JPH07229052A - Nonwoven manufacturing method - Google Patents
Nonwoven manufacturing methodInfo
- Publication number
- JPH07229052A JPH07229052A JP6020805A JP2080594A JPH07229052A JP H07229052 A JPH07229052 A JP H07229052A JP 6020805 A JP6020805 A JP 6020805A JP 2080594 A JP2080594 A JP 2080594A JP H07229052 A JPH07229052 A JP H07229052A
- Authority
- JP
- Japan
- Prior art keywords
- heat shrinkage
- nonwoven fabric
- continuous
- polyolefin
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Artificial Filaments (AREA)
- Multicomponent Fibers (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、熱収縮率の異なる2種
類の連続長繊維を混繊してなる不織布の製造方法に関す
る。更に詳しく述べれば、本発明は、熱収縮率の小さい
ポリオレフィン系連続長繊維と熱収縮率の大きいポリオ
レフィン系又はポリエステル系連続長繊維から構成さ
れ、加熱処理された不織布で、強度、開繊性及び地合に
優れ、特に使い捨ておむつや生理用ナプキン等の衛生材
料の表面材として好適に使用しうる嵩高で柔軟な不織布
の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-woven fabric obtained by mixing two kinds of continuous filaments having different heat shrinkages. More specifically, the present invention comprises a polyolefin-based or polyester-based continuous filament having a large heat shrinkage and a polyolefin continuous filament having a small heat shrinkage, and a heat-treated nonwoven fabric having strength, openability and The present invention relates to a method for producing a bulky and flexible non-woven fabric which is excellent in formation and can be suitably used as a surface material for sanitary materials such as disposable diapers and sanitary napkins.
【0002】[0002]
【従来の技術】連続長繊維を構成繊維とするスパンボン
ド不織布は、短繊維を構成繊維とする短繊維不織布に比
べて、高強度で且つ比較的安価であるため、種々の用途
に使用されている。しかし、一般的に連続長繊維からな
るスパンボンド不織布は、捲縮を有する短繊維不織布に
比べて、嵩高さや柔軟性で劣っている。2. Description of the Related Art Spunbonded non-woven fabrics having continuous long fibers as constituent fibers have high strength and are relatively inexpensive as compared with short fiber non-woven fabrics having short fibers as constituent fibers, and thus are used in various applications. There is. However, spunbonded nonwoven fabrics composed of continuous long fibers are generally inferior in bulkiness and flexibility as compared with short fiber nonwoven fabrics having crimps.
【0003】このために連続長繊維からなるスパンボン
ド不織布では、高分子重合体を異形の紡糸孔を持つ紡糸
口金から溶融紡糸し、次いで高速気流で延伸固化する際
に、この長繊維群の一方の側面のみを冷却することによ
って、長繊維群に捲縮を発現させた後、この長繊維群を
積層させるというスパンボンド不織布の製造方法が提案
されている(特開平1−148862号公報)。For this reason, in a spunbonded non-woven fabric composed of continuous long fibers, one of the long fibers is formed when a high molecular polymer is melt-spun from a spinneret having irregularly shaped spinning holes and then stretched and solidified by a high-speed air stream. A method for producing a spunbonded nonwoven fabric has been proposed in which the filaments are crimped by cooling only the side faces thereof and then the filaments are laminated (Japanese Patent Laid-Open No. 1-148862).
【0004】この方法で得られるスパンボンド不織布
は、嵩高で柔軟なものであるが、開繊時に隣接する捲縮
性長繊維同士が絡み合い、開繊不良により地合が不均質
となるという欠点があり、特に目付の小さい薄物でこの
傾向が顕著となる。The spunbonded non-woven fabric obtained by this method is bulky and flexible, but has the drawback that the crimped long fibers adjacent to each other are entangled with each other at the time of opening, and the formation becomes inhomogeneous due to poor opening. This tendency is remarkable especially in thin products having a small basis weight.
