[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08153719A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH08153719A
JPH08153719A JP6294263A JP29426394A JPH08153719A JP H08153719 A JPH08153719 A JP H08153719A JP 6294263 A JP6294263 A JP 6294263A JP 29426394 A JP29426394 A JP 29426394A JP H08153719 A JPH08153719 A JP H08153719A
Authority
JP
Japan
Prior art keywords
wiring
interlayer insulating
insulating film
aluminum
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6294263A
Other languages
Japanese (ja)
Inventor
Masaaki Katsumata
正明 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP6294263A priority Critical patent/JPH08153719A/en
Publication of JPH08153719A publication Critical patent/JPH08153719A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48455Details of wedge bonds
    • H01L2224/48456Shape
    • H01L2224/48458Shape of the interface with the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: To eliminate peeling off between a second aluminum wiring and a first polyimide interlayer insulation film when an aluminum wiring is subjected to bonding so as to improve the yield, reduce the chip area and reduce the production cost. CONSTITUTION: A gate area 2 and source area 3 are formed on a silicon substrate 1 and a first wiring 4 is formed in the area 2. A first polyimide interlayer insulation film 5 and phosphosilicate glass are adhered thereon to form a second interlayer insulation film 8, and a window 12 for contact is prepared on the source area 3. A second wiring 6 conencting to the area 3 is formed of aluminum. An aluminum wire 7 is connected to the wiring 6 by ultrasonic bonding method. A phosphosilicate glass containing boron may be used instead of phosphosilicate glass. By preparing a second interlayer insulation film 8 made of silicic acid glass containing phosphorus, peeling off of the wiring 6 can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多層配線構造を有する
半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a multilayer wiring structure.

【0002】[0002]

【従来の技術】従来、半導体装置に多層配線を形成する
場合、層間絶縁膜にはSiO2 が用いられてきたが、層
間絶縁性、コンタクト用窓の段差の緩和および製造上の
便利さからポリイミド等の合成樹脂系の絶縁物が用いら
れるようになってきている。
2. Description of the Related Art Conventionally, when a multilayer wiring is formed in a semiconductor device, SiO 2 has been used as an interlayer insulating film. However, polyimide is used because of its interlayer insulating property, relief of step difference in contact window, and convenience in manufacturing. Synthetic resin-based insulators such as those have come to be used.

【0003】図3は従来の半導体装置の一例の平面図お
よび断面図である。
FIG. 3 is a plan view and a sectional view of an example of a conventional semiconductor device.

【0004】シリコン基板1に能動素子領域としてゲー
ト領域2、ソース領域3を形成し、アルミニウムでゲー
ト領域2に接続する第1配線4を形成する。ポリイミド
の第1層間絶縁膜5で表面を覆い、ソース領域3の上を
開口し、第1配線4を絶縁被覆する。アルミニウムでソ
ース領域3に接続する第2配線6を形成する。アルミニ
ウム線7を第2配線6に接続する。
A gate region 2 and a source region 3 are formed as active element regions on a silicon substrate 1, and a first wiring 4 connected to the gate region 2 is formed of aluminum. The surface is covered with a first interlayer insulating film 5 of polyimide, the source region 3 is opened, and the first wiring 4 is insulation-coated. The second wiring 6 connected to the source region 3 is formed of aluminum. The aluminum wire 7 is connected to the second wiring 6.

【0005】この形状は、ソース領域とゲート領域2と
をインターディジットの関係(指と指とを組み合わせた
形状)に配置しているので、一つのソース領域に流れる
電流が少なくなり、電流集中を緩和している。また、ア
ルミニウム線7ををソース領域3の上でボンディング接
続しているから、専用ボンディング・パッド・エリアを
必要とせず、チップ面積を縮小できるという利点があ
る。
In this shape, since the source region and the gate region 2 are arranged in an interdigit relationship (shape in which fingers are combined with each other), the current flowing in one source region is reduced and current concentration is reduced. Has eased. Further, since the aluminum wire 7 is bonded and connected on the source region 3, there is an advantage that a dedicated bonding pad area is not required and the chip area can be reduced.

【0006】図4は図3に示す半導体装置の製造方法を
説明するための工程順に示した断面図である。
4A to 4D are cross-sectional views showing the method of manufacturing the semiconductor device shown in FIG. 3 in order of steps.

