JPH0687814A - Method for producing α- (3-isocyanatophenyl) ethyl isocyanate - Google Patents
Method for producing α- (3-isocyanatophenyl) ethyl isocyanateInfo
- Publication number
- JPH0687814A JPH0687814A JP24059292A JP24059292A JPH0687814A JP H0687814 A JPH0687814 A JP H0687814A JP 24059292 A JP24059292 A JP 24059292A JP 24059292 A JP24059292 A JP 24059292A JP H0687814 A JPH0687814 A JP H0687814A
- Authority
- JP
- Japan
- Prior art keywords
- isocyanatophenyl
- phosgene
- ethyl isocyanate
- hydrochloride
- acetate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、α−(3−イソシアナ
トフェニル)エチルイソシアナートの製造方法に関す
る。本発明の方法で製造されるジイソシアナートは、ポ
リウレタン樹脂やポリウレア樹脂の原料として、気泡
体、弾性体、合成皮革、塗料、接着剤、フィルム等、多
方面に使用することができる。FIELD OF THE INVENTION The present invention relates to a method for producing α- (3-isocyanatophenyl) ethyl isocyanate. The diisocyanate produced by the method of the present invention can be used as a raw material for polyurethane resins and polyurea resins in various fields such as foams, elastic bodies, synthetic leather, paints, adhesives and films.
【0002】[0002]
【従来の技術】従来、芳香族ジイソシアナートとして
は、トリレンジイソシアナート、ジフェニルメタンジイ
ソシアナートが、工業的に大量生産され、ポリウレタン
樹脂、ポリウレア樹脂の原料として多方面に利用されて
いる他、ナフタレンジイソシアナート、トリジンジイソ
シアナート等も工業的に使用されている。また、脂肪族
ジイソシアナートとしては、ヘキサメチレンジイソシア
ナート、キシリレンジイソシアナートがそれぞれ無黄変
型、難黄変型として工業的に使用されている。更に、脂
環族ジイソシアナートには、イソホロンジイソシアナー
ト、ジ(イソシアナトシクロヘキシル)メタンがあり、
いずれも無黄変型ジイソシアナートとして工業的に使用
されている。しかし、これらはいずれも、同じ反応性を
有する二つのイソシアナート基を有する化合物である。2. Description of the Related Art Conventionally, as aromatic diisocyanates, tolylene diisocyanate and diphenylmethane diisocyanate have been industrially mass-produced and used in various fields as raw materials for polyurethane resins and polyurea resins. Naphthalene diisocyanate and tolidine diisocyanate are also used industrially. As the aliphatic diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate are industrially used as a non-yellowing type and a yellowing-resistant type, respectively. Further, alicyclic diisocyanates include isophorone diisocyanate and di (isocyanatocyclohexyl) methane,
Both are industrially used as non-yellowing diisocyanates. However, these are all compounds having two isocyanate groups having the same reactivity.
【0003】本発明者らは、上記の先行技術のいずれに
も属さない、構造の全く異なる新規なジイソシアナート
化合物として、α−(3−イソシアナトフェニル)エチ
ルイソシアナートを先に提案した(特開平2−2708
54)。このα−(3−イソシアナトフェニル)エチル
イソシアナートは、芳香環に直結したイソシアナート基
と、脂肪族炭素に直結したイソシアナート基を併せ持つ
ジイソシアナート化合物である。芳香環に直結したイソ
シアナート基の活性水素化合物との反応性は、脂肪族炭
素に結合したイソシアナート基の活性水素との反応性に
比較して、はるかに大きいため、この二種のイソシアナ
ート基の反応性の差を利用した多くの用途が期待され
る。例えば、芳香環に直結したイソシアナート基を、活
性水素化合物と反応させ、末端に脂肪族炭素に結合した
イソシアナート基を有するプレポリマーあるいは付加体
をつくることが出来る。得られたプレポリマーあるいは
付加体は、安定で、かつ脂肪族イソシアナートの特徴で
ある難黄変性または無黄変性を有することが期待され
る。また、このα−(3−イソシアナトフェニル)エチ
ルイソシアナートは、芳香環のメタ位に置換基を有する
ため、これを原料とするウレタン樹脂は、その構造によ
る適度の機械的強度、耐熱性、耐UV性を有することが
期待される。The present inventors have previously proposed α- (3-isocyanatophenyl) ethyl isocyanate as a novel diisocyanate compound having a completely different structure, which does not belong to any of the above-mentioned prior arts ( JP-A-2-2708