【0005】又、潜在性の捲縮性長繊維でも、或る程度
の捲縮が顕在することは避けられないため捲縮性長繊維
の有する開繊不良という欠点を有している。この欠点を
補うため、並列型、又は偏心芯鞘型に複合され、且つ捲
縮を有する複合型長繊維と単成分からなる非複合型長繊
維を混繊する方法が提案されている(特開平5−195
406号公報)。この方法によって、捲縮を有する複合
型長繊維の開繊性が良好になり、地合が均質な不織布が
得られるのである。Further, even with the latent crimpable filaments, it is unavoidable that a certain degree of crimp is manifested, so that the crimpable filaments have a drawback of poor opening. In order to make up for this drawback, a method has been proposed in which side-by-side type or eccentric core-sheath type composite filaments having crimps and non-composite filaments composed of a single component are mixed (Japanese Patent Laid-Open No. Hei 10 (1999) -135242) 5-195
No. 406). By this method, the openability of the crimped composite long fibers is improved, and a nonwoven fabric having a uniform texture is obtained.
【0006】しかしながら、この方法においても顕在化
した捲縮性長繊維の比率を大きくすれば地合が悪化し、
小さくすれば地合は良好となるが嵩高性において劣ると
いう欠点を有している。このような欠点は、特に目付の
小さい薄物で顕著となる。このように、地合と嵩高性の
両特性は二律背反的な要素であり、その両方を同時に両
立させることは極めて困難である。However, even in this method, if the ratio of the crimped filaments which has become actualized is increased, the texture is deteriorated,
The smaller the size, the better the texture, but the bulkiness is inferior. Such a defect becomes remarkable especially in a thin product having a small basis weight. As described above, both the texture and the bulkiness are trade-offs, and it is extremely difficult to satisfy both of them at the same time.
【0007】[0007]
【発明が解決しようとする課題】本発明者は、かかる現
状に鑑み、連続長繊維の開繊性と嵩高性の両立を図るた
め、開繊時に開繊性が良く、しかもウェブ形成後に嵩高
性を発現させることについて鋭意研究を重ねた結果、熱
収縮率の異なる2種の連続長繊維を通常の方法で開繊し
て混繊し、ウェブを形成後間隔をおいた融着区域を設
け、これを加熱処理すると、熱収縮率の小さい長繊維が
ループを形成することにより捲縮性長繊維と同様な嵩高
性を発現することを見出だし本発明を完成するに至っ
た。In view of the above situation, the present inventors have attempted to achieve both openness and bulkiness of continuous long fibers, and therefore have good openability at the time of opening and have high bulkiness after web formation. As a result of earnestly repeating research on expressing, two kinds of continuous long fibers having different heat shrinkage rates are opened and mixed by a usual method, and after forming a web, a fused area is provided with an interval, When this was heat-treated, it was found that long fibers having a small heat shrinkage ratio form loops, thereby exhibiting the same bulkiness as crimpable long fibers, and the present invention has been completed.
【0008】本発明は、強度に優れ、地合が均質で、し
かも嵩高なスパンボンド不織布の製造方法を提供するこ
とを目的とする。It is an object of the present invention to provide a method for producing a spunbonded nonwoven fabric which is excellent in strength, has a homogeneous texture, and is bulky.
【0009】[0009]
【課題を解決するための手段】本発明は、熱収縮率の小
さいポリオレフィン系連続長繊維Aと熱収縮率の大きい
ポリオレフィン系またはポリエステル系連続長繊維Bが
均一に混繊されてなるスパンボンド不織布の製造方法に
おいて、該連続長繊維AとBの熱収縮率の差が10〜5
0%であり、且つ重量比でA:Bが35:65〜65:
35からなる不織布を加熱処理することを特徴とするス
パンボンド不織布の製造方法である。According to the present invention, a spunbonded non-woven fabric is obtained by uniformly mixing a polyolefin continuous filament A having a small heat shrinkage and a polyolefin or polyester continuous filament B having a large heat shrinkage. In the manufacturing method of, the difference in heat shrinkage between the continuous filaments A and B is 10 to 5
0%, and A: B is 35:65 to 65: by weight.
The method for producing a spunbonded nonwoven fabric is characterized in that the nonwoven fabric made of 35 is heat-treated.