【0007】図4(a)に示すように、シリコン基板1
に能動素子領域としてゲート領域2、ソース領域3を熱
拡散またはイオン注入法で形成する。マスク11を設
け、アルミニウムでゲート領域2に接続する第1配線4
を形成する。そして、マスク11を除去する。
As shown in FIG. 4A, the silicon substrate 1
A gate region 2 and a source region 3 are formed as active element regions by thermal diffusion or ion implantation. First wiring 4 provided with mask 11 and connected to gate region 2 with aluminum
To form. Then, the mask 11 is removed.

【0008】次に、図4(b)に示すように、新しくマ
スク(図示せず)を用いてポリイミドで第1層間絶縁膜
5を形成して第1配線4を覆って絶縁し、ソース領域3
の上を開口する。そして、マスクを除去する。
Next, as shown in FIG. 4B, a first mask 4 (not shown) is used to form a first interlayer insulating film 5 of polyimide to cover the first wiring 4 and insulate the source region. Three
Open the top. Then, the mask is removed.

【0009】次に、図4(c)に示すように、アルミニ
ウムでソース領域3に接続する第2配線6を形成する。
Next, as shown in FIG. 4C, a second wiring 6 connected to the source region 3 is formed of aluminum.

【0010】次に、図4(d)に示すように、超音波ボ
ンディング法でアルミニウム線7を第2配線6に接続す
る。
Next, as shown in FIG. 4D, the aluminum wire 7 is connected to the second wiring 6 by the ultrasonic bonding method.

【0011】図5は従来の半導体装置の他の例の平面図
である。
FIG. 5 is a plan view of another example of the conventional semiconductor device.

【0012】図3に示した種類の半導体装置は色々の形
に変形することができる。図5(a)に示すものは、ソ
ース領域3を二つに分け、ソース領域とソース領域の間
にゲート領域2を設け、各々のソース領域3上の第2配
線6にアルミニウム線7を接続したものである。この形
状は、ソース領域を多数個に分割し、アルミニウム線7
でつないでいるので、一つのソース領域に流れる電流が
少なくなり、電流集中を緩和し、しかもアルミニウム線
7をソース領域3上の第2配線6でボンディング接続し
ているから、専用ボンディング・パッド・エリアを必要
とせず、チップ面積を縮小できるという利点がある。
The semiconductor device of the type shown in FIG. 3 can be modified in various ways. In the structure shown in FIG. 5A, the source region 3 is divided into two, the gate region 2 is provided between the source regions, and the aluminum line 7 is connected to the second wiring 6 on each source region 3. It was done. This shape divides the source region into a number of aluminum wires 7
Since they are connected to each other, the current flowing in one source region is reduced, current concentration is alleviated, and the aluminum wire 7 is connected by the second wiring 6 on the source region 3, so that a dedicated bonding pad, There is an advantage that the chip area can be reduced without requiring an area.

【0013】図5(b)に示すものは、図3に示したも
のと類似であるが、ソース領域3につながる専用ボンデ
ィング・パッド・エリア10を設けた点において異なっ
ている。この形にすると、ゲート領域2に接続する第1
配線4と、ソース領域3に接続する第2配線6とが同一
平面上に同時に形成でき、製造工程数を減らすことがで
きるという利点がある反面、専用ボンディング・パッド
・エリア10の分だけチップ面積が大きくなるという欠
点がある。勿論、図3(b)に示したような多層配線構
造にすることもできる。
The structure shown in FIG. 5B is similar to the structure shown in FIG. 3 except that a dedicated bonding pad area 10 connected to the source region 3 is provided. With this shape, the first region connected to the gate region 2
The wiring 4 and the second wiring 6 connected to the source region 3 can be simultaneously formed on the same plane, which has the advantage that the number of manufacturing steps can be reduced, but the chip area is reduced by the dedicated bonding pad area 10. Has the drawback of becoming large. Of course, a multi-layer wiring structure as shown in FIG.

