JPH0790675A - Production of electronic parts - Google Patents
Production of electronic partsInfo
- Publication number
- JPH0790675A JPH0790675A JP5235180A JP23518093A JPH0790675A JP H0790675 A JPH0790675 A JP H0790675A JP 5235180 A JP5235180 A JP 5235180A JP 23518093 A JP23518093 A JP 23518093A JP H0790675 A JPH0790675 A JP H0790675A
- Authority
- JP
- Japan
- Prior art keywords
- pulse
- current value
- plating
- lower limit
- plating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
- Ceramic Capacitors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電子部品の製造方法に
関するものであり、特に電子部品素子の外表面上に導電
膜を形成し、該導電膜上にパルス電源を用いて電気めっ
きによりめっき被膜を形成する電子部品の製造方法に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electronic component, and more particularly, to forming a conductive film on the outer surface of an electronic component element and plating the conductive film by electroplating using a pulse power source. The present invention relates to a method of manufacturing an electronic component that forms a film.
【0002】[0002]
【従来の技術】電子部品の製造工程においては、電子部
品素子の外表面に形成された導電膜上に電気めっきによ
りめっき被膜が形成される場合がある。例えば、チップ
型の積層セラミックコンデンサの外部電極の製造工程に
おいては、導電膜上にめっき被膜が形成される。2. Description of the Related Art In a manufacturing process of electronic parts, a plating film may be formed by electroplating on a conductive film formed on an outer surface of an electronic part element. For example, a plating film is formed on a conductive film in a manufacturing process of an external electrode of a chip type multilayer ceramic capacitor.
【0003】図2は、このようなチップ型積層セラミッ
クコンデンサの外部電極の部分を示す拡大断面図であ
る。図2に示すように、セラミック素子1内においては
内部電極2及び内部電極3が交互に形成されており、内
部電極2はセラミック素子の一方端に延び、内部電極3
は図示されないセラミック素子1の他方端に延びてい
る。セラミック素子1の一方端には、内部電極2と電気
的に接続する外部電極4が形成されている。外部電極4
は、セラミック素子1の一方端部の外表面に先ず導電膜
4aを形成し、この導電膜4aの上に電気めっきにより
第1のめっき被膜4bを形成し、さらに第2のめっき被
膜4cを形成することにより構成されている。一般に導
電膜4aとしては、導電性に優れた材料としてAgまた
はAg−Pdの膜が形成され、第1のめっき被膜4bと
してNi膜等が形成され、第2のめっき被膜4cとして
SnまたはSn/Pb膜等が形成される。FIG. 2 is an enlarged sectional view showing the external electrodes of such a chip type monolithic ceramic capacitor. As shown in FIG. 2, internal electrodes 2 and internal electrodes 3 are alternately formed in the ceramic element 1. The internal electrodes 2 extend to one end of the ceramic element,
Extends to the other end of the ceramic element 1 not shown. An external electrode 4 electrically connected to the internal electrode 2 is formed at one end of the ceramic element 1. External electrode 4
First, a conductive film 4a is first formed on the outer surface of one end of the ceramic element 1, a first plating film 4b is formed on the conductive film 4a by electroplating, and a second plating film 4c is further formed. It is configured by Generally, as the conductive film 4a, a film of Ag or Ag-Pd is formed as a material having excellent conductivity, a Ni film or the like is formed as the first plating film 4b, and Sn or Sn / is formed as the second plating film 4c. A Pb film or the like is formed.
【0004】このようなめっき被膜は通常直流電源を用
いて形成されるが、めっき被膜の緻密性を向上させるた
めに、一般にはパルス電源を用いてパルスめっきが行わ
れる。Such a plating film is usually formed by using a DC power supply, but in order to improve the denseness of the plating film, pulse plating is generally performed by using a pulse power supply.
【0005】[0005]
【発明が解決しようとする課題】このようなパルス電源
における電流は、図3に示すようにパルスオン及びパル
スオフを繰り返した状態で流され、パルスオフの状態で
は電流が流れない0Aの状態である。The current in such a pulse power supply is made to flow in a state in which pulse-on and pulse-off are repeated as shown in FIG. 3, and is a state of 0 A in which no current flows in the pulse-off state.