54). This α- (3-isocyanatophenyl) ethyl isocyanate is a diisocyanate compound having both an isocyanate group directly connected to an aromatic ring and an isocyanate group directly connected to an aliphatic carbon. The reactivity of the isocyanate group directly bonded to the aromatic ring with the active hydrogen compound is much larger than the reactivity of the isocyanate group bonded to the aliphatic carbon with the active hydrogen compound. Many applications are expected to take advantage of the difference in reactivity of the groups. For example, an isocyanate group directly bonded to an aromatic ring can be reacted with an active hydrogen compound to form a prepolymer or an adduct having an isocyanate group bonded to an aliphatic carbon at a terminal. The resulting prepolymer or adduct is expected to be stable and to have yellowing or non-yellowing properties characteristic of aliphatic isocyanates. In addition, since this α- (3-isocyanatophenyl) ethyl isocyanate has a substituent at the meta position of the aromatic ring, the urethane resin using this as a raw material has appropriate mechanical strength, heat resistance, and It is expected to have UV resistance.
【0004】そこで、本発明者らは、α−(3−イソシ
アナトフェニル)エチルイソシアナートの製造方法とし
て、 α−(3−アミノフェニル)エチルアミンを直接ホス
ゲンと反応させる冷熱2段ホスゲン化法 ジアミンの塩酸塩等の塩を予め合成し、これを不活性
溶媒中に懸濁させてホスゲンと反応させるアミン塩酸塩
のホスゲン化法 の2つの製造方法を先に提案した(特開平2−2708
54)。しかしながら、の冷熱2段ホスゲン化法で
は、反応生成物中に式(III)(化3)で表されるα−
(3−イソシアナトフェニル)エチルクロリド等の塩化
物誘導体が副生する。Therefore, the inventors of the present invention, as a method for producing α- (3-isocyanatophenyl) ethyl isocyanate, a cold two-stage phosgenation method diamine in which α- (3-aminophenyl) ethylamine is directly reacted with phosgene. There have been previously proposed two production methods of a phosgenation method of an amine hydrochloride in which a salt such as the hydrochloride salt of the above is previously synthesized, and this is suspended in an inert solvent and reacted with phosgene (JP-A-2-2708).
54). However, in the cold heat two-stage phosgenation method of α-α represented by the formula (III) (Chemical Formula 3) in the reaction product,
A chloride derivative such as (3-isocyanatophenyl) ethyl chloride is by-produced.
【0005】[0005]
【化3】 [Chemical 3]
【0006】この様な塩化物誘導体を含有すると、これ
を原料とするウレタン樹脂の製造に際して、イソシアナ
ート基と活性水素化合物との反応を阻害し、ウレタン樹
脂の物性を低下させる原因となる。そのため、純度の高
い目的物を得るためには、理論段数の高い蒸留装置を用
いて副生物を除去する必要があり、その結果、目的物の
収率はその分、低下することになる。一方、のアミン
塩酸塩のホスゲン化法では、タール状の副生物が生成し
易く、そのため単離収率も61.6%と低く、満足しう
るものではなかった。したがって、,のいずれの方
法も工業的に実施するためには、経済的に不利であっ
た。そのため、塩化物誘導体、タール状物質等の副生物
を抑制し、工業的に効率の良い、α−(3−イソシアナ
トフェニル)エチルイソシアナートの製造方法が望まれ
ていた。When such a chloride derivative is contained, it inhibits the reaction between the isocyanate group and the active hydrogen compound in the production of a urethane resin using this as a raw material and causes the physical properties of the urethane resin to deteriorate. Therefore, in order to obtain a highly pure target product, it is necessary to remove the by-product using a distillation apparatus having a high theoretical plate number, and as a result, the yield of the target product is correspondingly reduced. On the other hand, in the phosgenation method of the amine hydrochloride, a tar-like by-product is likely to be generated, and therefore the isolation yield is as low as 61.6%, which is not satisfactory. Therefore, both of the methods are economically disadvantageous for industrial implementation. Therefore, a production method of α- (3-isocyanatophenyl) ethylisocyanate that suppresses byproducts such as chloride derivatives and tar-like substances and is industrially efficient has been desired.