【0014】[0014]

【発明が解決しようとする課題】上述のように、第1層
間絶縁膜5にポリイミドを用い、図3(a)または図5
(a)に示すようにソース領域3の上でアルミニウム線
7を超音波ボンディング法で接続した場合、図6に示す
ように、第2配線6が第1層間絶縁膜5から剥がれると
いうボンディング不良が発生することがある。これは、
ポリイミドとアルミニウムとの密着性が余り強くないた
めと、多層配線構造による段差の所でアルミニウムの第
2配線6が薄くなっていて切れ易くなっているためと考
えられる。ボンディング不良が発生すると、信頼性が低
下するのみならず、歩留りが低下するのでコストが高く
なるという問題がある。
As described above, polyimide is used for the first interlayer insulating film 5, and the first interlayer insulating film 5 shown in FIG.
When the aluminum wire 7 is connected on the source region 3 by the ultrasonic bonding method as shown in (a), the second wiring 6 is peeled off from the first interlayer insulating film 5 as shown in FIG. May occur. this is,
It is considered that the adhesion between the polyimide and aluminum is not so strong, and that the second wiring 6 made of aluminum is thin and easy to be cut at the step due to the multilayer wiring structure. When a bonding failure occurs, not only the reliability is lowered, but also the yield is lowered, so that there is a problem that the cost is increased.

【0015】図5(b)に示すように、段差のない専用
ボンディング・パッド・エリア10を設け、ここにアル
ミニウム線7をボンディングすると第2配線6の剥がれ
を減らすことができるが、専用ボンディング・パッド・
エリア10を設けた分だけチップ面積が大きくなるとい
う問題と、図3(a)または図5(a)に示したように
必要に応じてソース領域3の形状を自由に変えることが
できなくなり、設計の自由度が制限されるという問題が
ある。
As shown in FIG. 5B, if a dedicated bonding pad area 10 having no step is provided and an aluminum wire 7 is bonded thereto, peeling of the second wiring 6 can be reduced. pad·
The problem that the chip area is increased by providing the area 10 and the shape of the source region 3 cannot be freely changed as necessary as shown in FIG. 3A or FIG. There is a problem that the degree of freedom in design is limited.

【0016】本発明の目的は、アルミニウム線の超音波
ボンディングにおいて、アルミニウムの第2配線とポリ
イミドの第1層間絶縁膜との間に剥がれによる歩留り低
下とコスト高を防ぎ、信頼性を高め、設計の自由度の確
保、ソース・ボンディング・パッドの削除によるチップ
面積の低減、電流集中の緩和が実現できる半導体装置を
提供することにある。
An object of the present invention is to improve the reliability and design in ultrasonic bonding of aluminum wires by preventing a decrease in yield and cost due to peeling between the second wiring of aluminum and the first interlayer insulating film of polyimide, and by increasing the cost. It is an object of the present invention to provide a semiconductor device in which the degree of freedom can be secured, the chip area can be reduced by eliminating the source bonding pad, and the current concentration can be relaxed.

【0017】[0017]

【課題を解決するための手段】本発明は、能動素子領域
が設けられている半導体基板上に複数層の配線層の各々
が合成樹脂系の第1層間絶縁膜で絶縁されて形成されて
いる多層配線構造を有する半導体装置において、前記第
1層間絶縁膜がポリイミドからなり、少なくとも最上層
の前記第1層間絶縁膜とその上の配線層との間にリンを
含むガラスの第2層間絶縁膜を設けたことを特徴とす
る。
According to the present invention, each of a plurality of wiring layers is formed on a semiconductor substrate on which an active element region is provided, insulated by a synthetic resin first interlayer insulating film. In a semiconductor device having a multilayer wiring structure, the first interlayer insulating film is made of polyimide, and a second glass interlayer insulating film containing phosphorus between at least the uppermost first interlayer insulating film and a wiring layer thereabove. Is provided.

【0018】本発明は、前記第2層間絶縁膜が前記ポリ
イミドを熱分解させない低温度で形成されるリンを含む
ガラスからなることを特徴とする。
The present invention is characterized in that the second interlayer insulating film is made of glass containing phosphorus which is formed at a low temperature so as not to thermally decompose the polyimide.

【0019】本発明は、前記第2層間絶縁膜がリン珪酸
ガラスからなることを特徴とする。
The present invention is characterized in that the second interlayer insulating film is made of phosphosilicate glass.

【0020】本発明は、前記第2層間絶縁膜がホウリン
珪酸ガラスからなることを特徴とする。
The present invention is characterized in that the second interlayer insulating film is made of borophosphosilicate glass.