【0006】図4は、図3に一点鎖線で囲んで示すパル
ス部分の電流変化を拡大して示す図である。図4に示さ
れるように、パルスオンの立ち上がりの際に、設定値よ
りも大きな過剰の電流が流れる。このため、めっき被膜
が異常に成長してしまうという問題があった。FIG. 4 is an enlarged view showing a current change in a pulse portion surrounded by a one-dot chain line in FIG. As shown in FIG. 4, when the pulse is turned on, an excess current larger than the set value flows. Therefore, there is a problem that the plating film grows abnormally.
【0007】再び図2を参照して、このため、第1のめ
っき被膜4b及び第2のめっき被膜4cが、導電膜4a
の端部よりも距離Lだけ内側に延びて成長し、これによ
って浮遊容量等が変動する。このため、製品の信頼性が
低下するという問題を生じた。Again referring to FIG. 2, for this reason, the first plating film 4b and the second plating film 4c are replaced by the conductive film 4a.
Grows inwardly by a distance L from the end portion, and thereby stray capacitance and the like fluctuate. Therefore, there arises a problem that the reliability of the product is lowered.
【0008】本発明の目的は、このような従来の問題点
を解消し、めっき被膜の形成において異常な成長が生じ
ることなく、緻密なめっき被膜を安定して形成すること
ができる電子部品の製造方法を提供することにある。An object of the present invention is to solve the above conventional problems and to manufacture an electronic component capable of stably forming a dense plating film without causing abnormal growth in the formation of the plating film. To provide a method.
【0009】[0009]
【課題を解決するための手段】本発明の製造方法は、電
子部品素子の外表面上に導電膜を形成する工程と、導電
膜上にパルス電源を用いて電気めっきによりめっき被膜
を形成する工程とを備え、パルス電源のパルスオフの際
の下限電流値をパルスオンの際の設定電流値の10〜9
0%の電流値に設定することを特徴としている。The manufacturing method of the present invention comprises a step of forming a conductive film on the outer surface of an electronic component element, and a step of forming a plating film on the conductive film by electroplating using a pulse power source. And the lower limit current value at the time of pulse off of the pulse power supply is set to 10 to 9 of the set current value at the time of pulse on.
The feature is that the current value is set to 0%.
【0010】[0010]
【作用】本発明では、パルス電源のパルスオフの際の下
限電流値をパルスオンの際の設定電流値の10〜90%
の電流値に設定している。図1は、本発明におけるパル
ス電流の変化を示す図である。図1に示されるように、
本発明に従えば、パルスの下限電流値が、設定電流値の
90%から10%の範囲内に設定される。パルスの下限
電流値が設定電流値の10%未満であると、従来と同様
に、パルスオンの立ち上がりの際に過剰の電流が流れ、
めっき被膜の異常な成長がもたらされる。またパルスの
下限電流値が90%を超えると、パルス電源を用いた効
果が少なくなり、めっき被膜の緻密性が低下する。In the present invention, the lower limit current value when the pulse of the pulse power supply is turned off is 10 to 90% of the set current value when the pulse is turned on.
The current value is set to. FIG. 1 is a diagram showing changes in pulse current in the present invention. As shown in FIG.
According to the present invention, the lower limit current value of the pulse is set within the range of 90% to 10% of the set current value. If the lower limit current value of the pulse is less than 10% of the set current value, excessive current will flow at the rise of pulse ON, as in the conventional case.
It causes abnormal growth of the plating film. When the lower limit current value of the pulse exceeds 90%, the effect of using the pulse power source is reduced and the denseness of the plating film is reduced.
【0011】[0011]
【実施例】チップ型積層セラミックコンデンサの外部電
極おいて、図2に示すように、Niめっき被膜上に第2
のめっき被膜としてSnのめっき被膜を形成する実施例
について説明する。EXAMPLE As shown in FIG. 2, in the external electrode of the chip type monolithic ceramic capacitor, the second electrode was formed on the Ni plating film.
An example in which a Sn plating film is formed as the plating film will be described.