【0010】本発明に係る不織布は、熱収縮率の異なっ
た連続長繊維を混繊、堆積してウェブを形成し、熱圧着
した後、更に熱処理することにより得られる。ウェブ形
成は、公知のスパンボンド法がそのまま適用できる。本
発明で用いる連続長繊維は、ポリオレフィン系又はポリ
エステル系の単成分樹脂からなる非捲縮性繊維であるこ
とから、開繊性は良く、地合は均質なウェブが得られ
る。又、前記のようにして熱圧着したウェブは、その表
面に融着区域が間隔をおいて配置されるように多数の凸
部を有する加熱されたエンボスロールと平滑ロールとの
間に、或いは多数の凸部を有する加熱された一対のエン
ボスロール間に導入することで形成される。The non-woven fabric according to the present invention is obtained by mixing and depositing continuous filaments having different heat shrinkage rates to form a web, thermocompression-bonding, and further heat-treating. For the web formation, a known spunbond method can be applied as it is. Since the continuous continuous fiber used in the present invention is a non-crimpable fiber made of a polyolefin-based or polyester-based single-component resin, it has good openability and a web with a homogeneous texture can be obtained. Further, the web thermocompression bonded as described above may be provided between a heated embossing roll and a smooth roll having a large number of convex portions so that the fusion-bonded areas are arranged at intervals on the surface thereof, or a large number of them. It is formed by introducing it between a pair of heated embossing rolls having convex portions.
【0011】このようにして不織布の表面に設けられる
融着区域は、連続長繊維同士が熱融着によって結合さ
れ、且つ融着区域の面積はこのスパンボンド不織布面積
の4〜10%の範囲である。融着区域の面積が4%未満
では不織布の強度が不足し、10%を越えて多くなる
と、得られる不織布が嵩高性と柔軟性を欠くものとな
り、不適である。In the fused area provided on the surface of the non-woven fabric in this manner, continuous long fibers are bonded by thermal fusion, and the area of the fused area is within the range of 4 to 10% of the area of the spunbonded non-woven fabric. is there. If the area of the fusion bonding area is less than 4%, the strength of the nonwoven fabric is insufficient, and if it exceeds 10%, the resulting nonwoven fabric lacks bulkiness and flexibility, which is not suitable.
【0012】前記の如くして融着区域が設けられた不織
布は、更に110〜140℃の温度及び1〜5分の時間
の組合せで熱風による加熱処理が施される。この熱処理
によって熱収縮率の大きい長繊維は、熱収縮率の小さい
長繊維より多く収縮する結果、融着区域と融着区域の間
は熱収縮率の大きい長繊維により最短で連結され、一方
熱収縮率の小さい長繊維は、この融着区域間でループを
形成し、これにより不織布に嵩高性が付与される。The non-woven fabric provided with the fusion-bonding area as described above is further subjected to heat treatment with hot air at a combination of a temperature of 110 to 140 ° C. and a time of 1 to 5 minutes. As a result of this heat treatment, the long fibers having a high heat shrinkage shrink more than the long fibers having a low heat shrinkage, and as a result, the fusion zones are connected at the shortest by the long fibers having a high heat shrinkage. Long fibers having a low shrinkage rate form loops between the fused areas, which imparts bulk to the nonwoven fabric.