【0007】[0007]
【発明が解決しようとする課題】本発明の課題は、塩化
物誘導体やタール状物質等の副生物の生成を抑制し、高
収率で、しかも高純度のα−(3−イソシアナトフェニ
ル)エチルイソシアナートを製造する方法を提供するこ
とである。SUMMARY OF THE INVENTION An object of the present invention is to suppress the formation of by-products such as chloride derivatives and tar-like substances, and to provide a high yield and high purity of α- (3-isocyanatophenyl). It is to provide a method for producing ethyl isocyanate.
【0008】[0008]
【課題を解決するための手段】本発明者らは、上記の目
的を達成すべく、鋭意検討した結果、本発明を完成する
に到った。即ち、本発明は、式(I)で表されるα−
(3−アミノフェニル)エチルアミンの塩を、酢酸エス
テル類中、反応温度92〜110℃で、ホスゲンと反応
させることを特徴とする式(II)(化4)で表されるα
−(3−イソシアナトフェニル)エチルイソシアナート
の製造方法に関するものである。The inventors of the present invention have completed the present invention as a result of extensive studies to achieve the above object. That is, the present invention relates to α-represented by the formula (I).
A salt of (3-aminophenyl) ethylamine is reacted with phosgene in acetic acid ester at a reaction temperature of 92 to 110 ° C.
The present invention relates to a method for producing-(3-isocyanatophenyl) ethyl isocyanate.
【0009】[0009]
【化4】 [Chemical 4]
【0010】本発明は、本発明者らが、アミン塩酸塩の
ホスゲン化法について、詳細に検討した結果、α−(3
−アミノフェニル)エチルアミンの塩酸塩とホスゲンと
の反応を、酢酸エステル類中で、92〜110℃の反応
温度で反応させることにより、タール状物質等の副生物
が極めて少なくなることを見出したことを基に成された
もので、高収率で、高純度のα−(3−イソシアナトフ
ェニル)エチルイソシアナートを製造する方法である。The present invention has conducted a detailed study on the phosgenation method of amine hydrochloride, and as a result, α- (3
It has been found that by-products such as tar-like substances are extremely reduced by reacting a hydrochloride of -aminophenyl) ethylamine with phosgene at a reaction temperature of 92 to 110 ° C in acetic acid esters. Is a method for producing high-purity α- (3-isocyanatophenyl) ethyl isocyanate in high yield.
【0011】本発明の方法で用いられる酢酸エステル類
としては、例えば、酢酸n−アミル、酢酸イソアミル、
酢酸イソブチル、酢酸イソプロピル、酢酸エチル、酢酸
2−エチルヘキシル、酢酸1−エチルペンチル、酢酸n
−オクチル、酢酸シクロヘキシル、酢酸1,3−ジメチ
ルブチル、酢酸セロソルブ、酢酸n−ブチル、酢酸イソ
ブチル、酢酸 sec−ブチル、酢酸tert−ブチル、酢酸2
−n−ブトキシエチル、酢酸n−プロピル、酢酸イソプ
ロピル、酢酸n−ヘキシル、酢酸メチル、酢酸3−メチ
ルブチル等が挙げられる。好ましくは、酢酸n−ブチ
ル、酢酸イソアミルが用いらる。これらの溶剤は、単独
で用いても、また、二種以上を混合して用いても良い。Examples of acetic acid esters used in the method of the present invention include n-amyl acetate, isoamyl acetate,
Isobutyl acetate, isopropyl acetate, ethyl acetate, 2-ethylhexyl acetate, 1-ethylpentyl acetate, n-acetate
-Octyl, cyclohexyl acetate, 1,3-dimethylbutyl acetate, cellosolve acetate, n-butyl acetate, isobutyl acetate, sec-butyl acetate, tert-butyl acetate, acetic acid 2
Examples include -n-butoxyethyl, n-propyl acetate, isopropyl acetate, n-hexyl acetate, methyl acetate and 3-methylbutyl acetate. Preferably, n-butyl acetate and isoamyl acetate are used. These solvents may be used alone or in combination of two or more.