【0012】まず、パルスめっきによりめっき被膜の緻
密性が向上することを確認するため、直流電源とパルス
電源を用いて、Snめっきを行った。直流めっきは、1
0Aの直流電源を用い、パルスめっきは設定電流値10
A、パルスオフの際の下限電流値0A、パルスオフ間隔
1ミリ秒、パルスオン間隔1ミリ秒として、Snをめっ
きし、チップ型積層セラミックコンデンサに外部電極を
形成した。このようにして得られたチップ型積層セラミ
ックコンデンサを、高温多湿条件(100℃95%RH
以上)に4時間放置した後、乾燥し、半田付けして半田
付け性試験を行った。半田付け性は、半田が付着した面
積を評価することにより行った。半田の種類としてはH
60Aを用い、230℃で半田付けした。またフラック
スとしてはロジン25%IPAを用いた。試料数として
は20個行い、それぞれの半田付着面積を評価し、表1
に示した。First, in order to confirm that the denseness of the plating film is improved by pulse plating, Sn plating was performed using a DC power supply and a pulse power supply. DC plating is 1
0A DC power supply is used, and pulse plating has a set current value of 10
A, a lower limit current value at pulse-off 0A, a pulse-off interval of 1 msec, and a pulse-on interval of 1 msec were plated with Sn to form external electrodes on the chip-type multilayer ceramic capacitor. The chip type monolithic ceramic capacitor thus obtained was subjected to high temperature and high humidity conditions (100 ° C., 95% RH).
After being left for 4 hours in the above), it was dried and soldered to perform a solderability test. The solderability was evaluated by evaluating the area where the solder was attached. H as the type of solder
It was soldered at 230 ° C. using 60A. Rosin 25% IPA was used as the flux. The number of samples was 20 and the solder adhesion area of each was evaluated.
It was shown to.
【0013】[0013]
【表1】 [Table 1]
【0014】表1の結果から明らかなように、パルスめ
っきにより形成しためっき被膜の半田付着面積は直流め
っきによるものに比べ、著しく高く、めっき被膜の緻密
性が向上していることがわかる。As is clear from the results in Table 1, the solder adhesion area of the plating film formed by pulse plating is significantly higher than that by direct current plating, and it can be seen that the denseness of the plating film is improved.
【0015】次に、パルフオフの際の下限電流値を変化
させて、チップ型積層セラミックコンデンサの外部電極
におけるSnめっきを行った。パルス下限電流値は、表
2に示すとおり、0Aから10Aの範囲内で変化させ
た。形成されためっき被膜について、めっきの異常成長
の幅、すなわち、図2に示すLの幅を測定し、めっき成
長幅として表2に示した。Next, Sn plating was performed on the external electrodes of the chip type multilayer ceramic capacitor by changing the lower limit current value at the time of palph off. The pulse lower limit current value was changed within the range of 0 A to 10 A as shown in Table 2. Regarding the formed plating film, the width of abnormal growth of plating, that is, the width of L shown in FIG. 2 was measured and shown in Table 2 as the plating growth width.
【0016】また得られたチップ型積層セラミックコン
デンサも上記と同様に、高温多湿条件(100℃95%
RH以上)で4時間放置した後、これを乾燥して、半田
付け性試験を行った。半田付け性については、上記と同
様に半田付着面積を測定することにより行った。すなわ
ち半田により覆われている部分の面積を測定することに
より行った。サンプル数は20とした。得られた結果を
表2に示す。The chip-type monolithic ceramic capacitor obtained was also subjected to high temperature and high humidity conditions (100 ° C. 95%).
After standing for 4 hours at RH or more), this was dried and a solderability test was conducted. The solderability was measured by measuring the solder adhesion area in the same manner as above. That is, the measurement was performed by measuring the area of the portion covered with solder. The number of samples was 20. The obtained results are shown in Table 2.
【0017】[0017]
【表2】 [Table 2]
【0018】表2から明らかなように、設定電流値10
Aの10%、すなわち1Aにパルス下限電流値を設定す
ることにより、めっき成長幅が急激に小さくなることが
わかる。また設定電流値10Aの90%である9Aを超
えてパルス下限電流値が設定されると、半田付着面積が
急激に低下することがわかる。As is apparent from Table 2, the set current value 10
By setting the pulse lower limit current value to 10% of A, that is, 1 A, it can be seen that the plating growth width sharply decreases. Further, it can be seen that when the pulse lower limit current value is set to exceed 9A, which is 90% of the set current value 10A, the solder adhesion area sharply decreases.
【0019】従って、本発明に従い、下限電流値を設定
電流値の10〜90%の電流値の範囲内に設定すること
により、めっき被膜の異常成長が抑制され、かつ緻密な
めっき被膜を形成することができる。Therefore, according to the present invention, by setting the lower limit current value within the range of 10 to 90% of the set current value, abnormal growth of the plating film is suppressed and a dense plating film is formed. be able to.