【0013】本発明で前記嵩高性を付与するために用い
られる連続長繊維の繊度は、1〜5デニールである。繊
度が5デニールを超えるものは不織布の柔軟性が低下
し、衛生材料の表面材等の用途に使用し難くなり、繊度
が1デニール未満のものは製造条件が厳しくなり、とも
に不適である。又、前記長繊維の熱収縮率は、樹脂の種
類、重合度、紡糸速度(延伸の程度)等により様々変化
するが、本発明のために用いられる熱収縮率の小さいポ
リオレフィン系連続長繊維Aを形成する樹脂としては、
熱収縮率が5〜10%のポリプロピレン及びエチレンー
プロピレンランダム共重合体、ポリエチレンとポリプロ
ピレンのブレンド構造体等の如く、ポリプロピレンを主
体にして熱収縮率を少し高くしたものを挙げることがで
き、一方熱収縮率の大きいポリオレフィン系またはポリ
エステル系連続長繊維Bを形成する樹脂としては、例え
ば、熱収縮率が20〜40%のポリエチレン、40〜6
0%のポリエチレンテレフタレート、ポリエチレンとポ
リプロピレンのブレンド構造体等を挙げることができ、
本発明ではこれらのなかから適宜選択して選ばれた2種
の樹脂の熱収縮率の差が10〜50%、好ましくは15
〜40%のものが使用される。The fineness of the continuous long fibers used for imparting the bulkiness in the present invention is 1 to 5 denier. When the fineness is more than 5 denier, the flexibility of the nonwoven fabric is lowered, and it becomes difficult to use it for applications such as a surface material for sanitary materials. When the fineness is less than 1 denier, the manufacturing conditions are strict and both are not suitable. Further, the thermal shrinkage of the continuous fiber varies depending on the type of resin, the degree of polymerization, the spinning speed (stretching degree), etc., but the polyolefin continuous continuous fiber A having a small thermal shrinkage used in the present invention is used. As the resin forming
Examples thereof include polypropylene having a heat shrinkage of 5 to 10%, a random copolymer of ethylene-propylene, a blend structure of polyethylene and polypropylene, and the like, which is mainly composed of polypropylene and has a slightly higher heat shrinkage. As the resin forming the polyolefin-based or polyester-based continuous filament B having a large heat shrinkage, for example, polyethylene having a heat shrinkage of 20 to 40%, 40 to 6
0% polyethylene terephthalate, a blended structure of polyethylene and polypropylene, and the like,
In the present invention, the difference in heat shrinkage between two kinds of resins appropriately selected from these is 10 to 50%, preferably 15
~ 40% is used.
【0014】前記熱収縮率の差が10%未満であると熱
収縮率の小さい長繊維によるループの形成が小さいため
嵩高効果が弱くなる。これに対し、熱収縮率の差が50
%を超えて大きくすると前記ループの形成が大きくな
り、手触り感が劣る上、そのような樹脂の組合せに用い
る樹脂の汎用性が劣るので適さない。When the difference in the heat shrinkage ratio is less than 10%, the bulkiness effect is weakened because the loop formation by the long fibers having the small heat shrinkage ratio is small. In contrast, the difference in heat shrinkage is 50
If it is larger than 0.1%, the formation of the loop becomes large, the touch feeling is inferior, and the versatility of the resin used for such resin combination is deteriorated, which is not suitable.
【0015】熱収縮率の小さいポリオレフィン系連続長
繊維Aと熱収縮率の大きいポリオレフィン系又はポリエ
ステル系連続長繊維Bとの重量比は、A:Bが35:6
5〜65:35である。熱収縮率の小さいポリオレフィ
ン系連続長繊維Aの比が35未満では、強度は優れる
が、不織布に嵩高性を付与できず、又この比が65を超
えると、嵩高性は優れるが、強度が低下するので適さな
い。The weight ratio of the polyolefin continuous filament A having a small heat shrinkage to the polyolefin or polyester continuous filament B having a large heat shrinkage is 35: 6 for A: B.
5 to 65:35. When the ratio of the polyolefin continuous filaments A having a small heat shrinkage ratio is less than 35, the strength is excellent, but the bulkiness cannot be imparted to the nonwoven fabric, and when the ratio exceeds 65, the bulkiness is excellent but the strength is reduced. Not suitable as it does.
【0016】以上説明したように、本発明に係る不織布
は、熱収縮率の異なった連続長繊維を混繊し堆積した後
で、熱圧着し融着区域をウェブに設けて不織布を形成し
た後、更に加熱処理することにより得られる。ウェブ形
成は公知のスパンボンド法によるもので、各連続長繊維
はポリオレフィン系又はポリエステル系の単成分樹脂か
らなる非捲縮性繊維であることから、開繊性は良く、地
合は均質となる。又、ウェブ形成後に熱圧着されて形成
される各融着区域は間隔をおいて配置されていて、その
後の加熱処理によって融着区域と融着区域の間は、熱収
縮率の大きい長繊維により最短で連結され、一方熱収縮
率の小さい長繊維はこの融着区域間でループを形成し、
これにより不織布に嵩高性が付与される。従って、本発
明の不織布の製造方法によって、身体の肌に直接接触す
る衛生材料の表面材の素材として特に好適に使用しうる
不織布が得られるのである。As described above, the nonwoven fabric according to the present invention is formed by mixing and depositing continuous filaments having different heat shrinkage ratios, and then thermocompression-bonding the melted area on the web to form the nonwoven fabric. It can be obtained by further heat treatment. The web is formed by the well-known spunbond method. Since each continuous long fiber is a non-crimpable fiber made of a polyolefin-based or polyester-based single-component resin, the openability is good and the formation is uniform. . Further, each fusion-bonded area formed by thermocompression bonding after forming the web is arranged with an interval, and a long fiber having a large heat shrinkage is provided between the fusion-bonded areas due to the subsequent heat treatment. The longest fibers that are connected at the shortest, while having a low heat shrinkage, form loops between these fused areas,
This gives the nonwoven fabric bulkiness. Therefore, the method for producing a non-woven fabric of the present invention provides a non-woven fabric which can be particularly preferably used as a material for a surface material of a sanitary material that comes into direct contact with the skin of the body.
