[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07320543A - Anisotropic conductive bonded structure and its manufacture - Google Patents

Anisotropic conductive bonded structure and its manufacture

Info

Publication number
JPH07320543A
JPH07320543A JP7099788A JP9978895A JPH07320543A JP H07320543 A JPH07320543 A JP H07320543A JP 7099788 A JP7099788 A JP 7099788A JP 9978895 A JP9978895 A JP 9978895A JP H07320543 A JPH07320543 A JP H07320543A
Authority
JP
Japan
Prior art keywords
conductive member
conductive
substrate
adhesive
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7099788A
Other languages
Japanese (ja)
Inventor
Kazuo Ishibashi
和夫 石橋
Akira Tateishi
彰 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Whitaker LLC
Original Assignee
Whitaker LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Whitaker LLC filed Critical Whitaker LLC
Priority to JP7099788A priority Critical patent/JPH07320543A/en
Publication of JPH07320543A publication Critical patent/JPH07320543A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/17104Disposition relative to the bonding areas, e.g. bond pads
    • H01L2224/17106Disposition relative to the bonding areas, e.g. bond pads the bump connectors being bonded to at least one common bonding area
    • H01L2224/17107Disposition relative to the bonding areas, e.g. bond pads the bump connectors being bonded to at least one common bonding area the bump connectors connecting two common bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/811Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector the bump connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/81101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector the bump connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a bump connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Landscapes

  • Liquid Crystal (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE: To provide an anisotropic conductive adhesive structure which has low connecting resistance, high current capacity, and high high-density connecting reliability, by forming conductive member on a recyclable substrate and coating insulating adhesive on it. CONSTITUTION: In holes of a conductive member forming board 20 which is a glass board 21 which has many separated micro holes 26 and is covered by a mask 23, conductive material such as gold is filled into the holes in electrolytic plating method and is projected from upper surface of the mask 23 like a bump to form a conductive member 2. Next, epoxy based adhesive is coated on the conductive member to form adhesive film layer 1. Finally, by separating the layer from the board 20, an anisotropic conductive adhesive structure in which conductive members 2 with uniform shape and size are distributed homogeneously on its surface. The conductive member forming board 20 can be used many times to form conductive members 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は異方導電性接着構造物及
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive adhesive structure and a method for manufacturing the same.

【0002】[0002]

【従来の技術】厚み方向に導電性を有し、面方向に絶縁
性を示す異方導電性接着構造物は、高密度な電気接続、
例えばLCD(液晶表示装置)パネルとフィルムキャリ
ア又はFPC(可撓性回路基板)との間の接続等に用い
られている。その構造は導電粒子を接着剤フィルム中に
一様に分散したものが一般的であり、これを接続する対
向電極間に挟んで加熱・加圧することにより、導電粒子
が両方の電極に挟まれて電気的な接続をおこない、周囲
の接着剤が硬化することによりその接続を保持する。導
電粒子同士は接触していないので隣接電極間は絶縁性が
保たれる。
2. Description of the Related Art An anisotropic conductive adhesive structure having conductivity in the thickness direction and insulation in the surface direction is a high-density electrical connection,
For example, it is used for connection between an LCD (liquid crystal display) panel and a film carrier or an FPC (flexible circuit board). The structure is generally one in which conductive particles are uniformly dispersed in the adhesive film, and the conductive particles are sandwiched between both electrodes by heating and pressurizing them by sandwiching them between the opposing electrodes that connect them. An electrical connection is made and the surrounding adhesive cures to hold the connection. Since the conductive particles are not in contact with each other, insulation is maintained between adjacent electrodes.

【0003】この異方導電性接着構造物に使用される導
電粒子は、ニッケルやはんだ等の金属粒子を用いたもの
(特開昭60-140791 号公報参照)、あるいはニッケル、
はんだ、金等の金属めっきを施したポリスチレン等のプ
ラスチック粒子を用いたもの(特公昭63-31906号公報参
照)が最も一般的である。これらの導電粒子をエポキシ
樹脂等の熱硬化性樹脂、あるいは熱硬化性樹脂と熱可塑
性樹脂とを混合した樹脂に一様に分散させたのちキャス
ティング法等によりフィルム状に成形して異方導電性接
着構造物が得られる。
The conductive particles used in this anisotropic conductive adhesive structure are those using metal particles such as nickel and solder (see Japanese Patent Laid-Open No. 60-140791), or nickel,
The most general is one that uses plastic particles such as polystyrene, which is plated with metal such as solder or gold (see Japanese Patent Publication No. 63-31906). These conductive particles are uniformly dispersed in a thermosetting resin such as an epoxy resin, or a resin in which a thermosetting resin and a thermoplastic resin are mixed, and then molded into a film by a casting method or the like to obtain anisotropic conductivity. A bonded structure is obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、金属粒
子を用いた異方導電性接着構造物においては、接続抵抗
が低く電流容量が高い反面、金属粒子の粒子径を揃える
ことが難しいために、大きな粒子のみが接続に寄与する
ので電極のピッチをあまり狭くすることができないとい
う欠点があった。
However, in the anisotropic conductive adhesive structure using metal particles, although the connection resistance is low and the current capacity is high, it is difficult to make the particle diameters of the metal particles uniform. Since only particles contribute to the connection, there is a drawback in that the pitch of the electrodes cannot be made too narrow.

【0005】一方、金属めっきされたプラスチック粒子
を用いた異方導電性接着構造物においては、粒子径を小
さく均一に作ることができるので高密度な接続が可能だ
が、金属めっき皮膜により電気的接続がおこなわれるの
で接続抵抗が比較的高く電流容量が低いという問題があ
った。さらに、従来の異方導電性接着構造物の製造方法
においては、導電粒子を樹脂中に分散させる際、導電粒
子同士が凝集する傾向があるためにフィルム中における
導電粒子の分布が不均一になってしまい、そのために接
続する電極のピッチをあまり狭くすることができないと
いう問題があった。
On the other hand, in the anisotropic conductive adhesive structure using metal-plated plastic particles, the particle size can be made small and uniform, so that high-density connection is possible, but the metal-plated film makes electrical connection. Therefore, there is a problem that the connection resistance is relatively high and the current capacity is low. Furthermore, in the conventional method for producing an anisotropic conductive adhesive structure, when the conductive particles are dispersed in the resin, the conductive particles tend to aggregate, so that the distribution of the conductive particles in the film becomes uneven. Therefore, there has been a problem that the pitch of the electrodes to be connected cannot be made so narrow.

