隙に相当し、スペーサ
ーが遮蔽材を兼用することになる。発熱体は外筒に孔を
開けて外に導き、外筒から数mm出た箇所でリード線に
接続し、孔の周りは絶縁材でシールした。
Fifteen pieces of this filter material were used, and the inside dimension was 152
It is inserted into an outer cylinder of mm × 215 mm, the positions of the openings are alternated, and the front and rear intervals are set to 20 mm, and the filter material is locally welded and fixed to the outer cylinder. The filter of the present invention was prepared by sealing with a sealing material. In this case, the opening corresponds to a gap of 150 mm × 15 mm between the collecting ventilation material, the heat insulating ventilation material and the outer cylinder, and the spacer also serves as the shielding material. The heating element was introduced to the outside by making a hole in the outer cylinder, and was connected to a lead wire at a position several mm from the outer cylinder, and the periphery of the hole was sealed with an insulating material.

【0055】このフィルターに、実施例1と同様にし
て、排気量3301ccのディーゼルエンジンの75%
負荷での排ガスを導いた。濾過の開始5分後のフィルタ
ーの前後の差圧は6.3kPa、フィルター入口の排ガ
ス汚染度45%、フィルター出口の排ガス汚染度は14
%であった。そのまま排ガスをフィルターに導いた状態
を継続し、2時間後に差圧が8.3kPa、フィルター
出口の排ガス汚染度は21%に達しとき、フィルターに
排ガスを導入しながらの、発熱体の間欠的な通電を開始
した。濾過材の各々の発熱体の両端に24ボルトの電圧
を印加し、供給電力を890ワットとし、通電を2分間
ずつ各々の発熱体について逐次行い、この状態を20時
間継続した。この間のフィルター前後の差圧は6.9〜
7.1kPa、フィルター入口の排ガス汚染度は41〜
46%、フィルター出口の排ガス汚染度は15〜18%
の範囲でそれぞれ安定していた。
In this filter, as in Example 1, 75% of a diesel engine with a displacement of 3301 cc was used.
Led exhaust gas under load. 5 minutes after the start of filtration, the differential pressure before and after the filter was 6.3 kPa, the exhaust gas pollution degree at the filter inlet was 45%, and the exhaust gas pollution degree at the filter outlet was 14%.
%Met. When the exhaust gas is continuously guided to the filter and the differential pressure is 8.3 kPa and the exhaust gas pollution degree at the filter outlet reaches 21% after 2 hours, the heating element is intermittently introduced while introducing the exhaust gas into the filter. Energization started. A voltage of 24 V was applied to both ends of each heating element of the filter medium, the supply power was set to 890 watts, and energization was sequentially performed for each heating element for 2 minutes, and this state was continued for 20 hours. The differential pressure before and after the filter during this period is 6.9-
7.1 kPa, exhaust gas pollution degree at the filter inlet is 41-
46%, exhaust gas pollution degree at the filter outlet is 15-18%
It was stable in each range.

【0056】図1と3において、断熱性通気材と捕集用
通気材の間に位置する状態の線状発熱体を破線で示して
いるが、いずれも1本の発熱体である。図5において、
排ガスの流れを矢印で示している。図1〜5はモデル的
な説明図であり、寸法は等倍比になっていない。それぞ
れの寸法は実施例に記載している。
In FIGS. 1 and 3, the linear heating element positioned between the heat insulating ventilation material and the collection ventilation material is shown by a broken line, but both are one heating element. In FIG.
The flow of exhaust gas is indicated by arrows. 1 to 5 are schematic explanatory views, and the dimensions are not in the same ratio. The respective dimensions are described in the examples.

【0057】[0057]

【発明の効果】1系列のみでディーゼル車の排ガス中の
微粒子を捕集・再生できる構造のフィルターにおいて、
微粒子の捕集効率が高く、通電加熱に必要な電力が少な
いフィルターを提供することができる。
EFFECTS OF THE INVENTION In a filter having a structure capable of collecting and regenerating fine particles in exhaust gas of a diesel vehicle with only one series,
It is possible to provide a filter that has a high collection efficiency of fine particles and requires less electric power for electric heating.

【図面の簡単な説明】[Brief description of drawings]

【図1】排ガスの流れ方向から見た濾過材の構成の1例
を示す略図である。
FIG. 1 is a schematic view showing an example of the configuration of a filter medium as seen from the flow direction of exhaust gas.

【図2】排ガスの流れの垂直方向から見た濾過材の構成
の1例を示す略図である。
FIG. 2 is a schematic diagram showing an example of the configuration of a filter medium as seen from the direction perpendicular to the flow of exhaust gas.