【0017】[0017]
【実施例】以下に実施例を挙げて本発明をより具体的に
説明するが、本発明は勿論これらに限定されるものでは
ない。The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
【0018】実施例1 メルトフローレート40のポリプロピレン樹脂とメルト
フローレート20のポリエチレン樹脂を温度230℃に
加熱して溶融し、同一の口金の中で別々の吐出孔から吐
出し、従来公知の溶融紡糸法で連続長繊維を得た。この
後直ちに、この長繊維を延伸して、繊度2デニールの長
繊維にし、捕集コンベア上に集積して目付23g/m2
のウェブを得た。ポリプロピレン長繊維とポリエチレン
長繊維の重量比は63:37であった。このウェブを、
多数の点状の凸部をもつ加熱エンボスロールと平滑ロー
ルとの間に導入して、散点状の融着区域を設けた不織布
を得た。次にこの不織布を熱風循環型乾燥機に導入し
て、熱風温度120℃で1分間弛緩状態で加熱処理を行
った。前記の如くして不織布を製造する際の条件と同じ
にして口金の吐出孔から吐出され、延伸された同じデニ
ールのそれぞれの長繊維を採取し、その熱収縮率を測定
したところポリプロピレン長繊維が7%、ポリエチレン
長繊維が22%で、熱収縮率の差は15%であった。融
着区域の面積は、不織布面積に対して5%であった。得
られた不織布の密度と引張り強度を測定した。Example 1 A polypropylene resin having a melt flow rate of 40 and a polyethylene resin having a melt flow rate of 20 were heated to a temperature of 230 ° C. to be melted, and then discharged from different discharge holes in the same die, and melted by a known method. Continuous long fibers were obtained by the spinning method. Immediately after this, this long fiber was drawn into a long fiber having a fineness of 2 denier, which was collected on a collecting conveyor and the basis weight was 23 g / m 2.
Got the web. The weight ratio of polypropylene long fibers to polyethylene long fibers was 63:37. This web,
It was introduced between a heated embossing roll having a large number of dot-shaped protrusions and a smooth roll to obtain a non-woven fabric having spot-shaped fused regions. Next, this non-woven fabric was introduced into a hot air circulation type dryer and subjected to heat treatment in a relaxed state at a hot air temperature of 120 ° C. for 1 minute. Polypropylene filaments were obtained by collecting each filament of the same denier that was discharged from the outlet of the die and stretched under the same conditions as in the case of manufacturing a nonwoven fabric as described above and measuring the heat shrinkage ratio. 7%, polyethylene long fiber 22%, the difference in heat shrinkage was 15%. The area of the fused area was 5% with respect to the area of the nonwoven fabric. The density and tensile strength of the obtained nonwoven fabric were measured.
【0019】本発明で用いられる試験法は次の通りであ
る。(1)熱収縮率 長さ50cmの試料を採取し、1デニール当り100m
gの荷重をかけた時の試料長さL0を求め、次に荷重を
取り除き試料を沸騰水中に入れ、3分間処理した後、再
び試料に1デニール当り100mgの荷重をかけた時の
試料長さL1を求め、熱収縮率(沸水収縮率)を式
(1)により算出した。 熱収縮率(%)={(L0−L1)/L0}×100・・・(1)The test method used in the present invention is as follows. (1) Thermal contraction rate A sample with a length of 50 cm was sampled and 100 m per 1 denier.