【0012】本発明の方法における溶剤の使用量は、原
料のアミン1重量部に対して、8〜30重量部の範囲が
望ましい。8重量部以下では、撹伴が困難となる。ま
た、30重量部を越えても反応に影響はないものの、容
積効率の低下、熱効率の悪化等を招くため経済的に不利
である。The amount of the solvent used in the method of the present invention is preferably in the range of 8 to 30 parts by weight per 1 part by weight of the starting amine. If it is 8 parts by weight or less, stirring becomes difficult. Further, even if it exceeds 30 parts by weight, the reaction is not affected, but it is economically disadvantageous because it causes a decrease in volumetric efficiency, deterioration of thermal efficiency and the like.
【0013】本発明の方法では、反応は、92℃〜11
0℃の範囲内で行う。反応温度が、92℃より低いと反
応速度が極端に遅くなり、反応を完結させるには長時間
を要する。逆に、反応温度が110℃より高いとタール
状の副生物が多量に生成し、収率を大幅に低下させるこ
とになる。In the method of the present invention, the reaction is conducted at 92 ° C to 11 ° C.
Perform within the range of 0 ° C. When the reaction temperature is lower than 92 ° C, the reaction rate becomes extremely slow, and it takes a long time to complete the reaction. On the contrary, if the reaction temperature is higher than 110 ° C., a large amount of tar-like by-products are produced and the yield is greatly reduced.
【0014】本発明の方法の一般的な実施態様として
は、はじめにジアミンの塩酸塩を得、ついで、ホスゲン
との反応を行う。α−(3−アミノフェニル)エチルア
ミンの塩酸塩は、酢酸エステル類中で、α−(3−アミ
ノフェニル)エチルアミンを塩化水素と反応させること
により容易に得られる。この時の温度は、30℃以下が
望ましい。これを越えると反応生成物中に不純物の生成
を伴う傾向がある。次いで、反応器内で、十分に攪拌を
行い、ジアミンの塩酸塩をできるだけ分散させ、温度を
92〜110℃に維持しつつ、ホスゲンを導入し、反応
させる。反応の進行は、発生する塩化水素のガスの量
と、酢酸エステル類に不溶のジアミン塩酸塩の消失によ
って反応液が透明均一になることにより判断される。発
生する塩化水素と過剰のホスゲンガスは、還流冷却器を
通して放出する。反応終了後、反応溶液中に窒素ガスを
導入し、溶存しているホスゲンを除く。次いで、冷却、
濾過した後、酢酸エステル溶剤を減圧下に留去し、更に
減圧蒸留等により精製して目的とする式(II)で表され
るα−(3−イソシアナトフェニル)エチルイソシアナ
ートを得る。In a general embodiment of the process of the invention, the diamine hydrochloride is first obtained and then reacted with phosgene. The hydrochloride of α- (3-aminophenyl) ethylamine is easily obtained by reacting α- (3-aminophenyl) ethylamine with hydrogen chloride in acetic acid esters. The temperature at this time is preferably 30 ° C. or lower. Above this range, impurities tend to be generated in the reaction product. Next, in the reactor, sufficient stirring is performed to disperse the diamine hydrochloride as much as possible, and phosgene is introduced and reacted while maintaining the temperature at 92 to 110 ° C. The progress of the reaction is judged by the amount of the generated hydrogen chloride gas and the disappearance of the diamine hydrochloride insoluble in the acetic acid esters to make the reaction liquid transparent and uniform. The generated hydrogen chloride and excess phosgene gas are discharged through a reflux condenser. After completion of the reaction, nitrogen gas is introduced into the reaction solution to remove dissolved phosgene. Then cooling,
After filtration, the acetic acid ester solvent is distilled off under reduced pressure, and further purified by distillation under reduced pressure to obtain the desired α- (3-isocyanatophenyl) ethyl isocyanate represented by the formula (II).