【図3】排ガスの流れ方向から見た濾過材の構成の別の
例を示す略図である。
FIG. 3 is a schematic view showing another example of the configuration of the filter medium as seen from the flow direction of exhaust gas.

【図4】排ガスの流れの垂直方向から見た濾過材の構成
の別の例を示す略図である。
FIG. 4 is a schematic view showing another example of the configuration of the filter medium as seen from the direction perpendicular to the flow of exhaust gas.

【図5】排ガスの流れを示す説明図である。FIG. 5 is an explanatory diagram showing a flow of exhaust gas.

【符号の説明】 1…濾過材 2…断熱性通気材 3…発熱体 4…捕集用通気材 5…遮蔽材 6…間隙部 7…スペーサー 8…仕切り壁 9…開口部 10…外筒 11…金網 12…通気用の穴[Explanation of Codes] 1 ... Filtering material 2 ... Insulating ventilation material 3 ... Heating element 4 ... Collection ventilation material 5 ... Shielding material 6 ... Gap 7 ... Spacer 8 ... Partition wall 9 ... Opening 10 ... Outer cylinder 11 … Wire mesh 12… Ventilation holes

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 排ガスの少なくとも一部が流通すること
ができる開口部を備えた複数の濾過材を、排ガスの流路
にそって配置して構成した排ガス中の微粒子捕集用フィ
ルターであって、各々の濾過材は、断熱性通気材、発熱
体、及び捕集用通気材を有し、捕集用通気材は断熱性通
気材の下流に位置し、捕集用通気材と断熱用通気材の間
に幅が50mm以下の間隙部を設け、発熱体はその間隙
部に位置するフィルター。
1. A filter for collecting fine particles in exhaust gas, comprising a plurality of filter media, each of which has an opening through which at least a part of exhaust gas can flow, and is arranged along a flow path of the exhaust gas. , Each filter material has a heat insulating ventilation material, a heating element, and a collection ventilation material, and the collection ventilation material is located downstream of the heat insulation ventilation material. A filter in which a gap having a width of 50 mm or less is provided between the materials, and the heating element is located in the gap.
【請求項2】 間隙部の幅が1〜20mmである請求項
1に記載のフィルター。
2. The filter according to claim 1, wherein the width of the gap is 1 to 20 mm.
【請求項3】 間隙部と開口部の境界に排ガスの流れを
遮る遮蔽材を設けた請求項1又は2に記載のフィルタ
ー。
3. The filter according to claim 1 or 2, wherein a shielding material that blocks the flow of exhaust gas is provided at the boundary between the gap and the opening.
【請求項4】 断熱性通気材と捕集用通気材を非導電性
材料で作成した請求項1〜3のいずれか1項に記載のフ
ィルター。
4. The filter according to claim 1, wherein the heat insulating ventilation material and the collection ventilation material are made of a non-conductive material.
【請求項5】 間隙部に仕切り壁を設けた請求項1〜4
のいずれか1項に記載のフィルター。
5. A partition wall provided in the gap portion.
The filter according to any one of 1.
【請求項6】 各々の濾過材が備える開口部の大きさ
が、排ガスの下流側に漸減した請求項1〜5のいずれか
1項に記載のフィルター。
6. The filter according to any one of claims 1 to 5, wherein the size of the opening provided in each filter medium is gradually reduced toward the downstream side of the exhaust gas.
【請求項7】 開口部を備え、断熱性通気材、発熱体、
及び捕集用通気材を有する複数の濾過材を排ガスの流路
にそって配置したフィルターを用い、排ガス中の微粒子
を捕集し、並行して、発熱体によって捕集した微粒子を
加熱して燃焼除去する排ガスの処理方法であって、各々
の濾過材において、微粒子を含む排ガスの少なくとも一
部は開口部を通過し、その他の排ガスは断熱用通気材を
通過し、断熱用通気材を通過した排ガスを捕集用通気材
で濾過して微粒子を捕集し、各々の濾過材の発熱体を逐
次間欠的に通電加熱し、主として捕集用通気材の上に付
着して捕集用通気材と断熱用通気材の幅50mm以下の
間隙部に存在する捕集した微粒子を、捕集用通気材と断
熱用通気材の断熱性を利用して燃焼温度以上まで加熱
し、微粒子の燃焼に必要な酸素は排ガス中に含まれる酸
素を利用する排ガスの処理方法。
7. A heat insulating ventilation material, a heating element, comprising an opening,
And using a filter in which a plurality of filtration materials having a ventilation material for collection are arranged along the flow path of the exhaust gas, the fine particles in the exhaust gas are collected, and in parallel, the fine particles collected by the heating element are heated. A method of treating exhaust gas for combustion removal, wherein in each filter material, at least a part of the exhaust gas containing fine particles passes through the opening, and the other exhaust gas passes through the heat insulating ventilation material and passes through the heat insulating ventilation material. The exhaust gas is filtered with a collection ventilation material to collect fine particles, and the heating elements of each filtration material are heated intermittently by electric current, and adhered mainly onto the collection ventilation material to collect ventilation. The fine particles collected in the gap of 50 mm or less in width between the material and the heat insulating ventilation material are heated to a combustion temperature or higher by utilizing the heat insulating properties of the collection ventilation material and the heat insulating ventilation material to burn the fine particles. The required oxygen is the exhaust gas that uses the oxygen contained in the exhaust gas. Processing method.
【請求項8】 捕集用通気材の表面にそって開口部へ流
れる排ガスの流れが間隙部において実質的に存在しない
状態で、発熱体により発生する熱、及び捕集用通気材と
断熱用通気材の断熱性を利用し、間隙部に存在する微粒
子を燃焼温度以上に加熱して燃焼除去する請求項7に記
載の方法。
8. The heat generated by the heating element and the trapping ventilating material and the heat insulating material in a state where there is substantially no flow of the exhaust gas flowing along the surface of the trapping ventilating material to the opening in the gap. The method according to claim 7, wherein the heat insulating property of the aeration material is used to heat and remove the fine particles existing in the gap to a temperature equal to or higher than the combustion temperature.
【請求項9】 フィルターの前後の差圧を検出し、それ
によって各々の濾過材の発熱体を逐次間欠的に通電加熱
する単位時間あたりの頻度を変化させ、差圧が高いとき
の方が差圧が低いときよりも単位時間あたりの頻度を多
くする請求項7に記載の方法。
9. The differential pressure before and after the filter is detected, and the frequency per unit time of intermittently energizing and heating the heating elements of the respective filter media is changed accordingly, and the differential pressure is higher when the differential pressure is higher. The method according to claim 7, wherein the frequency per unit time is increased more than when the pressure is low.
JP7032769A 1995-01-12 1995-01-12 Filter for scavenging fine particle in exhaust gas and method for processing exhaust gas Pending JPH08189337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7032769A JPH08189337A (en) 1995-01-12 1995-01-12 Filter for scavenging fine particle in exhaust gas and method for processing exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7032769A JPH08189337A (en) 1995-01-12 1995-01-12 Filter for scavenging fine particle in exhaust gas and method for processing exhaust gas