Obtain the sample length L0 when a load of g is applied, then remove the load, put the sample in boiling water, treat it for 3 minutes, and then apply a load of 100 mg per denier to the sample again. L1 was obtained, and the heat shrinkage rate (boiling water shrinkage rate) was calculated by the equation (1). Thermal shrinkage (%) = {(L0-L1) / L0} × 100 ... (1)
【0020】(2)厚み カトーテック株式会社製の圧縮試験機(型式:KES−
FB3)を用いて、不織布の測定面積2cm2に0.5
g/cm2の荷重を与え、その時の厚みD(mm)を測
定した。(3)見掛け密度 前記の厚みDmmを求め、この厚みを有する不織布の目
付をMg/m2とした時、見掛け密度を式(2)により
算出した。 見掛け密度(g/cm3)=M/(D×1000)・・・(2) (2) Thickness Compression tester manufactured by Kato Tech Co., Ltd. (model: KES-
Using FB3), measure 0.5 cm for a measuring area of 2 cm 2 of the non-woven fabric.
A load of g / cm 2 was applied and the thickness D (mm) at that time was measured. (3) Apparent Density The above-mentioned thickness Dmm was determined, and when the basis weight of the nonwoven fabric having this thickness was Mg / m 2 , the apparent density was calculated by the formula (2). Apparent density (g / cm 3 ) = M / (D × 1000) (2)
【0021】(4)引張り強度 東測精密工業株式会社製テンシロン万能引張試験機(型
式:PTM−100)を用いて、引張速度300mm/
分、試料長80mm、試料幅100mmで引張り試験を
行い、測定された破断点強度を3倍し、300mm幅当
りの引張り強度で示した。 (4) Tensile strength Using a Tensilon universal tensile tester (model: PTM-100) manufactured by Tohoku Seimitsu Co., Ltd., a tensile speed of 300 mm /
A tensile test was conducted with a sample length of 80 mm and a sample width of 100 mm, and the measured breaking strength was multiplied by 3, and the tensile strength per 300 mm width was shown.
【0022】実施例2 メルトフローレート30のエチレンープロピレンランダ
ム共重合体(熱収縮率は18%)とメルトフローレート
18のポリエチレン樹脂(熱収縮率は30%)を用い、
不織布の融着区域の面積を8%とした以外は、実施例1
と同様にして嵩高性の不織布を製造し、密度と引張り強
度を測定した。2種の連続長繊維の熱収縮率の差は12
%であった。Example 2 An ethylene-propylene random copolymer having a melt flow rate of 30 (heat shrinkage of 18%) and a polyethylene resin having a melt flow rate of 18 (heat shrinkage of 30%) were used.
Example 1 except that the area of the fused area of the nonwoven fabric was 8%
A bulky non-woven fabric was produced in the same manner as above, and the density and tensile strength were measured. The difference in heat shrinkage between the two continuous filaments is 12
%Met.
【0023】実施例3 固有粘度η=0.65のポリエチレンテレフタレート樹
脂(熱収縮率は47%)とメルトフローレート40のポ
リプロピレン樹脂(熱収縮率は7%)とした以外は実施
例1と同様にして嵩高性の不織布を製造し、密度と引張
り強度を測定した。2種の連続長繊維の熱収縮率の差は
40%であった。Example 3 Similar to Example 1 except that a polyethylene terephthalate resin having an intrinsic viscosity η = 0.65 (heat shrinkage of 47%) and a polypropylene resin having a melt flow rate of 40 (heat shrinkage of 7%) were used. A bulky non-woven fabric was produced and the density and tensile strength were measured. The difference in heat shrinkage between the two continuous filaments was 40%.
【0024】実施例4 ポリプロピレン連続ん長繊維とポリエチレン連続長繊維
の重量比を40:60とした以外は実施例1と同様にし
て嵩高性の不織布を製造し、密度と引張り強度を測定し
た。Example 4 A bulky nonwoven fabric was produced in the same manner as in Example 1 except that the weight ratio of continuous polypropylene continuous fibers to continuous polyethylene continuous fibers was 40:60, and the density and tensile strength were measured.