【0015】[0015]
【実施例】以下、実施例により本発明を具体的に説明す
る。本発明は、これにより何ら制限されるものではな
い。 実施例1 撹伴機、温度計、ホスゲンガス導入管、冷却管、滴下ロ
ートを装備した3l反応フラスコに、酢酸n−ブチル9
50gを装入し、撹伴下、反応フラスコを氷水浴につ
け、内温を5〜10℃に保ちながら、塩化水素を30分
間吹き込み溶解させた。次いで、撹伴、冷却、塩化水素
の吹き込みを続けながら、α−(3−アミノフェニル)
エチルアミン100g(0.734モル)を950gの
酢酸n−ブチルに溶解した溶液を2時間で滴下した。滴
下中、液温は塩酸塩の生成により上昇するが、冷却によ
り15℃以下に維持した。滴下終了後、塩化水素の吹き
込みを更に30分続けた。次に、液温を95℃まで昇温
させ、ホスゲンガスを100g/hの割合で吹き込ん
だ。温度を95℃に保ちながら、7.5時間吹き込みを
続けると、ジアミン塩酸塩が消失し、反応液が透明均一
になった。ホスゲンガスの吹き込みをやめ、95℃で2
時間、窒素ガスを1l/分の割合で通気し、脱ガスを行
った。脱ガス後の反応液を冷却、濾過した後、減圧下
で、溶媒の酢酸n−ブチルの留去を行い、更に減圧蒸留
して、α−(3−イソシアナトフェニル)エチルイソシ
アナート126.8gを得た。収率92.0%、沸点1
10〜113℃/4torr。なお、この物質のガスク
ロマトグラフィーによる純度は99.7%であり、NC
O%44.65であった。EXAMPLES The present invention will be specifically described below with reference to examples. The present invention is not limited thereby. Example 1 A 3-liter reaction flask equipped with a stirrer, a thermometer, a phosgene gas introduction tube, a cooling tube, and a dropping funnel was charged with n-butyl acetate 9
After charging 50 g, the reaction flask was placed in an ice-water bath with stirring, and hydrogen chloride was blown into the solution for 30 minutes to dissolve it while keeping the internal temperature at 5 to 10 ° C. Then, while continuing stirring, cooling, and blowing of hydrogen chloride, α- (3-aminophenyl)
A solution prepared by dissolving 100 g (0.734 mol) of ethylamine in 950 g of n-butyl acetate was added dropwise over 2 hours. During the dropping, the liquid temperature rose due to the formation of hydrochloride, but was kept at 15 ° C. or lower by cooling. After the dropping was completed, the blowing of hydrogen chloride was continued for another 30 minutes. Next, the liquid temperature was raised to 95 ° C., and phosgene gas was blown in at a rate of 100 g / h. When blowing was continued for 7.5 hours while maintaining the temperature at 95 ° C, the diamine hydrochloride disappeared and the reaction solution became transparent and uniform. Stop blowing the phosgene gas and leave at 95 ° C for 2
Nitrogen gas was bubbled at a rate of 1 l / min for degassing for a period of time. After cooling and filtering the reaction solution after degassing, n-butyl acetate as a solvent was distilled off under reduced pressure, and further distilled under reduced pressure to obtain 126.8 g of α- (3-isocyanatophenyl) ethyl isocyanate. Got Yield 92.0%, boiling point 1
10-113 ° C / 4 torr. The purity of this substance measured by gas chromatography was 99.7%.
The O% was 44.65.
【0016】実施例2 撹伴機、温度計、ホスゲンガス導入管、冷却管、滴下ロ
ートを装備した2l反応フラスコに、酢酸イソアミル4
68gを装入し、撹伴下、反応フラスコを氷水浴につ
け、内温を5〜10℃に保ちながら、塩化水素を30分
間吹き込み溶解させた。次いで、撹伴、冷却、塩化水素
の吹き込みを続けながら、α−(3−アミノフェニル)
エチルアミン56.2g(0.413モル)を580g
の酢酸イソアミルに溶解した溶液を1.5時間で滴下し
た。滴下中、液温は塩酸塩の生成により上昇するが、冷
却により15℃以下に維持した。滴下終了後、塩化水素
の吹き込みを更に30分続けた。次に、液温を110℃
まで昇温させ、ホスゲンガスを100g/hの割合で吹
き込んだ。温度を110℃に保ちながら、4.5時間吹
き込みを続けると、ジアミン塩酸塩が消失し、反応液が
透明均一になった。ホスゲンガスの吹き込みをやめ、1
10℃で2時間、窒素ガスを1l/分の割合で通気し、
脱ガスを行った。脱ガス後の反応液を冷却、濾過した
後、減圧下で、溶媒の酢酸イソアミルの留去を行い、更
に減圧蒸留して、α−(3−イソシアナトフェニル)エ
チルイソシアナート71.2gを得た。収率91.6
%、沸点109〜112℃/4torr。なお、この物
質のガスクロマトグラフィーによる純度は99.8%で
あり、NCO%44.65であった。Example 2 Isoamyl acetate 4 was placed in a 2 liter reaction flask equipped with a stirrer, a thermometer, a phosgene gas introduction tube, a cooling tube, and a dropping funnel.