【0021】[0021]

【作用】アルミニウム線の超音波ボンディングにおい
て、アルミニウムの第2配線とポリイミドの第1層間絶
縁膜との間に剥がれを生ずるのは、アルミニウムとポリ
イミドとの密着性が余り強くないことに起因する。剥が
れを防止するためには、アルミニウムとポリイミドの両
方に密着性の良い材料を設けるのが良い。このような材
料としてリンを含むガラスが選ばれる。リンを含まない
珪酸ガラスを第2層間絶縁膜として用いると第2層間絶
縁膜にクラックが入ることから、リンが珪酸ガラスの熱
膨張率を大きくしてポリイミドの熱膨張率に近づけると
同時に、ポリイミドとの密着性を改善していると考えら
れる。リンを含む珪酸ガラスはアルミニウムその他の金
属との密着性が良好であるので、超音波ボンディングに
おいてアルミニウムの第2配線とポリイミドの第1層間
絶縁膜との間に剥がれを生ずることはない。
In the ultrasonic bonding of the aluminum wire, the peeling between the second wiring of aluminum and the first interlayer insulating film of polyimide is caused because the adhesion between aluminum and polyimide is not so strong. In order to prevent peeling, it is preferable to provide both aluminum and polyimide with a material having good adhesion. A glass containing phosphorus is selected as such a material. When phosphorus-free silicate glass is used as the second interlayer insulating film, cracks occur in the second interlayer insulating film. Therefore, phosphorus increases the coefficient of thermal expansion of silicate glass to approach that of polyimide, and at the same time It is thought that the adhesiveness with is improved. Since the silicate glass containing phosphorus has good adhesion to aluminum and other metals, peeling does not occur between the second wiring of aluminum and the first interlayer insulating film of polyimide in ultrasonic bonding.

【0022】リンを含むガラスは、ポリイミドが熱分解
しない温度で形成しなければならない。ポリイミドが熱
分解すると絶縁機能を失うからである。ポリイミドの熱
分解温度は約400℃であるから、第2層間絶縁膜は、
スパッタ法または400℃未満の低温CVD法で形成ス
ル。
The glass containing phosphorus must be formed at a temperature at which the polyimide does not decompose thermally. This is because the insulating function is lost when the polyimide is thermally decomposed. Since the thermal decomposition temperature of polyimide is about 400 ° C., the second interlayer insulating film is
Formed by spattering or low temperature CVD below 400 ° C.

【0023】リンを含むガラスとして、リン珪酸ガラス
が選ばれる。
Phosphorus silicate glass is selected as the glass containing phosphorus.

【0024】リンを含むガラスとして、ホウリン珪酸ガ
ラスが選ばれる。
Boron silicate glass is selected as the glass containing phosphorus.

【0025】[0025]

【実施例】図1は本発明の半導体装置の第1の実施例の
製造方法を説明するための工程順に示した断面図であ
る。
1A to 1D are sectional views showing a method of manufacturing a semiconductor device according to a first embodiment of the present invention in the order of steps.

【0026】図1(a)に示すように、シリコン基板1
に能動素子領域としてゲート領域2、ソース領域3を熱
拡散またはイオン注入法で形成する。マスク11を設
け,アルミニウムでゲート領域2に接続する第1配線4
を形成する。そして、マスク11を除去する。
As shown in FIG. 1A, a silicon substrate 1
A gate region 2 and a source region 3 are formed as active element regions by thermal diffusion or ion implantation. First wiring 4 provided with mask 11 and connected to gate region 2 with aluminum
To form. Then, the mask 11 is removed.

【0027】次に、図1(b)に示すように、ポリイミ
ドを全面に被着して第1層間絶縁膜5を形成し、その上
にリン珪酸ガラスを被着して第2層間絶縁膜8を形成す
る。リン珪酸ガラスの第2層間絶縁膜8の形成に際し、
ポリイミドの熱分解温度(約400℃)以下の低温で第
2層間絶縁膜8を形成し、ポリイミドを熱分解させない
ようにする必要がある。このような低温形成方法として
低温CVD法またはスパッタ法がる。第2層間絶縁膜8
は、0.1〜2μm、好ましくは0.3〜1.2μmの
厚さに形成する。
Next, as shown in FIG. 1B, polyimide is deposited on the entire surface to form a first interlayer insulating film 5, and phosphosilicate glass is deposited thereon to form a second interlayer insulating film. 8 is formed. When forming the second interlayer insulating film 8 of phosphosilicate glass,
It is necessary to form the second interlayer insulating film 8 at a temperature lower than the thermal decomposition temperature of polyimide (about 400 ° C.) so that the polyimide is not thermally decomposed. As such a low temperature forming method, there is a low temperature CVD method or a sputtering method. Second interlayer insulating film 8
Is formed to a thickness of 0.1 to 2 μm, preferably 0.3 to 1.2 μm.