【0006】本発明の目的は、このような従来の問題点
を解消する異方導電性接着構造物、即ち低接続抵抗で電
流容量が高く、かつ、高密度接続における信頼性の高い
異方導電性接着構造物及びその製造方法を提供すること
である。
An object of the present invention is to provide an anisotropic conductive adhesive structure which solves the above-mentioned conventional problems, that is, an anisotropic conductive structure having a low connection resistance, a high current capacity, and a high reliability in high-density connection. Provided is a flexible adhesive structure and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明の異方導電性接着
構造物は、シート状の絶縁性接着剤層と、金属を主成分
とする互いに離間した多数の導電部材とを具え、該各導
電部材は、略均一な大きさを有すると共に、前記絶縁性
接着剤層の一面のみから少なくとも一部が露出すること
を特徴とする。
The anisotropic conductive adhesive structure of the present invention comprises a sheet-like insulating adhesive layer and a large number of conductive members each containing metal as a main component and spaced from each other. The conductive member has a substantially uniform size, and at least a part of the conductive member is exposed from only one surface of the insulating adhesive layer.

【0008】また、本発明の異方導電性接着構造物の製
造方法は、基板上に金属を主成分とする互いに離間した
多数の導電部材を形成する工程と、該導電部材が形成さ
れた前記基板上に絶縁性接着剤層を形成する工程と、前
記基板から前記導電部材及び前記絶縁性接着剤層からな
る異方導電性接着構造物を分離する工程とを具えること
を特徴とする。
The method for manufacturing an anisotropic conductive adhesive structure according to the present invention comprises the steps of forming a large number of conductive members, which are mainly composed of a metal, and are spaced apart from each other on the substrate, and the conductive member is formed on the substrate. The method further comprises the steps of forming an insulating adhesive layer on the substrate and separating the anisotropic conductive adhesive structure including the conductive member and the insulating adhesive layer from the substrate.

【0009】[0009]

【実施例】以下、添付図面に基づいて、本発明の実施例
について説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0010】図1は、本発明で使用する導電部材を形成
する基板の製造工程を示す断面図である。図2は、本発
明の一実施例の異方導電性接着構造物の製造工程を示す
断面図である。
FIG. 1 is a cross-sectional view showing a manufacturing process of a substrate for forming a conductive member used in the present invention. FIG. 2 is a cross-sectional view showing a process of manufacturing an anisotropic conductive adhesive structure according to an embodiment of the present invention.

【0011】図1において、基板20は、耐熱性ガラス基
板21に、後に導電部材を電解めっきする時の導電路とな
る白金又はITOの導電層22、およびマスクとなる二酸
化けい素または窒化けい素のマスク材23をスパッタ法、
プラズマCVD法等の公知の手法により形成する(図1
(a))。導電層22の材質が白金の場合、ガラス基板と
の付着力を向上させるために、導電層形成に先立ちチタ
ンあるいはクロムの下地層を形成することが望ましい。
次にフォトレジストを塗布した後にマスク露光および現
像をおこない適当な形状の孔25のあいたレジストパター
ン24を形成する(図1(b))。このレジストパターン
24をマスクとして四ふっ化炭素ガスを用いたドライエッ
チングによりマスク材23に孔26を形成する(図1
(c))。最後にレジストパターン24を除去して導電部
材形成用基板20(以下単に基板という)が得られる(図
1(d))。なお、マスク材23のエッチングには公知の
ウェットエッチング法を用いてもよい。例えば、導電層
22に白金、マスク材23に二酸化けい素を用いた場合には
ふっ酸でエッチングすることができる。
In FIG. 1, a substrate 20 is a heat-resistant glass substrate 21, a conductive layer 22 of platinum or ITO which becomes a conductive path when electrolytically plating a conductive member later, and silicon dioxide or silicon nitride which serves as a mask. The mask material 23 of is sputtered,
It is formed by a known method such as a plasma CVD method (see FIG. 1).
(A)). When the material of the conductive layer 22 is platinum, it is desirable to form an underlayer of titanium or chromium prior to the formation of the conductive layer in order to improve the adhesion to the glass substrate.
Next, a photoresist is applied, and then mask exposure and development are performed to form a resist pattern 24 having holes 25 having an appropriate shape (FIG. 1B). This resist pattern
Holes 26 are formed in the mask material 23 by dry etching using carbon tetrafluoride gas with 24 as a mask (see FIG. 1).
(C)). Finally, the resist pattern 24 is removed to obtain a conductive member forming substrate 20 (hereinafter simply referred to as a substrate) (FIG. 1 (d)). A known wet etching method may be used for etching the mask material 23. For example, conductive layer
When platinum is used for 22 and silicon dioxide is used for the mask material 23, it can be etched with hydrofluoric acid.

【0012】上述のマスク孔26に後に説明する方法で導
電部材2を形成するが、この孔26の横断面形状は、円
形、楕円形、長方形、その他の形状にしてもよい。また
基板20の面におけるマスク孔26の配置は規則的あるいは
不規則的にしてもよい。マスク孔26の深さ(すなわちマ
スク材23の厚さ)は好適には0.3 〜3μm 、直径は3〜
10μm だが、特にこの範囲に限定されるものではない。
Although the conductive member 2 is formed in the mask hole 26 by the method described later, the hole 26 may have a cross-sectional shape of a circle, an ellipse, a rectangle, or any other shape. Further, the arrangement of the mask holes 26 on the surface of the substrate 20 may be regular or irregular. The depth of the mask hole 26 (that is, the thickness of the mask material 23) is preferably 0.3 to 3 μm, and the diameter is 3 to 3.
Although it is 10 μm, it is not particularly limited to this range.