68 g was charged, the reaction flask was placed in an ice-water bath with stirring, and hydrogen chloride was blown thereinto for 30 minutes to dissolve it while keeping the internal temperature at 5 to 10 ° C. Then, while continuing stirring, cooling, and blowing of hydrogen chloride, α- (3-aminophenyl)
580 g of ethylamine 56.2 g (0.413 mol)
The solution dissolved in isoamyl acetate of was added dropwise over 1.5 hours. During the dropping, the liquid temperature rose due to the formation of hydrochloride, but was kept at 15 ° C. or lower by cooling. After the dropping was completed, the blowing of hydrogen chloride was continued for another 30 minutes. Next, set the liquid temperature to 110 ° C.
The temperature was raised to 100 g / h, and phosgene gas was blown in at a rate of 100 g / h. When blowing was continued for 4.5 hours while maintaining the temperature at 110 ° C., the diamine hydrochloride disappeared and the reaction solution became transparent and uniform. Stop blowing phosgene gas, 1
Bubbling nitrogen gas at a rate of 1 l / min for 2 hours at 10 ° C,
Degassing was performed. After cooling and filtering the reaction solution after degassing, the solvent isoamyl acetate was distilled off under reduced pressure, and further distilled under reduced pressure to obtain 71.2 g of α- (3-isocyanatophenyl) ethyl isocyanate. It was Yield 91.6
%, Boiling point 109 to 112 ° C./4 torr. The purity of this substance by gas chromatography was 99.8% and NCO% was 44.65.
【0017】比較例1 撹伴機、温度計、ホスゲンガス導入管、冷却管、滴下ロ
ートを装備した3l反応フラスコに、α−(3−アミノ
フェニル)エチルアミン54.3g(0.4モル)を、
1555gのオルトジクロルベンゼンに溶解した溶液を
入れ、撹伴しながら、145〜167℃まで昇温した
後、窒素ガスを300ml/分の割合で、1.5時間溶
液内にバブリングしながら通気し、系内の水分を除去し
た。次いで、溶液の温度を19℃まで冷却した後、撹伴
しながら、塩化水素を溶液中にバブリングし、塩酸塩を
生成させた。塩酸塩が生成するにつれ、液温は上昇する
が、冷却して35℃以下に維持した。1.5時間後塩化
水素の導入をやめた。生成した塩酸塩スラリーに、ホス
ゲンガスを、50g/hの割合で吹き込みながら昇温
し、2時間かけて120℃まで昇温した。更に120℃
で、2時間ホスゲン吹き込みを続けた。反応液がほぼ透
明となったので、ホスゲン吹き込みをやめた。次いで、
120℃で、2時間窒素ガスを300ml/分の割合で
通気し、脱ガスを行った。脱ガス後の反応液を冷却、濾
過した後、減圧下で溶媒のオルトジクロルベンゼンの留
去を行い、更に減圧蒸留して、α−(3−イソシアナト
フェニル)エチルイソシアナート46.4gを得た。収
率61.6%。Comparative Example 1 54.3 g (0.4 mol) of α- (3-aminophenyl) ethylamine was placed in a 3 liter reaction flask equipped with a stirrer, a thermometer, a phosgene gas introduction tube, a cooling tube and a dropping funnel.