【0028】次に、図1(c)に示すように、ホトリソ
グラフィ技術を用いてソース領域3の上を開口してコン
タクト用窓12をあける。
Next, as shown in FIG. 1C, the contact window 12 is opened by opening the source region 3 by using the photolithography technique.

【0029】次に、図1(d)に示すように、アルミニ
ウムでソース領域3に接続する第2配線6を形成する。
Next, as shown in FIG. 1D, a second wiring 6 connected to the source region 3 is formed of aluminum.

【0030】次に、図1(e)に示すように、超音波ボ
ンディング法でアルミニウム線7を第2配線6に接続す
る。
Next, as shown in FIG. 1E, the aluminum wire 7 is connected to the second wiring 6 by the ultrasonic bonding method.

【0031】リン珪酸ガラスをアルミニウムの第2配線
とポリイミドの第1層間絶縁膜との間に設けると、超音
波ボンディングにおけるアルミニウムの第2配線の剥が
れを防止するすることができる。これは、リン珪酸ガラ
スがアルミニウムとポリイミドの両方に密着性が良いこ
と、リン珪酸ガラスの熱膨張率がリンを含まないSiO
2 ガラスよりもポリイミドの熱膨張率に近いことによる
ものと考えられる。
When phosphosilicate glass is provided between the aluminum second wiring and the polyimide first interlayer insulating film, peeling of the aluminum second wiring in ultrasonic bonding can be prevented. This is because the phosphosilicate glass has good adhesion to both aluminum and polyimide, and the coefficient of thermal expansion of the phosphosilicate glass is SiO containing no phosphorus.
It is considered that this is because the coefficient of thermal expansion is closer to that of polyimide than that of 2 glass.

【0032】第1の実施例による本発明品と従来品とに
ついて超音波ボンディングを行い、ボンディング強度試
験を行って比較した結果を表1に示す。強度試験は、ア
ルミニウム線を引っ張る引っ張り試験で500gf
(4.903N)以上を合格とした。試験個数は各々5
0個である。また、本発明品はリン珪酸ガラスの第2層
間絶縁膜8の厚さを0.3〜1.2μmにしている。
Table 1 shows the results of comparison between ultrasonic bonding and a bonding strength test performed on the product of the present invention according to the first embodiment and the conventional product. The strength test is a tensile test of 500 gf by pulling an aluminum wire.
(4.903 N) or more was passed. 5 tests each
It is 0. Further, in the product of the present invention, the thickness of the second interlayer insulating film 8 of phosphosilicate glass is set to 0.3 to 1.2 μm.

【0033】[0033]

【表1】 [Table 1]

【0034】表1に示されるように、従来品ではボンデ
ィング不良が83%も発生したのに対して本発明品では
ボンディング不良は0であり、リンを含む珪酸ガラスを
設ける効果が確認された。ボンディング不良がなくなる
ため、図5に示したようなボンディングを行うことがで
き、ソース領域の設計の自由度の向上、ソース・パッド
が不要になることによるチップ面積の低減、電流集中の
緩和が実現できる。第1の実施例では第2層間絶縁膜と
してリン珪酸ガラスを用いたが、ホウリン珪酸ガラスを
全く同等に用いることができる。また、製造工程も第1
の実施例に限定されず、少し変更しても本発明の半導体
装置を製造することができる。次に、これを説明する。
As shown in Table 1, in the conventional product, 83% of the defective bonding occurred, whereas in the product of the present invention, the defective bonding was 0, and the effect of providing the silicate glass containing phosphorus was confirmed. Since the bonding failure is eliminated, the bonding as shown in FIG. 5 can be performed, the degree of freedom in designing the source region is improved, the chip area is reduced by eliminating the source pad, and the current concentration is reduced. it can. Although phosphosilicate glass is used as the second interlayer insulating film in the first embodiment, borophosphosilicate glass can be used in the same manner. Also, the manufacturing process is the first
However, the semiconductor device of the present invention can be manufactured with a slight modification. Next, this will be described.

【0035】図2は本発明の半導体装置の第2の実施例
の製造方法を説明するための工程順に示した断面図であ
る。
2A to 2D are cross-sectional views showing a sequence of steps for explaining a method of manufacturing a semiconductor device according to a second embodiment of the present invention.