【0020】上記実施例では、電子部品としてチップ型
積層セラミックコンデンサを例にして説明し、また導電
膜に形成するめっき被膜として外部電極において形成す
るめっき被膜を例にして説明したが、本発明はこれらに
限定されるものではなく、コンデンサ以外のセラミック
部品並びにセラミック部品以外の電子部品にも適用され
得るものであり、さらに外部電極以外の部分において導
電膜の上に電気めっきによりめっき被膜を形成する場合
にも適用されるものである。In the above embodiments, the chip type multilayer ceramic capacitor was described as an example of the electronic component, and the plating film formed on the external electrode was described as an example of the plating film formed on the conductive film. The present invention is not limited to these, and may be applied to ceramic parts other than capacitors and electronic parts other than ceramic parts. Furthermore, a plating film is formed by electroplating on a conductive film in a part other than external electrodes. It also applies in some cases.
【0021】また、上記実施例では、Niめっき被膜上
に形成するSnめっき被膜を例示したが、Snめっき被
膜の下地膜となるNiめっき被膜を形成する際にも、本
発明を適用してもよい。Further, although the Sn plating film formed on the Ni plating film is exemplified in the above-mentioned embodiment, the present invention is also applied when forming the Ni plating film which is a base film of the Sn plating film. Good.
【0022】[0022]
【発明の効果】本発明に従い、導電膜上にめっき被膜を
形成する際のパルス電源のパルフオフの下限電流値をパ
ルフオンの設定電流値の10〜90%の電流値に設定す
ることにより、めっき被膜の異常成長を生じることな
く、緻密なめっき被膜を形成することができる。このた
め、例えば、半田付け等において信頼性を向上させるこ
とができる。According to the present invention, by setting the lower limit current value of the pulse power of the pulse power supply when forming the plating film on the conductive film to a current value of 10 to 90% of the current value of the palph on, the plating film is formed. It is possible to form a dense plating film without causing abnormal growth of. Therefore, for example, reliability can be improved in soldering or the like.
【図1】本発明に従う製造方法におけるパルスめっきの
際のパルス電源の電流変化を示す図。FIG. 1 is a diagram showing a change in current of a pulse power supply during pulse plating in the manufacturing method according to the present invention.
【図2】チップ型積層セラミックコンデンサの外部電極
近傍を示す断面図。FIG. 2 is a cross-sectional view showing the vicinity of external electrodes of a chip type multilayer ceramic capacitor.
【図3】従来のパルスめっきにおけるパルス電源の電流
の変化を示す図。FIG. 3 is a diagram showing a change in current of a pulse power supply in conventional pulse plating.
【図4】図3において一点鎖線で囲まれるパルス部分を
拡大して示す図。FIG. 4 is an enlarged view showing a pulse portion surrounded by an alternate long and short dash line in FIG.
1…セラミック素子 2,3内部電極 4…外部電極 4a…外部電極の下地導電膜 4b…第1のめっき被膜 4c…第2のめっき被膜 DESCRIPTION OF SYMBOLS 1 ... Ceramic element 2,3 Internal electrode 4 ... External electrode 4a ... Base conductive film of external electrode 4b ... 1st plating film 4c ... 2nd plating film
Claims (1)
する工程と、 前記導電膜上にパルス電源を用いて電気めっきによりめ
っき被膜を形成する工程とを備え、 前記パルス電源のパルスオフの際の下限電流値をパルス
オンの際の設定電流値の10〜90%の電流値に設定す
ることを特徴とする、電子部品の製造方法。1. A step of forming a conductive film on an outer surface of an electronic component element, and a step of forming a plating film on the conductive film by electroplating using a pulse power source, wherein pulse off of the pulse power source is performed. A method of manufacturing an electronic component, wherein the lower limit current value at that time is set to a current value which is 10 to 90% of a set current value at the time of pulse-on.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5235180A JPH0790675A (en) | 1993-09-21 | 1993-09-21 | Production of electronic parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5235180A JPH0790675A (en) | 1993-09-21 | 1993-09-21 | Production of electronic parts |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0790675A true JPH0790675A (en) | 1995-04-04 |
Family