A solution dissolved in 1555 g of ortho-dichlorobenzene was added, the temperature was raised to 145 to 167 ° C. with stirring, and then nitrogen gas was bubbled into the solution at a rate of 300 ml / min for 1.5 hours while bubbling. The water in the system was removed. Then, after cooling the temperature of the solution to 19 ° C., hydrogen chloride was bubbled into the solution with stirring to generate a hydrochloride. Although the liquid temperature increased as the hydrochloride salt was formed, it was cooled and maintained at 35 ° C or lower. After 1.5 hours, the introduction of hydrogen chloride was stopped. Phosgene gas was blown into the produced hydrochloride slurry at a rate of 50 g / h, and the temperature was raised to 120 ° C. over 2 hours. 120 ° C
Then, the phosgene blowing was continued for 2 hours. Since the reaction solution became almost transparent, phosgene blowing was stopped. Then
Degassing was performed by bubbling nitrogen gas at a rate of 300 ml / min for 2 hours at 120 ° C. After cooling and filtering the reaction solution after degassing, the solvent orthodichlorobenzene was distilled off under reduced pressure, and further distilled under reduced pressure to obtain 46.4 g of α- (3-isocyanatophenyl) ethyl isocyanate. Obtained. Yield 61.6%.
【0018】比較例2 撹伴機、温度計、ホスゲンガス導入管、冷却管、滴下ロ
ートを装備した3l反応フラスコに酢酸イソアミル73
0gを装入し、撹伴下、反応フラスコを氷水浴につけ、
内温を5〜10℃に保ちながら、塩化水素を30分間吹
き込み溶解させた。次いで、撹伴、冷却、塩化水素の吹
き込みを続けながら、α−(3−アミノフェニル)エチ
ルアミン100g(0.734モル)を700gの酢酸
イソアミルに溶解した溶液を、2時間で滴下した。滴下
中、液温は塩酸塩の生成により上昇するが、冷却により
15℃以下に維持した。滴下終了後、塩化水素の吹き込
みを更に30分続けた。次に、液温を130℃まで昇温
させ、ホスゲンガスを75g/hの割合で吹き込んだ。
温度を130℃に保ちながら5時間吹き込みを続ける
と、ジアミン塩酸塩が消失し、反応液が黒褐色透明にな
ったので、ホスゲンガスの吹き込みをやめ、130℃で
2時間窒素ガスを1l/分の割合で通気し、脱ガスを行
った。脱ガス後の反応液を冷却、濾過した後、減圧下で
溶媒の酢酸イソアミルの留去を行い、更に減圧蒸留し
て、α−(3−イソシアナトフェニル)エチルイソシア
ナート87.0gを得た。収率63.0%、沸点87〜
90℃/2torr。Comparative Example 2 Isoamyl acetate 73 was placed in a 3 liter reaction flask equipped with a stirrer, a thermometer, a phosgene gas introduction tube, a cooling tube and a dropping funnel.
0 g was charged, the reaction flask was placed in an ice-water bath with stirring,
While keeping the internal temperature at 5 to 10 ° C, hydrogen chloride was blown into the solution for 30 minutes to dissolve it. Then, while continuing stirring, cooling, and blowing of hydrogen chloride, a solution of 100 g (0.734 mol) of α- (3-aminophenyl) ethylamine dissolved in 700 g of isoamyl acetate was added dropwise over 2 hours. During the dropping, the liquid temperature rose due to the formation of hydrochloride, but was kept at 15 ° C. or lower by cooling. After the dropping was completed, the blowing of hydrogen chloride was continued for another 30 minutes. Next, the liquid temperature was raised to 130 ° C., and phosgene gas was blown at a rate of 75 g / h.
When blowing was continued for 5 hours while keeping the temperature at 130 ° C, the diamine hydrochloride disappeared and the reaction liquid became transparent blackish brown, so blowing of phosgene gas was stopped and nitrogen gas was added at a rate of 1 l / min for 2 hours at 130 ° C. It was vented with and degassed. After cooling and filtering the reaction solution after degassing, the solvent isoamyl acetate was distilled off under reduced pressure, and further distilled under reduced pressure to obtain 87.0 g of α- (3-isocyanatophenyl) ethyl isocyanate. . Yield 63.0%, boiling point 87-
90 ° C / 2 torr.