【0036】図2(a)に示すように、シリコン基板1
に能動素子領域としてゲート領域2、ソース領域3を熱
拡散またはイオン注入法で形成する。マスク11を設
け,アルミニウムでゲート領域2に接続する第1配線4
を形成する。そして、マスク11を除去する。
As shown in FIG. 2A, the silicon substrate 1
A gate region 2 and a source region 3 are formed as active element regions by thermal diffusion or ion implantation. First wiring 4 provided with mask 11 and connected to gate region 2 with aluminum
To form. Then, the mask 11 is removed.

【0037】次に、図2(b)に示すように、新しくマ
スク(図示せず)を用いてポリイミドで第1層間絶縁膜
5を形成して第1配線4を覆って絶縁し、ソース領域3
の上を開口してコンタクト窓13をあける。そして、マ
スクを除去する。
Next, as shown in FIG. 2B, a new mask (not shown) is used to form a first interlayer insulating film 5 of polyimide to cover and insulate the first wiring 4 and to form a source region. Three
To open the contact window 13. Then, the mask is removed.

【0038】次に、図2(c)に示すように、第2層間
絶縁膜としてホウリン珪酸ガラス膜9を全面に被着す
る。そして、ホトリソグラフィ技術を用いてソース領域
3の上を開口してコンタクト用窓14をあける。ホウリ
ン珪酸ガラス膜9もまた、リン珪酸ガラスと同様に、ポ
リイミドの熱分解温度(約400℃)以下の低温で形成
する。
Next, as shown in FIG. 2C, a borophosphosilicate glass film 9 is deposited on the entire surface as a second interlayer insulating film. Then, the contact window 14 is opened by opening the source region 3 by using the photolithography technique. The borophosphosilicate glass film 9 is also formed at a low temperature equal to or lower than the thermal decomposition temperature of polyimide (about 400 ° C.), like the phosphosilicate glass.

【0039】次に、図2(d)に示すように、アルミニ
ウムでソース領域3に接続する第2配線6を形成する。
Next, as shown in FIG. 2D, a second wiring 6 connected to the source region 3 is formed of aluminum.

【0040】次に、図2(e)に示すように、超音波ボ
ンディング法でアルミニウム線7を第2配線6に接続す
る。
Next, as shown in FIG. 2E, the aluminum wire 7 is connected to the second wiring 6 by the ultrasonic bonding method.

【0041】ホウリン珪酸ガラスを用いても、リン珪酸
ガラスと同様に、アルミニウム線の超音波ボンディング
におけるアルミニウムの第2配線の剥がれを防止するす
ることができる。第1および第2の実施例から、珪酸ガ
ラス(SiO2 )にリンを含ませることによりアルミニ
ウムとポリイミドの両方に密着性が良くなること、リン
を含む珪酸ガラスの熱膨張率がリンを含まないSiO2
ガラスよりもポリイミドの熱膨張率に近いことによるも
のと考えられる。
Even if borophosphosilicate glass is used, peeling of the aluminum second wiring in ultrasonic bonding of an aluminum wire can be prevented as in the case of phosphosilicate glass. According to the first and second examples, the inclusion of phosphorus in silicate glass (SiO 2 ) improves the adhesion to both aluminum and polyimide, and the coefficient of thermal expansion of phosphorus-containing silicate glass does not include phosphorus. SiO 2
It is considered that this is because the coefficient of thermal expansion is closer to that of polyimide than that of glass.

【0042】発明者は、第2層間絶縁膜としてSiO2
膜、Si3 4 膜を用いた実験を行い、ボンディング強
度試験を行った所、ボンディング強度不良は0であっ
た。しかしながら、成膜後のSiO2 膜には大きなクラ
ックが発生し、Si3 4 膜には多数の小さいクラック
が発生した。これは、SiO2 膜とSi3 4 膜の熱膨
張率がポリイミドの熱膨張率よりもかなり小さいことに
起因すると考えられる。リンを添加することにより珪酸
ガラスは熱膨張率がポリイミドのそれに近くなり、クラ
ックを防止すると考えられる。
The inventor has used SiO 2 as the second interlayer insulating film.
An experiment using a film and a Si 3 N 4 film was conducted and a bonding strength test was conducted. As a result, the bonding strength defect was 0. However, large cracks occurred in the formed SiO 2 film, and many small cracks occurred in the Si 3 N 4 film. It is considered that this is because the thermal expansion coefficient of the SiO 2 film and the Si 3 N 4 film is considerably smaller than that of polyimide. It is considered that the addition of phosphorus makes the silicate glass have a thermal expansion coefficient close to that of polyimide and prevents cracking.