【0025】比較例1 メルトフローレート25のエチレンープロピレンランダ
ム共重合体(熱収縮率は22%)とメルトフローレート
18のポリエチレン樹脂(熱収縮率は30%)を用いた
以外は実施例1と同様にして不織布を製造し、密度と引
張り強度を測定した。2種の連続長繊維の熱収縮率の差
は8%であった。Comparative Example 1 Example 1 except that an ethylene-propylene random copolymer having a melt flow rate of 25 (heat shrinkage of 22%) and a polyethylene resin having a melt flow rate of 18 (heat shrinkage of 30%) were used. A non-woven fabric was produced in the same manner as above, and the density and tensile strength were measured. The difference in heat shrinkage between the two continuous filaments was 8%.
【0026】比較例2 ポリプロピレン連続長繊維とポリエチレン連続長繊維の
重量比を30:70とした以外は実施例1と同様にして
不織布を製造し、密度と引張り強度を測定した。Comparative Example 2 A nonwoven fabric was produced in the same manner as in Example 1 except that the weight ratio of polypropylene continuous filaments to polyethylene continuous filaments was 30:70, and the density and tensile strength were measured.
【0027】比較例3 ポリプロピレン連続長繊維とポリエチレン連続長繊維の
重量比を70:30とした以外は実施例1と同様にして
不織布を製造し、密度と引張り強度を測定した。Comparative Example 3 A nonwoven fabric was produced in the same manner as in Example 1 except that the weight ratio of polypropylene continuous filaments to polyethylene continuous filaments was 70:30, and the density and tensile strength were measured.
【0028】実施例及び比較例で得られた測定結果を表
1に示した。The measurement results obtained in Examples and Comparative Examples are shown in Table 1.
【0029】[0029]
【表1】 [Table 1]
【0030】表1から明らかなとおり、本発明に係る不
織布は、強度が強く、開繊性に優れるので地合が良好
で、同一目付で比較すると、厚みが極めて大きく、見掛
け密度が小さく、嵩高性に優れている(実施例1〜
4)。これに対して、2種の連続長繊維の熱収縮率の差
が10%未満ではループの形成が小さいため見掛け密度
が大きくなり嵩高性が劣る(比較例1)。熱収縮率の大
きい長繊維の比率が大きくなると、強度は優れるが、嵩
高性においては劣り(比較例2)、逆に熱収縮率が大き
い長繊維の比率が小さくなると、嵩高性は優れるが、強
度に劣る(比較例3)ので共に適さない。As is clear from Table 1, the non-woven fabric according to the present invention has a high strength and an excellent openability, and thus has a good texture, and when compared with the same basis weight, the thickness is extremely large, the apparent density is small, and the bulkiness is high. Excellent (Examples 1 to 1
4). On the other hand, when the difference in thermal shrinkage between the two types of continuous filaments is less than 10%, the formation of loops is small and the apparent density is large and the bulkiness is poor (Comparative Example 1). When the ratio of the long fibers having a large heat shrinkage is large, the strength is excellent, but the bulkiness is poor (Comparative Example 2). Conversely, when the ratio of the long fibers having a large heat shrinkage is small, the bulkiness is excellent, They are not suitable because they are inferior in strength (Comparative Example 3).