【0013】このようにして作製された基板20を用い
て、図2に示す工程により導電部材およびそれを含む異
方導電性接着構造物を製造する。まず、導電層22を陰極
として電解めっき法により金めっきをおこない、マスク
材23の孔に金を充填し、さらにマスク材23の上面から突
出してバンプ2aが形成されるまで金めっきを続けて導電
部材2を形成する。(図2(a))。次に、導電部材2
が形成された基板20上に液状エポキシ樹脂をスピンコー
ト法、即ち回転する基板20に液状エポキシ樹脂を滴下さ
せる方法により塗布し接着剤フィルム(絶縁性接着剤
層)1を形成する(図2(b))。バンプ2aのマスク材
23の上面からの突出高さおよび接着剤フィルム1の好適
な厚さはそれぞれ2〜20μm および10〜25μm だが、特
にこの範囲に限定されるものではない。最後に基板20を
剥離することにより接着剤フィルム1と導電部材2から
なる異方導電性接着構造物3が得られる。(図2
(c))。剥離された基板20は、再び図2(a)の工程
に戻って次の導電部材2を形成する工程に用いることが
できる。なお、導電部材2の形成に先だってマスク材23
の表面に接着剤フィルム1に対する離型材(たとえばテ
フロンなど)の層を形成しておくことにより、接着剤フ
ィルム1と基板20との分離を容易にすることができる。
Using the substrate 20 thus manufactured, a conductive member and an anisotropic conductive adhesive structure including the conductive member are manufactured by the process shown in FIG. First, gold is plated by electroplating using the conductive layer 22 as a cathode, the holes of the mask material 23 are filled with gold, and gold plating is continued until the bumps 2a are formed by protruding from the upper surface of the mask material 23. The member 2 is formed. (FIG. 2 (a)). Next, the conductive member 2
A liquid epoxy resin is applied onto the substrate 20 on which is formed by a spin coating method, that is, a method of dropping the liquid epoxy resin onto the rotating substrate 20 to form an adhesive film (insulating adhesive layer) 1 (see FIG. 2 ( b)). Mask material for bump 2a
The protrusion height from the upper surface of 23 and the preferable thickness of the adhesive film 1 are 2 to 20 μm and 10 to 25 μm, respectively, but are not particularly limited to this range. Finally, the substrate 20 is peeled off to obtain the anisotropic conductive adhesive structure 3 including the adhesive film 1 and the conductive member 2. (Fig. 2
(C)). The peeled substrate 20 can be used in the step of forming the next conductive member 2 by returning to the step of FIG. In addition, prior to the formation of the conductive member 2, the mask material 23
By forming a layer of a release material (for example, Teflon) for the adhesive film 1 on the surface of, the separation of the adhesive film 1 and the substrate 20 can be facilitated.

【0014】上述の異方導電性接着構造物3の製造方法
において、導電部材2がマスク材23の上面よりも突出し
ていない場合、導電部材2と接着剤フィルム1の接触面
積が小さくなるが、接着剤フィルム1の導電部材2に対
する付着力が十分強ければ、基板20を剥離するときに導
電部材2が基板20側に残ってしまうようなことはない。
したがって、そのような場合には導電部材2の上端はマ
スク材23の上面と同一面かあるいは凹んでいてもよい。
In the method of manufacturing the anisotropic conductive adhesive structure 3 described above, when the conductive member 2 does not project beyond the upper surface of the mask material 23, the contact area between the conductive member 2 and the adhesive film 1 becomes small, If the adhesive force of the adhesive film 1 to the conductive member 2 is sufficiently strong, the conductive member 2 will not remain on the substrate 20 side when the substrate 20 is peeled off.
Therefore, in such a case, the upper end of the conductive member 2 may be flush with the upper surface of the mask material 23 or may be recessed.

【0015】接着剤フィルム1の材料として上述のエポ
キシ樹脂の他に、ポリウレタン樹脂等の熱硬化性樹脂、
アクリル樹脂、スチレン系樹脂等の熱可塑性樹脂、およ
びこれら熱硬化性樹脂と熱可塑性樹脂を混合したものを
用いることができる。
As the material of the adhesive film 1, in addition to the above-mentioned epoxy resin, a thermosetting resin such as polyurethane resin,
A thermoplastic resin such as an acrylic resin or a styrene resin, or a mixture of these thermosetting resins and thermoplastic resins can be used.

【0016】導電部材2の材料としては金の他に、例え
ば銀、銅、ニッケル、すず、鉛、インジウム等の金属お
よびこれらの合金を用いることができる。また、導電部
材2は全体が均一な材料である必要はなく、異なる金属
あるいは合金の組み合わせからなるものであってもよ
い。さらにこれらの金属あるいは合金に有機材料や無機
材料を加えたものであってもよい。
As the material of the conductive member 2, in addition to gold, for example, metals such as silver, copper, nickel, tin, lead and indium, and alloys thereof can be used. The conductive member 2 does not have to be a uniform material as a whole, and may be made of a combination of different metals or alloys. Further, an organic material or an inorganic material may be added to these metals or alloys.

【0017】上述の導電部材2の形成は電解めっき法に
よりおこなったが、他の方法、例えば無電解めっき法
や、特開昭59-80361号公報に記載されている超微粒子を
用いた膜形成法、いわゆるガス・デポジション法等で形
成してもよい。後者の方法は金属の超微粒子を搬送用ガ
スに混合して小径ノズルから基板に吹き付けることによ
り金属膜を所定の形状、厚さに生成するものである。こ
の方法によれば、ガラス基板21、あるいは他の適当な金
属、セラミックス、ポリマーなどの平面基板上に直接、
多数の互いに離間した導電部材を形成することができる
ために、導電層22及びマスク材23は必ずしも必要としな
い。マスク材を用いないで導電部材を形成した場合、図
2(c)において導電部材の下側(基板側)は接着剤フ
ィルム1の下面と同一面になる。
The above-mentioned conductive member 2 was formed by an electrolytic plating method, but other methods such as an electroless plating method or a film formation using ultrafine particles described in JP-A-59-80361. It may be formed by a method such as a so-called gas deposition method. In the latter method, ultrafine metal particles are mixed with a carrier gas and sprayed onto a substrate from a small-diameter nozzle to form a metal film in a predetermined shape and thickness. According to this method, directly on the glass substrate 21, or other suitable metal, ceramics, a flat substrate such as a polymer,
The conductive layer 22 and the mask material 23 are not necessarily required because a large number of conductive members can be formed apart from each other. When the conductive member is formed without using the mask material, the lower side (substrate side) of the conductive member is flush with the lower surface of the adhesive film 1 in FIG.