【0019】[0019]
【発明の効果】本発明は、α−(3−アミノフェニル)
エチルアミンの塩酸塩を、酢酸エステル類中で、反応温
度92〜110℃でホスゲンと反応させることによっ
て、タール状物質等の副生物を抑制し、高収率で、高純
度のα−(3−イソシアナトフェニル)エチルイソシア
ナートを得る、工業的に極めて有用な製造方法を提供す
るものである。The present invention provides α- (3-aminophenyl)
By reacting ethylamine hydrochloride with phosgene in acetic acid esters at a reaction temperature of 92 to 110 ° C., by-products such as tar-like substances are suppressed, and α- (3- The present invention provides an industrially extremely useful production method for obtaining isocyanatophenyl) ethyl isocyanate.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷山 龍二 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryuji Haseyama Mitsui Toatsu Chemical Co., Ltd. 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa
Claims (1)
アミノフェニル)エチルアミン 【化1】 の塩を、酢酸エステル類中、反応温度92〜110℃
で、ホスゲンと反応させることを特徴とする式(II)
(化2)で表される 【化2】 α−(3−イソシアナトフェニル)エチルイソシアナー
トの製造方法。1. α- (3-represented by formula (I)
Aminophenyl) ethylamine embedded image Of the salt of acetic acid in the reaction temperature 92-110 ℃
With the formula (II) characterized by reacting with phosgene
Represented by (Chemical Formula 2) A method for producing α- (3-isocyanatophenyl) ethyl isocyanate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24059292A JPH0687814A (en) | 1992-09-09 | 1992-09-09 | Method for producing α- (3-isocyanatophenyl) ethyl isocyanate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24059292A JPH0687814A (en) | 1992-09-09 | 1992-09-09 | Method for producing α- (3-isocyanatophenyl) ethyl isocyanate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0687814A true JPH0687814A (en) | 1994-03-29 |
Family
ID=17061800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24059292A Pending JPH0687814A (en) | 1992-09-09 | 1992-09-09 | Method for producing α- (3-isocyanatophenyl) ethyl isocyanate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0687814A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005225879A (en) * | 2004-02-04 | 2005-08-25 | Bayer Materialscience Ag | Process for the production of very pure 2,4'-methylenediphenyl diisocyanate |
-
1992
- 1992-09-09 JP JP24059292A patent/JPH0687814A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005225879A (en) * | 2004-02-04 | 2005-08-25 | Bayer Materialscience Ag | Process for the production of very pure 2,4'-methylenediphenyl diisocyanate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2790513B2 (en) | Method for producing xylylene diisocyanate | |
US5523467A (en) | Process for the preparation of aliphatic polyisocyanates | |
EP3564212B1 (en) | Method for producing aliphatic isocyanate | |
CN111132960A (en) | Process for preparing aliphatic isocyanates | |
JP3201921B2 (en) | Method for producing aliphatic polyisocyanate | |
US5233010A (en) | Process for preparing isocyanate and carbamate ester products | |
JP2986888B2 (en) | Method for producing aliphatic isocyanate | |
JP5322183B2 (en) | Method for producing isocyanate compound | |
US5136086A (en) | Preparation process of aliphatic isocyanate | |
US4597909A (en) | Process for the production of polyisocyanates | |
US3470227A (en) | Process for the production of xylylene diisocyanate | |
JPH0687814A (en) | Method for producing α- (3-isocyanatophenyl) ethyl isocyanate | |
JP2915784B2 (en) | Purification method of aliphatic isocyanate | |
JPH111462A (en) | Method for synthesizing aromatic urethane | |
US3267122A (en) | Bis-(gamma-isocyanato)-alkoxy alkanes and preparation thereof | |
US5552507A (en) | Diisocyanates and processes for their production and use | |
US4942164A (en) | Polyfluorinated diisocyanates and fluorinated polyurethanes prepared therefrom | |
US2911429A (en) | Process for the preparation of isocyanates | |
EP0023649B1 (en) | Process for preparing alicyclic isocyanates | |
EP1721893B1 (en) | Method for producing isocyanate compound | |
US4879409A (en) | Cycloaliphatic diisocyanates, optionally in the form of isomeric mixtures and a process for their preparation | |
JP3467293B2 (en) | Process for producing acyl isocyanates | |
US3488374A (en) | Preparation of polyisocyanate compositions | |
JPH0329064B2 (en) | ||
JP2784445B2 (en) | New diisocyanate and method for producing the same |