ID=16982254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5235180A Pending JPH0790675A (en) | 1993-09-21 | 1993-09-21 | Production of electronic parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0790675A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005340371A (en) * | 2004-05-25 | 2005-12-08 | Murata Mfg Co Ltd | Laminated ceramic electronic component and manufacturing method thereof |
US20100328843A1 (en) * | 2009-06-30 | 2010-12-30 | Murata Manufacturing Co., Ltd. | Laminated ceramic electronic component and manufacturing method therefor |
JP2012038917A (en) * | 2010-08-06 | 2012-02-23 | Murata Mfg Co Ltd | Ceramic electronic component and method for manufacturing the same |
JP2015023120A (en) * | 2013-07-18 | 2015-02-02 | Tdk株式会社 | Laminated capacitor |
US10068705B2 (en) | 2014-03-26 | 2018-09-04 | Murata Manufacturing Co., Ltd. | Method for manufacturing ceramic electronic component |
JP2019533088A (en) * | 2016-10-24 | 2019-11-14 | アトテック・ドイチュラント・ゲーエムベーハーAtotech Deutschland Gmbh | Method of coating tin layer on metal substrate, and use of structure comprising nickel / phosphorus alloy underlayer and said tin layer by said method |
-
1993
- 1993-09-21 JP JP5235180A patent/JPH0790675A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005340371A (en) * | 2004-05-25 | 2005-12-08 | Murata Mfg Co Ltd | Laminated ceramic electronic component and manufacturing method thereof |
JP4604553B2 (en) * | 2004-05-25 | 2011-01-05 | 株式会社村田製作所 | Multilayer ceramic electronic component and manufacturing method thereof |
US20100328843A1 (en) * | 2009-06-30 | 2010-12-30 | Murata Manufacturing Co., Ltd. | Laminated ceramic electronic component and manufacturing method therefor |
US8547683B2 (en) * | 2009-06-30 | 2013-10-01 | Murata Manufacturing Co., Ltd. | Laminated ceramic electronic component with directly plated external terminal electrodes and manufacturing method therefor |
JP2012038917A (en) * | 2010-08-06 | 2012-02-23 | Murata Mfg Co Ltd | Ceramic electronic component and method for manufacturing the same |
JP2015023120A (en) * | 2013-07-18 | 2015-02-02 | Tdk株式会社 | Laminated capacitor |
US10068705B2 (en) | 2014-03-26 | 2018-09-04 | Murata Manufacturing Co., Ltd. | Method for manufacturing ceramic electronic component |
JP2019533088A (en) * | 2016-10-24 | 2019-11-14 | アトテック・ドイチュラント・ゲーエムベーハーAtotech Deutschland Gmbh | Method of coating tin layer on metal substrate, and use of structure comprising nickel / phosphorus alloy underlayer and said tin layer by said method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6769160B2 (en) | Process for manufacturing electronic part | |
AU611082B2 (en) | Passive electronic component | |
JPH0790675A (en) | Production of electronic parts | |
JPH10116704A (en) | Thermistor chip and its manufacturing method | |
US6452780B2 (en) | Capacitor | |
JPH0115164Y2 (en) | ||
JPH10116710A (en) | Current detecting resistor | |
JPS5961116A (en) | Method of producing chip type solid electrolytic condenser | |
JP2575351Y2 (en) | Solid electrolytic capacitor with built-in fuse | |
JPH06140278A (en) | Laminated ceramic capacitor | |
JPS6017902Y2 (en) | solid electrolytic capacitor | |
JPS6032357B2 (en) | Manufacturing method of capacitive element | |
JP3348642B2 (en) | Manufacturing method of ceramic electronic components | |
JPS6134251B2 (en) | ||
JPH0353492Y2 (en) | ||
JP2964805B2 (en) | Chip capacitors | |
JPS5915489Y2 (en) | electronic components | |
JPH07183167A (en) | Manufacture of solid electrolytic capacitor | |
JPH04277607A (en) | Electronic part | |
JPH07192973A (en) | Chip solid electrolytic capacitor | |
JPH09120909A (en) | Method of forming external electrode of varistor | |
JPS62276814A (en) | Ceramic capacitor | |
JPH0882U (en) | Chip type electronic parts | |
JPH10106808A (en) | Chip ntc thermistor | |
JPH06104150A (en) | Solid electrolytic capacitor and manufacture thereof |