【0018】絶縁性接着剤フィルム1の形成は上述の工
程ではスピンコート法でおこなったが、他の方法、例え
ばナイフコート法による塗布などを用いてもよい。これ
らの方法により塗布をおこなう場合には、用いる接着剤
は液状であることが必須であるが、この接着剤としては
常温で液体であり、塗布後において加熱や湿気、あるい
は紫外線、可視光等の光、もしくは電子線などの放射線
により接着性を生ずる低分子又は高分子、あるいはそれ
らの混合物を用いることができるのはもちろん、この混
合物に溶剤を添加したものや、常温で固体である樹脂を
溶剤で希釈したもの、常温で固体である樹脂を加熱によ
り液状としたものを用いることができる。
The insulating adhesive film 1 is formed by the spin coating method in the above steps, but other methods such as coating by knife coating method may be used. When applying by these methods, it is essential that the adhesive used is liquid, but this adhesive is a liquid at room temperature, and after application, heating or humidity, or ultraviolet rays, visible light, etc. It is of course possible to use low molecular weight or high molecular weight compounds that produce adhesiveness due to light or radiation such as electron beam, or a mixture thereof, as well as a solvent added to this mixture or a resin that is solid at room temperature as a solvent. It is possible to use the one diluted with, or the one which is solid at room temperature and made into a liquid by heating.

【0019】また、液状の接着剤を塗布するのではな
く、導電部材を形成した基板上に接着剤フィルムを熱圧
着してもよい。但し、接着剤フィルムの材料として熱硬
化性樹脂を含む場合には、接着剤フィルムが導電部材と
十分接着はするが完全に硬化を起こさないような比較的
低い温度で熱圧着する必要がある。
Instead of applying the liquid adhesive, the adhesive film may be thermocompression bonded onto the substrate on which the conductive member is formed. However, when a thermosetting resin is included as a material for the adhesive film, it is necessary to perform thermocompression bonding at a relatively low temperature at which the adhesive film sufficiently adheres to the conductive member but does not completely cure.

【0020】さらに紫外線や、電子線などの放射線、プ
ラズマ放電などのエネルギーを印加することにより、基
板表面で気相からの直接重合を引き起こし(気相重合
法)、接着剤フィルムを形成する方法も用いることがで
きる。
Further, by applying energy such as ultraviolet rays, radiation such as electron beam, and plasma discharge, direct polymerization from the gas phase is caused on the substrate surface (gas phase polymerization method) to form an adhesive film. Can be used.

【0021】上に述べた各種の絶縁性接着剤フィルム形
成方法は、その複数を組み合わせて実施することができ
る。例えば、液状の接着剤を用いて接着剤フィルムを形
成した後、別の接着剤フィルムを圧着することもでき
る。すなわち、現在知られている高分子膜生成方法のう
ち、得られた膜が接着に利用できるものは、全て本発明
において単独で、または複数を組み合わせて利用するこ
とが可能である。これらの方法は、得られる膜が具える
べき性質に応じて、自由に選択することができる。
The various insulating adhesive film forming methods described above can be carried out by combining a plurality of them. For example, after forming an adhesive film using a liquid adhesive, another adhesive film can be pressure-bonded. That is, among the currently known methods for producing a polymer film, all of the obtained films that can be used for adhesion can be used alone or in combination in the present invention. These methods can be freely selected depending on the properties that the obtained membrane should have.

【0022】図3は上述した異方導電性接着構造物3を
用いて対向配置された外部電気回路部品31、31の電極3
2、32を相互に接続する方法を示すものである。接続し
たい上下の電極32、32の間にこの異方導電性接着構造物
3を挟み(図3(a))、外部から所定のツールで加熱
・加圧することにより導電部材2が対向する電極32、32
の間に挟まれて回路を電気的に接続し、また接着剤フィ
ルム1が熱と圧力により流動して隙間を埋め接続を保持
する(図3(b))。隣接する電極32、32' 間に位置し
て接続に寄与しなかった導電部材2は周囲を接着剤1に
囲まれて絶縁される。各導電部材2は寸法が略揃ってい
ると共に接着剤フィルム1中に規則的に分布させること
が可能である。このため、どの導電部材2も均等に電極
32、32間の接続を担うことが可能である。従って、電極
32のピッチが狭い場合であっても信頼性の高い接続が得
られる。また、各導電部材2は金属を主成分とするの
で、接続抵抗が低く電流容量が大きい。さらに、各導電
部材2は接着剤フィルム1の片面から露出しているの
で、下側の外部電気回路部品31の電極32との接触が接着
剤フィルム1の流動化が生ずる前に得られる。このた
め、下側の電極32との接続がより確実になると共に、各
導電部材2と下側の電極32との間には摩擦力が働くの
で、接着剤が流動する際に各導電部材2が一緒に流動し
て対向する電極32、32の間から排除されて隣接電極32'
との間に位置することにより生ずる接続不良の問題が起
こらない。また、各導電部材2は接着剤フィルム1の上
面から露出してはおらず十分な量の接着剤に覆われてお
り、接続時にはこの接着剤が流動して外部電気回路部品
31との間の隙間を完全に埋めることができる。
FIG. 3 shows the electrodes 3 of the external electric circuit parts 31, 31 which are opposed to each other by using the anisotropic conductive adhesive structure 3 described above.
It shows how to connect 2 and 32 to each other. The anisotropic conductive adhesive structure 3 is sandwiched between the upper and lower electrodes 32, 32 to be connected (Fig. 3 (a)), and the conductive member 2 is opposed to the electrode 32 by heating and pressurizing with a predetermined tool from the outside. , 32
It is sandwiched between the two to electrically connect the circuits, and the adhesive film 1 flows by heat and pressure to fill the gap and maintain the connection (FIG. 3B). The conductive member 2 located between the adjacent electrodes 32 and 32 'and not contributing to the connection is insulated by being surrounded by the adhesive 1. The conductive members 2 have substantially the same size and can be regularly distributed in the adhesive film 1. Therefore, every conductive member 2 has an even electrode.
It is possible to take charge of the connection between 32 and 32. Therefore, the electrode
Reliable connection is obtained even when 32 pitches are narrow. Further, since each conductive member 2 has a metal as a main component, it has a low connection resistance and a large current capacity. Further, since each conductive member 2 is exposed from one surface of the adhesive film 1, contact with the electrode 32 of the lower external electric circuit component 31 is obtained before the adhesive film 1 is fluidized. Therefore, the connection with the lower electrode 32 becomes more reliable, and a frictional force acts between each conductive member 2 and the lower electrode 32, so that each conductive member 2 can flow when the adhesive flows. Are flowed together and eliminated between the electrodes 32, 32 facing each other and the adjacent electrode 32 '
The problem of poor connection caused by being located between and does not occur. In addition, each conductive member 2 is not exposed from the upper surface of the adhesive film 1 and is covered with a sufficient amount of the adhesive, and the adhesive flows during connection and the external electric circuit component
You can completely fill the gap between 31 and.