Publications (1)

Publication Number Publication Date
JPH08189337A true JPH08189337A (en) 1996-07-23

Family

ID=12368056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7032769A Pending JPH08189337A (en) 1995-01-12 1995-01-12 Filter for scavenging fine particle in exhaust gas and method for processing exhaust gas

Country Status (1)

Country Link
JP (1) JPH08189337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299966A (en) * 2005-04-21 2006-11-02 Ibiden Co Ltd Catalyst converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299966A (en) * 2005-04-21 2006-11-02 Ibiden Co Ltd Catalyst converter

Similar Documents

Publication Publication Date Title
EP1898060A1 (en) Particulate matter removal apparatus
US4423090A (en) Method of making wall-flow monolith filter
KR100794541B1 (en) Exhaust gas purification device
US6102976A (en) Exhaust gas purifier
JP2590943Y2 (en) Exhaust gas purification device
EP0443625B1 (en) Exhaust filter element and exhaust gas-treating apparatus
EP0837228A2 (en) Exhaust gas purifier
JPH08189337A (en) Filter for scavenging fine particle in exhaust gas and method for processing exhaust gas
JPH07127434A (en) Diesel particulate filter
JPH0633739A (en) Exhaust emission control device
JP2002349231A (en) Diesel particulate filter
JP2000154712A (en) Engine-exhaust emission control device
RU2075603C1 (en) Exhaust gas regenerable soot filter
JPH06193430A (en) Collecting method of particulate in exhaust gas and filter
JP2003155911A (en) Exhaust gas treatment device and exhaust gas treatment method
JPH0610649A (en) Exhaust gas purification filter
CN116322945B (en) Catalyst carrier and induction heating catalytic system
JPH062526A (en) Exhaust gas purification filter
JPH06129228A (en) Method and trapping micro particle in exhaust gas and filter therefor
JPH11159319A (en) Exhaust emission control device
JP2002346324A (en) Particulate matter removal filter
JP2590160Y2 (en) Exhaust gas purification device
JP2953408B2 (en) Regenerative heater for particulate trap for diesel engine and particulate trap for diesel engine using the heater
JPH05345110A (en) Filter for purifying waste gas
JPH07109916A (en) Filter for collecting fine grain in exhaust gas