【0031】[0031]
【発明の効果】本発明は、以上説明したような構成とし
たため、強度に優れ、開繊性が優れているので目付けが
低い薄物でも均質な地合が得られ、しかも嵩高で柔軟な
スパンボンド不織布の製造方法を提供するという効果を
奏する。EFFECTS OF THE INVENTION Since the present invention has the constitution as described above, it has excellent strength and excellent openability, so that even a thin article having a low basis weight can obtain a homogeneous texture, and is bulky and flexible spunbond. The effect of providing a manufacturing method of a nonwoven fabric is produced.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D04H 3/14 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location D04H 3/14 A
Claims (1)
長繊維Aと熱収縮率の大きいポリオレフィン系またはポ
リエステル系連続長繊維Bが均一に混繊されてなるスパ
ンボンド不織布の製造方法において、該連続長繊維Aと
Bの熱収縮率の差が10〜50%であり、且つ重量比で
A:Bが35:65〜65:35からなる不織布を加熱
処理することを特徴とするスパンボンド不織布の製造方
法。1. A method for producing a spunbonded non-woven fabric, comprising a continuous polyolefin fiber A having a low heat shrinkage and a continuous polyolefin fiber or a polyester continuous fiber B having a high heat shrinkage, which are uniformly mixed. Manufacture of a spunbonded nonwoven fabric, characterized in that the difference in the heat shrinkage ratio between the fibers A and B is 10 to 50% and the weight ratio of A: B is 35:65 to 65:35. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6020805A JPH07229052A (en) | 1994-02-18 | 1994-02-18 | Nonwoven manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6020805A JPH07229052A (en) | 1994-02-18 | 1994-02-18 | Nonwoven manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07229052A true JPH07229052A (en) | 1995-08-29 |
Family
ID=12037263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6020805A Pending JPH07229052A (en) | 1994-02-18 | 1994-02-18 | Nonwoven manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07229052A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009510278A (en) * | 2005-10-03 | 2009-03-12 | ファイバービジョンズ・デラウェア・コーポレーション | Nonwoven fabric, articles made of nonwoven fabric, and method for producing nonwoven fabric |
JP2012144840A (en) * | 2012-05-07 | 2012-08-02 | Mitsui Chemicals Inc | Nonwoven fabric comprising mixed fiber and method for manufacturing the same |
-
1994
- 1994-02-18 JP JP6020805A patent/JPH07229052A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009510278A (en) * | 2005-10-03 | 2009-03-12 | ファイバービジョンズ・デラウェア・コーポレーション | Nonwoven fabric, articles made of nonwoven fabric, and method for producing nonwoven fabric |
EP1931512A4 (en) * | 2005-10-03 | 2014-01-08 | Fibervisions Delaware Corp | Nonwoven fabric, articles including nonwoven fabrics, and methods of making nonwoven fabrics |
JP2012144840A (en) * | 2012-05-07 | 2012-08-02 | Mitsui Chemicals Inc | Nonwoven fabric comprising mixed fiber and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3658884B2 (en) | Method for producing composite long-fiber nonwoven fabric | |
KR100404288B1 (en) | Low Density Microfiber Nonwoven Fabric | |
EP0693585A2 (en) | Knit like nonwoven fabric composite | |
JP2759331B2 (en) | Latent crimping conjugate fiber and method for producing the same | |
JPH0860441A (en) | Thermally fusible conjugate fiber and thermally fusible nonwoven fabric | |
JP3850901B2 (en) | Composite fiber and nonwoven web | |
JPH02169718A (en) | Polyolefin heat-fusible fibers and nonwoven fabrics thereof | |
JP2001140158A (en) | Stretchable composite nonwoven fabric and absorbent article using the same | |
JPH08176947A (en) | Spunbond nonwoven | |
JP4433567B2 (en) | Latent crimpable conjugate fiber and nonwoven fabric using the same | |
JP2002061060A (en) | Non-woven fabric and processed non-woven fabric | |
JPH08260323A (en) | Biodegradable filament nonwoven fabric and its production | |
JP3102451B2 (en) | Three-layer nonwoven fabric and method for producing the same | |
JPH07229052A (en) | Nonwoven manufacturing method | |
JPH0465562A (en) | Polyolefinic stretchable nonwoven fabric and production thereof | |
JP3055288B2 (en) | Stretchable long-fiber nonwoven fabric and method for producing the same | |
JPH07197367A (en) | Long fiber laminated spunbond nonwoven | |
JP3247177B2 (en) | Biodegradable latently crimpable composite short fiber and nonwoven fabric thereof | |
JPH05263344A (en) | Stretchable nonwoven fabric of filament and its production | |
JP2703294B2 (en) | Polyester conjugate fiber, nonwoven fabric containing the fiber, and method for producing the nonwoven fabric | |
JP3102450B2 (en) | Three-layer nonwoven fabric and method for producing the same | |
JPH07300753A (en) | Method for manufacturing spunbond nonwoven fabric | |
JPH09291457A (en) | Laminated nonwoven fabric of composite long fibers | |
JPH04327256A (en) | Stretchable nonwoven fabric | |
JP3045343B2 (en) | Laminated long-fiber nonwoven fabric and method for producing the same |