【0023】次に、図4を参照して本発明の第2実施例
を説明する。尚、第1実施例の部材と同一の部材には同
一の参照番号を付した。第1実施例に示した異方導電性
接着構造物3の製造方法においては、繰り返し使用でき
る硬質の無機誘電体材料(二酸化けい素又は窒化けい素
等)でマスク材23を形成したが、これをフォトレジスト
等の有機材料で形成することもできる。
Next, a second embodiment of the present invention will be described with reference to FIG. The same members as those of the first embodiment are designated by the same reference numerals. In the method of manufacturing the anisotropic conductive adhesive structure 3 shown in the first embodiment, the mask material 23 is formed of a hard inorganic dielectric material (such as silicon dioxide or silicon nitride) that can be repeatedly used. Can also be formed of an organic material such as a photoresist.

【0024】図4において、基板20' は耐熱性ガラス基
板21及び導電層22からなり、この上にフォトレジストに
より形成したマスク材23' を付加する。マスク材23' は
フォトレジストを導電層22上に塗布したのち、所定パタ
ーンに露光、現像して得られる。この導電層22を陰極と
して電解めっきにより第1実施例と同様の方法で導電部
材2を形成する(図4(a))。次にマスク部材23' をアセ
トン等により除去し(図4(b))、洗浄した後、第1実施
例と同様の方法により接着剤フィルム1'を形成する(図
4(c))。最後に基板20' を剥離することにより接着剤フ
ィルム1'と導電部材2からなる異方導電性接着構造物3'
が得られる(図4(d))。剥離された基板20' は、洗浄し
た後、再びフォトレジストによりマスク材23' を形成
し、図4(a) の工程に戻って導電部材2を形成するのに
用いることができる。本製造方法においては、マスク材
23' は異方導電性接着構造物3'の製造ごとに形成する必
要があるが、耐熱性ガラス基板21及び導電層22からなる
基板20' は繰り返し使用することができる。なお、この
製造方法においては、導電部材2の下端は接着剤フィル
ム1'の下面と同一面になる。
In FIG. 4, a substrate 20 'comprises a heat-resistant glass substrate 21 and a conductive layer 22, on which a mask material 23' made of photoresist is added. The mask material 23 'is obtained by applying a photoresist on the conductive layer 22, exposing it to a predetermined pattern, and developing it. Using the conductive layer 22 as a cathode, the conductive member 2 is formed by electrolytic plating in the same manner as in the first embodiment (FIG. 4 (a)). Next, the mask member 23 'is removed with acetone or the like (FIG. 4 (b)), and after cleaning, an adhesive film 1'is formed by the same method as in the first embodiment (FIG. 4 (c)). Finally, the substrate 20 'is peeled off to form an anisotropic conductive adhesive structure 3'consisting of the adhesive film 1'and the conductive member 2.
Is obtained (FIG. 4 (d)). The separated substrate 20 'can be used for forming the mask material 23' with photoresist again after cleaning and returning to the step of FIG. 4A to form the conductive member 2. In this manufacturing method, the mask material
23 'needs to be formed each time the anisotropic conductive adhesive structure 3'is manufactured, but the substrate 20' including the heat-resistant glass substrate 21 and the conductive layer 22 can be repeatedly used. In this manufacturing method, the lower end of the conductive member 2 is flush with the lower surface of the adhesive film 1 '.

【0025】本製造方法においては、マスク材23' を除
去した後に接着剤フィルム1'を形成するため、必ずしも
バンプ2aが形成されていなくても導電部材2は接着剤フ
ィルム1'と十分な接触面積をもつことができ、基板20'
を剥離するときに導電部材が基板20' 側に残ってしまう
ようなことはない。したがって、導電部材2の上面はマ
スク材23' の上面から突出してもよいし、突出しなくて
もよい。また、上述した製造方法においては基板20' を
耐熱性ガラス基板21と導電層22とで構成したが、基板と
して銅又はステンレス鋼などの金属の箔あるいは薄板な
どを用いてその上にフォトレジストでマスク材を形成し
てもよい。
In this manufacturing method, since the adhesive film 1'is formed after the mask material 23 'is removed, the conductive member 2 is sufficiently contacted with the adhesive film 1'even if the bumps 2a are not necessarily formed. Can have area, substrate 20 '
The conductive member does not remain on the side of the substrate 20 ′ when peeling off. Therefore, the upper surface of the conductive member 2 may or may not project from the upper surface of the mask material 23 '. Further, in the above-mentioned manufacturing method, the substrate 20 ′ is composed of the heat-resistant glass substrate 21 and the conductive layer 22, but a metal foil or thin plate of copper or stainless steel is used as the substrate, and a photoresist is formed thereon. A mask material may be formed.

【0026】さらに、本製造方法におけるマスク孔の横
断面形状は、第1実施例と同様に、円形、楕円形、長方
形、その他の形状にしてもよい。また、基板20' の面に
おけるマスク孔の配置は規則的にするか、または、マス
ク孔の単位面積あたりの個数密度がほぼ一様になるよう
に不規則(不規則一様分布)にする。このようにするこ
とで、接着剤フィルムの面内における導電部材の分布が
一様となり、電極の接続ピッチを小さくすることができ
る。
Further, the cross-sectional shape of the mask hole in this manufacturing method may be circular, elliptical, rectangular, or any other shape, as in the first embodiment. Further, the arrangement of the mask holes on the surface of the substrate 20 'is made regular or irregular so that the number density of the mask holes per unit area is substantially uniform (irregular uniform distribution). By doing so, the distribution of the conductive members within the surface of the adhesive film becomes uniform, and the connection pitch of the electrodes can be reduced.