【0043】アルミニウムの第2配線とポリイミドの第
1層間絶縁膜との間にリンを含む珪酸ガラスを設けるこ
とによりアルミニウムの剥がれを防止するすることがで
き、歩留り低下とコスト高を防ぐことができ、信頼性を
向上させることができる。また、ボンディング不良をな
くすことができるため、図1(a)あるいは図5(a)
に示したようなボンディングを行うことができ、ソース
領域の設計の自由度の向上、ソース・ボンディング・パ
ッドの削除によるチップ面積の低減、電流集中の緩和が
実現できる。
By providing a silicate glass containing phosphorus between the second wiring made of aluminum and the first interlayer insulating film made of polyimide, it is possible to prevent the aluminum from peeling off, and to prevent a decrease in yield and a high cost. , Reliability can be improved. In addition, since the defective bonding can be eliminated, the structure shown in FIG.
It is possible to carry out the bonding as shown in, and to improve the degree of freedom in designing the source region, reduce the chip area by eliminating the source bonding pad, and alleviate the current concentration.

【0044】[0044]

【発明の効果】以上説明したように、本発明では、リン
を含む珪酸ガラスをアルミニウムの第2配線とポリイミ
ドの第1層間絶縁膜との間に設けたので、アルミニウム
線の超音波ボンディングにおけるアルミニウムの第2配
線とポリイミドの第1層間絶縁膜との間に剥がれを防止
するすることができ、歩留り低下とコスト高を防ぎ、信
頼性を向上させることができる。
As described above, according to the present invention, since the silicate glass containing phosphorus is provided between the second wiring made of aluminum and the first interlayer insulating film made of polyimide, aluminum in ultrasonic bonding of aluminum wires is performed. It is possible to prevent peeling between the second wiring and the first interlayer insulating film of polyimide, prevent a decrease in yield and cost, and improve reliability.

【0045】また、ボンディング不良がなくなるため、
ソース・ボンディング・パッドを別に設ける必要がなく
なり、これによりチップ面積を低減し、電流集中を緩和
することができ、さらに、設計の自由度を確保すること
ができる。
Further, since there is no defective bonding,
Since it is not necessary to separately provide a source bonding pad, the chip area can be reduced, current concentration can be relaxed, and the degree of freedom in design can be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の第1の実施例の製造方法
を説明するための工程順に示した断面図である。
1A to 1D are cross-sectional views showing a method of manufacturing a semiconductor device according to a first embodiment of the present invention in the order of steps.

【図2】本発明の半導体装置の第2の実施例の製造方法
を説明するための工程順に示した断面図である。
2A to 2D are sectional views showing the manufacturing method of the second embodiment of the semiconductor device of the present invention in the order of steps for explaining the manufacturing method.

【図3】従来の半導体装置の一例の平面図および断面図
である。
FIG. 3 is a plan view and a cross-sectional view of an example of a conventional semiconductor device.

【図4】図3に示す半導体装置の製造方法を説明するた
めの工程順に示した断面図である。
4A to 4C are cross-sectional views showing the method of manufacturing the semiconductor device shown in FIG.

【図5】従来の半導体装置の他の例の平面図である。FIG. 5 is a plan view of another example of the conventional semiconductor device.

【図6】従来の半導体装置のボンディング不良の例を説
明する断面図である。
FIG. 6 is a cross-sectional view illustrating an example of defective bonding of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 ゲート領域 3 ソース領域 4 第1配線 5 第1層間絶縁膜 6 第2配線 7 アルミニウム線 8 第2層間絶縁膜 9 ホウリン珪酸ガラス膜 11 マスク 1 semiconductor substrate 2 gate region 3 source region 4 first wiring 5 first interlayer insulating film 6 second wiring 7 aluminum wire 8 second interlayer insulating film 9 borophosphosilicate glass film 11 mask