【0027】次に、図5及び図6を参照して本発明の第
3実施例を説明する。銅箔51上に第1実施例と同様の方
法により硬質の無機誘電体材料(二酸化けい素又は窒化
けい素等)のマスク材23を形成する(図5(a))。さらに
塩化第二鉄あるいは塩化第二銅を用いたエッチングによ
りマスク孔26の底の銅箔部分に凹部52を形成して基板2
0''を得る(図5(b))。次に銅箔51を陰極として電解め
っきにより第1実施例と同様の方法で導電部材2'' を形
成する(図6(a))。以下第1実施例と同様にして接着剤
フィルム1を形成し(図6(b))、最後に基板20''を剥離
することにより接着剤フィルム1と導電部材2''からな
る異方導電性接着構造物3''が得られる(図6(c))。剥
離された基板20''は、再び図6(a)の工程に戻って次
の導電部材2''を形成する工程に用いることができる。
Next, a third embodiment of the present invention will be described with reference to FIGS. A mask material 23 of a hard inorganic dielectric material (silicon dioxide, silicon nitride or the like) is formed on the copper foil 51 by the same method as in the first embodiment (FIG. 5 (a)). Further, a recess 52 is formed in the copper foil portion at the bottom of the mask hole 26 by etching with ferric chloride or cupric chloride to form the substrate 2
0 ″ is obtained (FIG. 5 (b)). Next, a conductive member 2 ″ is formed by electrolytic plating using the copper foil 51 as a cathode by the same method as in the first embodiment (FIG. 6 (a)). Thereafter, the adhesive film 1 is formed in the same manner as in the first embodiment (FIG. 6 (b)), and finally the substrate 20 ″ is peeled off to form an anisotropic conductive film composed of the adhesive film 1 and the conductive member 2 ″. The adhesive structure 3 ″ is obtained (FIG. 6 (c)). The peeled substrate 20 ″ can be used in the step of returning to the step of FIG. 6A to form the next conductive member 2 ″.

【0028】上述の製造方法において、銅箔51の代わり
にステンレス鋼などの箔あるいは薄板を用いることがで
きる。さらに、凹部52を形成できるだけの十分な厚さが
あれば、第1実施例と同様にガラス基板上に形成した白
金またはITO等の導電層であってもよい。また、マス
ク材としてポリイミドを塗布または熱圧着したのち所定
のパターンを形成したものを用いることもできる。
In the manufacturing method described above, a foil or a thin plate made of stainless steel or the like can be used instead of the copper foil 51. Further, a conductive layer such as platinum or ITO formed on the glass substrate may be used as long as it has a sufficient thickness to form the recess 52. Further, as the mask material, it is also possible to use one in which a predetermined pattern is formed after coating or thermocompression bonding of polyimide.

【0029】本製造方法により得られる異方導電性接着
構造物3'' においては、導電部材2'' の上部バンプ2aの
みならず下部バンプ2bも平面ではなく凸になっている。
このため、接続時に外部電極の表面に存在する酸化膜な
どの汚染皮膜をより破壊しやすくなり、高い接続信頼性
が得られる。
In the anisotropic conductive adhesive structure 3 ″ obtained by this manufacturing method, not only the upper bump 2a of the conductive member 2 ″ but also the lower bump 2b is convex rather than flat.
Therefore, a contaminated film such as an oxide film existing on the surface of the external electrode during connection is more likely to be destroyed, and high connection reliability can be obtained.

【0030】次に、図7を参照して本発明の第4実施例
を説明する。第1実施例に対する第2実施例と同様に、
第3実施例のマスク材をフォトレジスト等の有機材料で
形成することもできる。図7において、基板20''' は銅
箔51およびフォトレジストにより形成したマスク材23’
からなる。マスク材23' はフォトレジストを銅箔51上に
塗布したのち、所定のパターンに露光、現像して得られ
る。その後、第3実施例と同様にしてエッチングにより
マスク材23' の底の銅箔部分に凹部を形成して基板2
0''' を得る。この銅箔51を陰極として電解めっきによ
り導電部材2'' を形成する(図7(a))。次に、マスク材
23' をアセトン等により除去し(図7(b))、洗浄した
後、第1実施例と同様の方法により接着剤フィルム1'を
形成する(図7(c))。最後に、銅箔51を剥離することに
より接着剤フィルム1’と導電部材2''とからなる異方
導電性接着構造物3'''が得られる(図7(d))。剥離され
た銅箔51は、洗浄したのち、再びフォトレジストにより
マスク材23' を形成し、図7(a)の工程に戻って導電
部材2'' を形成するのに用いることができる。なお、銅
箔51を再利用する場合は、フォトレジストの塗布に先立
ちすでに銅箔表面に凹部が形成されている。従って、フ
ォトレジストのパターニングに際しては、パターンの孔
の部分がこの凹部に一致するよう位置合わせを行ない露
光する必要がある。その後、現像して銅箔凹部の上にあ
るフォトレジストを除去しマスク材23' が得られる。こ
のように本製造方法においては、マスク材23' は異方導
電性接着構造物の製造ごとに形成する必要があるが、銅
箔51は繰り返し使用することができる。また、銅箔51の
代わりにステンレス鋼等の箔や薄板、ガラス基板上に形
成した白金またはITO等の導電層等を用いることがで
きるのは第3実施例とまったく同様である。
Next, a fourth embodiment of the present invention will be described with reference to FIG. Similar to the second embodiment with respect to the first embodiment,
The mask material of the third embodiment may be formed of an organic material such as photoresist. In FIG. 7, a substrate 20 '''is a mask material 23' formed of a copper foil 51 and a photoresist.
Consists of. The mask material 23 'is obtained by applying a photoresist on the copper foil 51, exposing it to a predetermined pattern, and developing it. After that, a recess is formed in the copper foil portion at the bottom of the mask material 23 'by etching in the same manner as in the third embodiment to form the substrate 2
You get 0 '''. A conductive member 2 ″ is formed by electrolytic plating using the copper foil 51 as a cathode (FIG. 7 (a)). Next, mask material
After removing 23 'with acetone or the like (FIG. 7 (b)) and washing, an adhesive film 1'is formed by the same method as in the first embodiment (FIG. 7 (c)). Finally, the copper foil 51 is peeled off to obtain an anisotropic conductive adhesive structure 3 ″ ′ composed of the adhesive film 1 ′ and the conductive member 2 ″ (FIG. 7 (d)). The stripped copper foil 51 can be used for forming the mask material 23 'with photoresist again after cleaning and returning to the step of FIG. 7A to form the conductive member 2''. When the copper foil 51 is reused, a recess is already formed on the surface of the copper foil before applying the photoresist. Therefore, when patterning the photoresist, it is necessary to align and expose the holes of the pattern to the recesses. After that, development is performed to remove the photoresist on the copper foil concave portion to obtain a mask material 23 '. As described above, in the present manufacturing method, the mask material 23 ′ needs to be formed each time the anisotropic conductive adhesive structure is manufactured, but the copper foil 51 can be repeatedly used. Also, instead of the copper foil 51, a foil or thin plate of stainless steel or the like, a conductive layer such as platinum or ITO formed on a glass substrate, or the like can be used, just as in the third embodiment.

【0031】本製造方法により得られる異方導電性接着
構造物3'''においては、第3実施例と同様に導電部材
2''の上部バンプ2aと下部バンプ2bとが平面でなく凸に
なっているために高い接続信頼性が得られる。
In the anisotropic conductive adhesive structure 3 '"obtained by this manufacturing method, the upper bumps 2a and the lower bumps 2b of the conductive member 2" are not flat but convex as in the third embodiment. Therefore, high connection reliability can be obtained.

【0032】[0032]

【発明の効果】本発明の異方導電性接着構造物によれ
ば、低接続抵抗で電流容量が高く、しかも高密度接続に
おける信頼性の高い異方導電性接着構造物が得られる。
更に、本発明の異方導電性接着構造物を構成する導電部
材と、外部の電気回路部品の電極との接続が確実に得ら
れるので、電気的接続の信頼性が高いという利点があ
る。
According to the anisotropic conductive adhesive structure of the present invention, an anisotropic conductive adhesive structure having a low connection resistance, a high current capacity, and a high reliability in high density connection can be obtained.
Furthermore, since the conductive member forming the anisotropic conductive adhesive structure of the present invention and the electrode of the external electric circuit component can be reliably connected, there is an advantage that the reliability of the electric connection is high.

【0033】また、本発明の異方導電性接着構造物の製
造方法によれば、工数が相対的に少ないと共に同一の基
板を繰り返し利用することが可能なので、低接続抵抗、
高電流容量且つ高信頼性の異方導電性接着構造物を低コ
ストで製造できる利点がある。
Further, according to the method for manufacturing an anisotropic conductive adhesive structure of the present invention, since the number of steps is relatively small and the same substrate can be repeatedly used, low connection resistance,
There is an advantage that an anisotropic conductive adhesive structure having high current capacity and high reliability can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】導電部材形成用基板を製造する工程を示す断面
図である。
FIG. 1 is a cross-sectional view showing a process of manufacturing a conductive member forming substrate.

【図2】本発明の異方導電性接着構造物の第1実施例の
製造工程を示す断面図である。
FIG. 2 is a cross-sectional view showing a manufacturing process of a first embodiment of the anisotropic conductive adhesive structure of the present invention.

【図3】本発明により製造された異方導電性接着構造物
を用いた電気回路の接続方法を示す断面図である。
FIG. 3 is a cross-sectional view showing a method of connecting an electric circuit using the anisotropic conductive adhesive structure manufactured according to the present invention.

【図4】本発明の異方導電性接着構造物の第2実施例の
製造工程を示す断面図である。
FIG. 4 is a cross-sectional view showing a manufacturing process of a second embodiment of the anisotropic conductive adhesive structure of the present invention.

【図5】別の導電部材形成用基板を製造する工程を示す
断面図である。
FIG. 5 is a cross-sectional view showing a process of manufacturing another conductive member forming substrate.

【図6】本発明の異方導電性接着構造物の第3実施例の
製造工程を示す断面図である。
FIG. 6 is a cross-sectional view showing a manufacturing process of a third embodiment of the anisotropic conductive adhesive structure of the present invention.

【図7】本発明の異方導電性接着構造物の第4実施例の
製造工程を示す断面図である。
FIG. 7 is a cross-sectional view showing a manufacturing process of a fourth embodiment of the anisotropic conductive adhesive structure of the present invention.

【符号の説明】[Explanation of symbols]

1、1' 接着剤フィルム(絶縁性接着剤層) 2、2'' 導電部材 3、3'、3'' 、3''' 異方導電性接着構造物 20、20' 、20''、20''' 基板 1, 1'adhesive film (insulating adhesive layer) 2, 2 '' conductive member 3, 3 ', 3' ', 3' '' anisotropic conductive adhesive structure 20, 20 ', 20' ', 20 '' 'substrate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // H05K 3/20 A 7511−4E ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // H05K 3/20 A 7511-4E

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シート状の絶縁性接着剤層と、金属を主
成分とする互いに離間した多数の導電部材とを具え、 該各導電部材は、略均一な大きさを有すると共に前記絶
縁性接着剤層の一面のみから少なくとも一部が露出する
ことを特徴とする異方導電性接着構造物。
1. A sheet-like insulating adhesive layer, and a plurality of electrically conductive members, which are mainly composed of a metal and are spaced apart from each other, each electrically conductive member having a substantially uniform size and the insulating adhesive layer. An anisotropic conductive adhesive structure, characterized in that at least a part is exposed from only one surface of the agent layer.
【請求項2】 基板上に金属を主成分とする互いに離間
した多数の導電部材を形成する工程と、 該導電部材が形成された前記基板上に絶縁性接着剤層を
形成する工程と、 前記基板から前記導電部材及び前記絶縁性接着剤層から
なる異方導電性接着構造物を分離する工程とを具えるこ
とを特徴とする異方導電性接着構造物の製造方法。
2. A step of forming a large number of electrically conductive members which are mainly composed of a metal and are spaced apart from each other on a substrate, a step of forming an insulating adhesive layer on the substrate on which the electrically conductive members are formed, And a step of separating an anisotropic conductive adhesive structure composed of the conductive member and the insulating adhesive layer from a substrate.
JP7099788A 1994-04-01 1995-03-31 Anisotropic conductive bonded structure and its manufacture Pending JPH07320543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7099788A JPH07320543A (en) 1994-04-01 1995-03-31 Anisotropic conductive bonded structure and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-87840 1994-04-01
JP8784094 1994-04-01
JP7099788A JPH07320543A (en) 1994-04-01 1995-03-31 Anisotropic conductive bonded structure and its manufacture