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 能動素子領域が設けられている半導体基
板上に複数層の配線層の各々が合成樹脂系の第1層間絶
縁膜で絶縁されて形成されている多層配線構造を有する
半導体装置において、 前記第1層間絶縁膜がポリイミドからなり、少なくとも
最上層の前記第1層間絶縁膜とその上の配線層との間に
リンを含むガラスの第2層間絶縁膜を設けたことを特徴
とする半導体装置。
1. A semiconductor device having a multi-layer wiring structure in which each of a plurality of wiring layers is formed on a semiconductor substrate provided with an active element region by being insulated by a synthetic resin-based first interlayer insulating film. The first interlayer insulating film is made of polyimide, and a glass second interlayer insulating film containing phosphorus is provided between at least the uppermost first interlayer insulating film and a wiring layer thereabove. Semiconductor device.
【請求項2】 前記第2層間絶縁膜が前記ポリイミドを
熱分解させない低温度で形成されるリンを含むガラスか
らなることを特徴とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the second interlayer insulating film is made of glass containing phosphorus which is formed at a low temperature so as not to thermally decompose the polyimide.
【請求項3】 前記第2層間絶縁膜がリン珪酸ガラスか
らなることを特徴とする請求項1記載の半導体装置。
3. The semiconductor device according to claim 1, wherein the second interlayer insulating film is made of phosphosilicate glass.
【請求項4】 前記第2層間絶縁膜がホウリン珪酸ガラ
スからなることを特徴とする請求項1記載の半導体装
置。
4. The semiconductor device according to claim 1, wherein the second interlayer insulating film is made of borophosphosilicate glass.
JP6294263A 1994-11-29 1994-11-29 Semiconductor device Pending JPH08153719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6294263A JPH08153719A (en) 1994-11-29 1994-11-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6294263A JPH08153719A (en) 1994-11-29 1994-11-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH08153719A true JPH08153719A (en) 1996-06-11

Family

ID=17805457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6294263A Pending JPH08153719A (en) 1994-11-29 1994-11-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH08153719A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124479A (en) * 2001-10-18 2003-04-25 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2018206938A (en) * 2017-06-05 2018-12-27 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617041A (en) * 1979-07-20 1981-02-18 Toshiba Corp Manufacture of semiconductor device
JPS61187346A (en) * 1985-02-15 1986-08-21 Hitachi Ltd Semiconductor device
JPH01103867A (en) * 1987-10-16 1989-04-20 Sanyo Electric Co Ltd Transistor
JPH06310610A (en) * 1993-04-27 1994-11-04 Canon Inc Semiconductor device and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617041A (en) * 1979-07-20 1981-02-18 Toshiba Corp Manufacture of semiconductor device
JPS61187346A (en) * 1985-02-15 1986-08-21 Hitachi Ltd Semiconductor device
JPH01103867A (en) * 1987-10-16 1989-04-20 Sanyo Electric Co Ltd Transistor
JPH06310610A (en) * 1993-04-27 1994-11-04 Canon Inc Semiconductor device and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124479A (en) * 2001-10-18 2003-04-25 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2018206938A (en) * 2017-06-05 2018-12-27 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US4970574A (en) Electromigrationproof structure for multilayer wiring on a semiconductor device
TWI397972B (en) Semiconductor device manufacturing method
US6028347A (en) Semiconductor structures and packaging methods
TW200428500A (en) Semiconductor device and semiconductor device manufacturing method
JP2001358169A (en) Semiconductor device
JPH08153719A (en) Semiconductor device
WO1987002828A1 (en) Glass intermetal dielectric
JPH0714028B2 (en) Method for manufacturing three-dimensional semiconductor device
JPH0680794B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH04731A (en) Semiconductor device and manufacture thereof
JPH03112135A (en) Semiconductor device and manufacture thereof
JPH0629294A (en) Manufacture of semiconductor device
JPS63308924A (en) Semiconductor device
JP2001168282A (en) Semiconductor integrated circuit and its manufacture method
JPH0621061A (en) Semiconductor device
JPH0198253A (en) Manufacture of solid type semiconductor device
JPS62245641A (en) Structure of pad part of semiconductor device
JPS63269549A (en) Manufacture of semiconductor integrated circuit
JPH0583180B2 (en)
JP2000232100A (en) Semiconductor device and its manufacture
JPH0653270A (en) Semiconductor device
JPH0456239A (en) Semiconductor device
JPS6037150A (en) Manufacture of semiconductor device
JPS63252445A (en) Manufacture of semiconductor device
JPH0817824A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010904