Publications (1)

Publication Number Publication Date
JPH07320543A true JPH07320543A (en) 1995-12-08

Family

ID=26429085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7099788A Pending JPH07320543A (en) 1994-04-01 1995-03-31 Anisotropic conductive bonded structure and its manufacture

Country Status (1)

Country Link
JP (1) JPH07320543A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030090383A (en) * 2002-05-23 2003-11-28 한국과학기술원 Manufacturing method of PCB and PCB using of thereof
KR20040017478A (en) * 2002-08-21 2004-02-27 한국과학기술원 Manufacturing Method for Printed Circuit Board and Multiple PCB
FR2857780A1 (en) * 2003-07-18 2005-01-21 Commissariat Energie Atomique Manufacture of an anisotropic conductor film incorporating traversing inserts for direct connection with semiconductor chips for sensors and Micro-Electronic Mechanical Systems
FR2857782A1 (en) * 2003-07-18 2005-01-21 Commissariat Energie Atomique Anisotropic conductive film for e.g. micro electro mechanical system, has multiple conductive inserts, each having body that is asymmetrical with respect to normal at film main plane after assembling inserts with two contact zones
JP2016503132A (en) * 2012-12-27 2016-02-01 キーケルト アクツィーエンゲゼルシャフト Component support for electrical / electronic components
CN111384026A (en) * 2018-12-31 2020-07-07 美光科技公司 Anisotropic conductive films with carbon-based conductive regions and related semiconductor assemblies, systems, and methods
US11749608B2 (en) 2018-12-31 2023-09-05 Micron Technology, Inc. Device packages including redistribution layers with carbon-based conductive elements, and methods of fabrication

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030090383A (en) * 2002-05-23 2003-11-28 한국과학기술원 Manufacturing method of PCB and PCB using of thereof
KR20040017478A (en) * 2002-08-21 2004-02-27 한국과학기술원 Manufacturing Method for Printed Circuit Board and Multiple PCB
FR2857780A1 (en) * 2003-07-18 2005-01-21 Commissariat Energie Atomique Manufacture of an anisotropic conductor film incorporating traversing inserts for direct connection with semiconductor chips for sensors and Micro-Electronic Mechanical Systems
FR2857782A1 (en) * 2003-07-18 2005-01-21 Commissariat Energie Atomique Anisotropic conductive film for e.g. micro electro mechanical system, has multiple conductive inserts, each having body that is asymmetrical with respect to normal at film main plane after assembling inserts with two contact zones
WO2005010927A2 (en) * 2003-07-18 2005-02-03 Commissariat A L'energie Atomique Anisotropic electroconductive film and method for the production thereof
WO2005010926A3 (en) * 2003-07-18 2005-09-09 Commissariat Energie Atomique Procede de fabrication de film conducteur anisotrope
WO2005010927A3 (en) * 2003-07-18 2005-10-20 Commissariat Energie Atomique Anisotropic electroconductive film and method for the production thereof
EP1647053A2 (en) * 2003-07-18 2006-04-19 Commissariat à l'Energie Atomique Method for producing an anisotropic conductive film
US7510962B2 (en) 2003-07-18 2009-03-31 Commissariat A L'energie Atomique Method for producing an anisotropic conductive film on a substrate
JP2016503132A (en) * 2012-12-27 2016-02-01 キーケルト アクツィーエンゲゼルシャフト Component support for electrical / electronic components
CN111384026A (en) * 2018-12-31 2020-07-07 美光科技公司 Anisotropic conductive films with carbon-based conductive regions and related semiconductor assemblies, systems, and methods
US11749608B2 (en) 2018-12-31 2023-09-05 Micron Technology, Inc. Device packages including redistribution layers with carbon-based conductive elements, and methods of fabrication
US11881468B2 (en) 2018-12-31 2024-01-23 Micron Technology, Inc. Anisotropic conductive film with carbon-based conductive regions and related semiconductor device assemblies and methods

Similar Documents

Publication Publication Date Title
US6042894A (en) Anisotropically electroconductive resin film
US20090183901A1 (en) Wiring Boards and Processes for Manufacturing the Same
JP2001052778A (en) Anisotropic conductive adhesive film and its manufacture
JPH07320543A (en) Anisotropic conductive bonded structure and its manufacture
JPH10125818A (en) Substrate for semiconductor device, semiconductor device and manufacture thereof
JPH10125819A (en) Substrate for semiconductor device, semiconductor device and manufacture thereof
JP3786214B2 (en) Method for producing anisotropic conductive resin film-like molded product
JPH0727789A (en) Circuit wiring board and its manufacture
JPH08235935A (en) Anisotropic conductive film
JP2004134183A (en) Electrode sheet and its manufacturing method
JPH07282878A (en) Anisotropy electrical conductivity connection component and manufacture thereof
JP2004335663A (en) Method for manufacturing different direction electric conduction film
JP2579458B2 (en) Anisotropic conductive film and method for producing the same
JPH08288603A (en) Printed wiring board, its manufacture, and original plate for transfer
JP3469620B2 (en) Multilayer printed wiring board and method of manufacturing the same
JPH0997814A (en) Connection structure of electronic parts and manufacture thereof
JP2004134467A (en) Multilayered wiring board, material for it, and method of manufacturing it
JPH05258790A (en) Anisotropically conductive adhesion film and connecting structure using it
JPH11121073A (en) Connecting member and its manufacture
JP2003059959A (en) Semiconductor device and packaging method therefor
JPH10335779A (en) Formation of pattern
JPH06204290A (en) Manufacture of circuit board and connection method between the electric connection member and electric circuit part
JP3129217B2 (en) Fine pitch connector members
JP2002076056A (en) Anisotropic conductive film and manufacturing method therefor
JP2995244B2 (en) Anisotropic conductive adhesive

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees