JPH0682399A - Electron beam analyzing method and apparatus - Google Patents
Electron beam analyzing method and apparatusInfo
- Publication number
- JPH0682399A JPH0682399A JP4233426A JP23342692A JPH0682399A JP H0682399 A JPH0682399 A JP H0682399A JP 4233426 A JP4233426 A JP 4233426A JP 23342692 A JP23342692 A JP 23342692A JP H0682399 A JPH0682399 A JP H0682399A
- Authority
- JP
- Japan
- Prior art keywords
- electron beam
- sample
- foreign matter
- analysis
- electron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、容易に、非破壊で試料
の断面構造の解析を行う電子線分析方法と分析装置に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam analysis method and an analysis apparatus for easily and nondestructively analyzing a cross-sectional structure of a sample.
【0002】[0002]
【従来の技術】近年、半導体装置の工程途中で発生する
異物の分析用途に、異物検査装置と電子線装置とを組み
合せて用いる電子線分析装置が利用されている。2. Description of the Related Art In recent years, an electron beam analyzer which uses a combination of a foreign substance inspection device and an electron beam device has been used for the purpose of analyzing foreign substances generated during the process of a semiconductor device.
【0003】しかし、電子線分析装置を用いて基板上の
異物を分析し、その異物の元素を同定する際、異物の分
析ピークと、異物の上に存在する膜のピーク、または異
物の下に存在する膜のピークとを区別することは困難で
ある。However, when a foreign substance on a substrate is analyzed using an electron beam analyzer and the element of the foreign substance is identified, the analysis peak of the foreign substance, the peak of the film existing on the foreign substance, or below the foreign substance is detected. It is difficult to distinguish from the existing film peaks.
【0004】断面構造を知るためには、試料をエッチン
グして上の膜を剥がして測定を行うことを繰り返さなけ
ればならなかった。In order to know the cross-sectional structure, it had to be repeated that the sample was etched, the upper film was peeled off, and the measurement was carried out.
【0005】[0005]
【発明が解決しようとする課題】従来技術では、試料の
断面構造を解析しようとすると試料のエッチングが必要
なため、膨大な時間と手間と熟練度を要していた。In the prior art, it is necessary to etch the sample in order to analyze the cross-sectional structure of the sample, which requires a huge amount of time, labor and skill.
【0006】本発明は上記従来の問題点を解決するもの
で、容易に、非破壊で試料の断面構造の解析が可能な電
子線分析方法と分析装置とを提供することを目的とす
る。The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide an electron beam analysis method and an analyzer capable of easily and non-destructively analyzing the cross-sectional structure of a sample.
【0007】[0007]
【課題を解決するための手段】上記問題点を解決するた
めに、本発明の電子線分析方法は、電子線部から第1の
電子線を基板上に堆積膜が形成された試料に照射し、前
記試料から検出される第1の分析ピークにより前記堆積
中に存在する異物の位置を求め、前記異物の位置に第2
の電子線を照射するにあたり、前記第2の電子線の飛程
が少なくとも前記堆積膜の膜厚より短くなる加速電圧で
照射し、連続して前記加速電圧を高くし、全部で少なく
とも3回所定の前記加速電圧時に、その分析ピークを求
め、前記分析ピークを組み合わせることで前記異物の同
定を行う。In order to solve the above problems, the electron beam analysis method of the present invention irradiates a sample having a deposited film formed on a substrate with a first electron beam from an electron beam portion. , The position of the foreign matter existing in the deposition is determined by the first analysis peak detected from the sample, and the second position is obtained at the position of the foreign matter.
In irradiating the electron beam, the second electron beam is irradiated with an accelerating voltage at which the range of the second electron beam is at least shorter than the film thickness of the deposited film, and the accelerating voltage is continuously increased to a predetermined value at least three times in total. The analysis peak is obtained at the accelerating voltage of, and the foreign matter is identified by combining the analysis peaks.
【0008】上記問題点を解決するために、本発明の電
子線分析装置は、電子銃と、前記電子銃から放出された
電子線を集束させるレンズと、前記電子線を走査させる
ための走査回路部と、前記電子線の非点補正を行う非点
補正部と、前記非点補正部の下部に設けられたグリッド
と、前記グリッドで前記電子線の照射速度を制御し、前
記電子線が試料に照射され、前記試料から放出される特
性X線によって前記試料の同定を行う。In order to solve the above problems, the electron beam analyzer of the present invention is an electron gun, a lens for focusing the electron beam emitted from the electron gun, and a scanning circuit for scanning the electron beam. Unit, an astigmatism correction unit that performs astigmatism correction of the electron beam, a grid provided below the astigmatism correction unit, and the irradiation speed of the electron beam is controlled by the grid, and the electron beam is a sample. The sample is identified by the characteristic X-rays emitted from the sample.
【0009】[0009]
【作用】この構成によって、加速電圧を自動的に変化さ
せ、各加速電圧で検出した分析ピークを重ね合わせるこ
とにより、非破壊で試料の断面構造を解析することが可
能である。With this configuration, it is possible to analyze the cross-sectional structure of the sample nondestructively by automatically changing the accelerating voltage and superposing the analysis peaks detected at each accelerating voltage.
【0010】[0010]
【実施例】以下、本発明の電子線分析方法の一実施例に
ついて、図面を参照しながら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the electron beam analysis method of the present invention will be described below with reference to the drawings.
【0011】図1は、本発明の一実施例における電子線
分析方法を説明する図である。図1において、1は電子
線部、2は電子線、3は電子線2を照射することによっ
て試料から発生する特性X線、4は特性X線の検出部、
5,6,7は電子線2が試料に侵入する領域である。こ
こで電子線の加速電圧の値が小さい順に領域5<領域6
<領域7となる。ここでは、加速電圧の値を領域5は3
kev,領域6は10kev,領域7は30kevとし
た。8は異物、9はレジスト膜、10はベアシリコンで
ある。FIG. 1 is a diagram for explaining an electron beam analysis method in one embodiment of the present invention. In FIG. 1, 1 is an electron beam portion, 2 is an electron beam, 3 is a characteristic X-ray generated from a sample by irradiating the electron beam 2, 4 is a characteristic X-ray detecting portion,
5, 6 and 7 are regions where the electron beam 2 penetrates into the sample. Here, region 5 <region 6 in ascending order of electron beam acceleration voltage.
<Becomes area 7. Here, the value of the acceleration voltage is set to 3 in the region 5.
The area 6 is 10 kev, and the area 7 is 30 kev. Reference numeral 8 is a foreign substance, 9 is a resist film, and 10 is bare silicon.
【0012】本実施例では、まず電子線部1から電子線
2をベアシリコン10上のレジスト膜9が形成された試
料に照射する。次に、試料上を走査し、各走査された領
域から検出される分析ピークにより、ベアシリコン10
とレジスト膜9とから検出されると思われる元素が現わ
れた地点に異物8が存在していることが分かる。このよ
うにして、レジスト膜9中に存在する異物8の位置を求
め、異物8の位置に電子線2を照射する。この時、この
電子線2の飛程が少なくともレジスト膜9の膜厚より短
くなる加速電圧で照射する。この時の分析ピークを検出
しておく、次に連続して加速電圧を高くし、少なくとも
3回所定の加速電圧時の分析ピークを求める。これらの
分析ピークを組み合わせることで異物8の同定を行う。In the present embodiment, first, the electron beam portion 1 irradiates the sample with the resist film 9 formed on the bare silicon 10 with the electron beam 2. The bare silicon 10 is then scanned over the sample and the analytical peaks detected from each scanned region cause
It can be seen that the foreign matter 8 is present at the point where the element that seems to be detected from the resist film 9 appears. In this way, the position of the foreign matter 8 existing in the resist film 9 is obtained, and the position of the foreign matter 8 is irradiated with the electron beam 2. At this time, irradiation is performed with an accelerating voltage such that the range of the electron beam 2 is at least shorter than the film thickness of the resist film 9. The analysis peak at this time is detected, and then the acceleration voltage is continuously increased to obtain the analysis peak at a predetermined acceleration voltage at least three times. The foreign matter 8 is identified by combining these analysis peaks.
【0013】このことについてより詳細に説明する。図
2は、図1の方法によって各加速電圧で検出された分析
ピーク図である。図2において、図2(a)は電子線が
侵入する領域5(加速電圧3kev)での分析ピーク、
図2(b)は電子線が侵入する領域6(加速電圧10k
ev)での分析ピーク、図2(c)は電子線が侵入する
領域7(加速電圧30kev)での分析ピークである。This will be described in more detail. FIG. 2 is an analysis peak diagram detected at each accelerating voltage by the method of FIG. In FIG. 2, FIG. 2A shows an analysis peak in a region 5 (accelerating voltage 3 kev) where the electron beam penetrates,
FIG. 2B shows a region 6 (accelerating voltage 10 k
ev), and FIG. 2 (c) shows the analysis peak in region 7 (accelerating voltage 30 kev) where the electron beam penetrates.
【0014】以上のように構成された本実施例の電子線
分析方法について、以下その動作を説明する。The operation of the electron beam analysis method of the present embodiment constructed as above will be described below.
【0015】電子線部1から電子線2が照射され、照射
された試料表面から特性X線3が放出される。ここで加
速電圧の値が大きいほど、電子線2が試料に深く侵入す
るため、より深い分析情報が得られる。加速電圧の値が
3kevの場合、電子線2は領域5にまで侵入し、図2
(a)のような分析ピークが得られる。ここでの構成元
素はC,O,Sである。加速電圧の値が10kevの場
合、電子線2は領域6にまで侵入し、図2(b)のよう
な分析ピークが得られ、構成元素は、C,O,Na,S
i,S,Clである。加速電圧の値が30kevの場
合、電子線2は領域7にまで侵入する。ここで領域7に
まで電子線2が侵入すると、試料表面の情報よりも深さ
方向の情報の占める割合が大きくなる。そのため図2
(c)のような分析ピークが得られる。ここでの構成元
素は、ほとんどSiだけの分析ピークとなる。加速電圧
を変化させて、図2(a)〜(c)のピークが得られた
後、これらのピークを組み合わせて処理する。するとベ
アシリコン上にレジストが塗布された試料において、レ
ジスト膜の膜中に異物が存在し、異物の構成元素がN
a,Clであるという断面構造が判る。An electron beam 2 is emitted from the electron beam portion 1, and a characteristic X-ray 3 is emitted from the surface of the sample that has been irradiated. Here, as the value of the accelerating voltage is larger, the electron beam 2 penetrates deeper into the sample, so that deeper analysis information can be obtained. When the accelerating voltage value is 3 kev, the electron beam 2 penetrates into the region 5,
An analytical peak as in (a) is obtained. The constituent elements here are C, O, and S. When the value of the acceleration voltage is 10 kev, the electron beam 2 penetrates into the region 6 and an analysis peak as shown in FIG. 2B is obtained, and the constituent elements are C, O, Na and S.
i, S and Cl. When the value of the acceleration voltage is 30 kev, the electron beam 2 penetrates into the area 7. When the electron beam 2 penetrates into the region 7, the ratio of information in the depth direction becomes larger than that of the information on the sample surface. Therefore,
An analytical peak as in (c) is obtained. The constituent elements here are almost exclusively analysis peaks of Si. After the acceleration voltage is changed to obtain the peaks of FIGS. 2A to 2C, these peaks are combined and processed. Then, in the sample in which the resist is coated on the bare silicon, foreign matter is present in the resist film, and the constituent element of the foreign matter is N
The cross-sectional structure of a and Cl is known.
【0016】次に本発明の電子線分析装置の一実施例に
ついて、図面を参照しながら説明する。Next, an embodiment of the electron beam analyzer of the present invention will be described with reference to the drawings.
【0017】図3は、本発明の一実施例における電子線
分析装置である。図3において14は電子銃、15は電
子線を加速させるアノード、2は電子線、16は集束レ
ンズ、17は走査回路部、18は対物レンズ、19は非
点補正部、20は電子線の加速を自動的に変化させるた
めの逆バイアスを掛けるグリッド、4はX線検出部、2
1は2次電子検出部、22は試料、23は真空排気部、
24はX線分析システム、25は増幅器、26はCRT
である。FIG. 3 shows an electron beam analyzer according to an embodiment of the present invention. In FIG. 3, 14 is an electron gun, 15 is an anode for accelerating an electron beam, 2 is an electron beam, 16 is a focusing lens, 17 is a scanning circuit unit, 18 is an objective lens, 19 is an astigmatism correction unit, and 20 is an electron beam. Reverse bias grid for automatically changing acceleration, 4 is an X-ray detector, 2
1 is a secondary electron detection unit, 22 is a sample, 23 is a vacuum exhaust unit,
24 is an X-ray analysis system, 25 is an amplifier, 26 is a CRT
Is.
【0018】本実施例では、電子銃14から放出された
電子線2を集束させるレンズ16、18によって所定の
電子線スポットを得る。この電子線2を試料22上を走
査させるために走査回路部17が設けられている。さら
に、電子線2の非点補正は非点補正部19によって行わ
れる。この非点補正部19の下部にグリッド20が設置
されている。このグリッド20は電子線2の照射速度を
制御する事ができる。このようにしてグリッド20によ
って電子線2の実質的に試料22に入射する速度を制御
する。このようにして試料22に照射された電子線2に
よって、試料22から特性X線と2次電子線が放出され
る。この特性X線をX線検出器4で検出し、X線分析シ
ステム部24によって試料22の同定を行う。また、試
料22から放出される2次電子線を2次電子検出部21
で検出し、増幅器24を介してその結果がCRT25上
に表示される。In this embodiment, a predetermined electron beam spot is obtained by the lenses 16 and 18 which focus the electron beam 2 emitted from the electron gun 14. A scanning circuit unit 17 is provided to scan the sample 22 with the electron beam 2. Further, the astigmatism correction of the electron beam 2 is performed by the astigmatism correction unit 19. A grid 20 is installed below the astigmatism correction unit 19. The grid 20 can control the irradiation speed of the electron beam 2. In this way, the grid 20 controls the speed at which the electron beam 2 substantially enters the sample 22. The characteristic X-rays and secondary electron beams are emitted from the sample 22 by the electron beam 2 with which the sample 22 is irradiated in this manner. This characteristic X-ray is detected by the X-ray detector 4, and the X-ray analysis system unit 24 identifies the sample 22. In addition, the secondary electron beam emitted from the sample 22 is detected by the secondary electron detector 21.
At the CRT 25 and the result is displayed on the CRT 25 via the amplifier 24.
【0019】以上のように構成された本実施例の電子線
分析方法について、以下その動作を説明する。The operation of the electron beam analysis method of the present embodiment constructed as above will be described below.
【0020】電子銃14から発生した電子線2が、アノ
ード15によって加速されて試料22に照射され、照射
された部分から特性X線3が放出される。この特性X線
3をX線検出部4で検出し、X線分析システム24で処
理し、構成元素を分析ピークとして表す。ここで非点補
正部19の下に設けた逆バイアス用グリッド20に掛け
るバイアスの値を変えることによって、加速電圧の変化
ごとに必要な電子線2の電気的調整を行う事なく、電子
線2が試料に照射される時の加速電圧の値を自動的に変
化させることができる。ある加速電圧で検出された分析
ピークをX線分析システム24において格納し、加速電
圧の値を変化させて再び分析を行う。この作業を自動的
に繰り返し行い、加速電圧の低い値から高い値までに検
出された分析ピークをX線分析システム24で組み合わ
せ処理することによって、電子線2が照射された試料2
2の断面構造の解析ができる。The electron beam 2 generated from the electron gun 14 is accelerated by the anode 15 and irradiated on the sample 22, and the characteristic X-ray 3 is emitted from the irradiated part. The characteristic X-ray 3 is detected by the X-ray detection unit 4, processed by the X-ray analysis system 24, and the constituent elements are represented as analysis peaks. Here, by changing the value of the bias applied to the reverse bias grid 20 provided below the astigmatism correction unit 19, the electron beam 2 is not required to be electrically adjusted for each change of the acceleration voltage. It is possible to automatically change the value of the acceleration voltage when the sample is irradiated with. The analysis peak detected at a certain acceleration voltage is stored in the X-ray analysis system 24, the value of the acceleration voltage is changed, and the analysis is performed again. This operation is automatically repeated, and the analysis peaks detected from a low value to a high value of the accelerating voltage are combined and processed by the X-ray analysis system 24, whereby the sample 2 irradiated with the electron beam 2 is processed.
It is possible to analyze the sectional structure of 2.
【0021】以上のように本実施例によれば、試料に照
射される電子線の加速電圧の自動的に変化させ、各加速
電圧の値で得られた分析ピークを組み合わせ処理するこ
とにより、試料を非破壊で、容易に断面構造を解析する
ことが可能である。As described above, according to this embodiment, the accelerating voltage of the electron beam with which the sample is irradiated is automatically changed, and the analysis peaks obtained at the respective accelerating voltage values are combined and processed. It is possible to analyze the cross-sectional structure easily and nondestructively.
【0022】[0022]
【発明の効果】本発明は、加速電圧を自動的に変化させ
られることが可能な電子線部を設け、加速電圧を増加さ
せて得られる異なる分析ピークの情報を組み合わせ処理
をすることが可能な電子線分析方法を実現し、また逆バ
イアスを掛けるためのグリッドと、加速電圧を変化させ
て得られた各分析ピークを格納して組み合わせ処理する
X線分析システムを設けた電子線分析装置を実現するこ
とにより、試料を非破壊で、容易に断面構造を解析する
ことが可能である。According to the present invention, it is possible to provide an electron beam section capable of automatically changing the accelerating voltage and combine information of different analysis peaks obtained by increasing the accelerating voltage. Realization of electron beam analysis method, and electron beam analysis device provided with a grid for applying a reverse bias and an X-ray analysis system for storing and processing each analysis peak obtained by changing the acceleration voltage. By doing so, it is possible to easily analyze the cross-sectional structure of the sample without breaking it.
【図1】本発明の一実施例における電子線分析方法の原
理図FIG. 1 is a principle diagram of an electron beam analysis method according to an embodiment of the present invention.
【図2】本発明の一実施例における電子線分析方法によ
って検出された分析ピークを示す図FIG. 2 is a diagram showing analysis peaks detected by an electron beam analysis method according to an embodiment of the present invention.
【図3】本発明の一実施例における電子線分析装置の構
成図FIG. 3 is a configuration diagram of an electron beam analyzer according to an embodiment of the present invention.
1 電子線部 2 電子線 3 特性X線 4 X線検出部 5,6,7 領域 8 異物 9 レジスト膜 10 ベアシリコン 1 Electron Beam Section 2 Electron Beam 3 Characteristic X-ray 4 X-ray Detection Section 5, 6, 7 Area 8 Foreign Material 9 Resist Film 10 Bare Silicon
Claims (2)
膜が形成された試料に照射し、前記試料から検出される
第1の分析ピークにより前記堆積膜中に存在する異物の
位置を求め、前記異物の位置に第2の電子線を照射する
にあたり、前記第2の電子線の飛程が少なくとも前記堆
積膜の膜厚より短くなる加速電圧で照射し、連続して前
記加速電圧を高くし、全部で少なくとも3回所定の前記
加速電圧時に、その分析ピークを求め、前記分析ピーク
を組み合わせることで前記異物の同定を行うことを特徴
とする電子線分析方法。1. A sample having a deposited film formed on a substrate is irradiated with a first electron beam from an electron beam portion, and a first analysis peak detected from the sample detects the presence of foreign matter present in the deposited film. In determining the position and irradiating the position of the foreign matter with the second electron beam, irradiation is performed with an accelerating voltage at which the range of the second electron beam is at least shorter than the thickness of the deposited film, and the acceleration is continuously performed. An electron beam analysis method, characterized in that the foreign matter is identified by increasing the voltage, obtaining the analysis peak at a predetermined acceleration voltage at least three times in total, and combining the analysis peaks.
線を集束させるレンズと、前記電子線を走査させるため
の走査回路部と、前記電子線の非点補正を行う非点補正
部と、前記非点補正部の下部に設けられたグリッドと、
前記グリッドで前記電子線の照射速度を制御し、前記電
子線が試料に照射され、前記試料から放出される特性X
線を検出するX線検出器と、前記試料から放出される2
次電子を検出する2次電子検出部とで構成されることを
特徴とする電子線分析装置。2. An electron gun, a lens for focusing an electron beam emitted from the electron gun, a scanning circuit unit for scanning the electron beam, and an astigmatism correction unit for correcting the astigmatism of the electron beam. And a grid provided below the astigmatism correction unit,
Characteristic X emitted from the sample by irradiating the sample with the electron beam by controlling the irradiation speed of the electron beam with the grid
X-ray detector for detecting X-rays and 2 emitted from the sample
An electron beam analyzer comprising: a secondary electron detector that detects a secondary electron.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4233426A JPH0682399A (en) | 1992-09-01 | 1992-09-01 | Electron beam analyzing method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4233426A JPH0682399A (en) | 1992-09-01 | 1992-09-01 | Electron beam analyzing method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0682399A true JPH0682399A (en) | 1994-03-22 |
Family
ID=16954870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4233426A Pending JPH0682399A (en) | 1992-09-01 | 1992-09-01 | Electron beam analyzing method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0682399A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009016360A (en) * | 2008-10-20 | 2009-01-22 | Hitachi Ltd | Inspection method and device using electron beam |
JP2010257994A (en) * | 2010-08-11 | 2010-11-11 | Hitachi Ltd | Inspection method and inspection device using electron beam |
JP2015090360A (en) * | 2013-11-07 | 2015-05-11 | 株式会社日立ハイテクノロジーズ | Electron beam application device and fault classification method using electron beam application device |
-
1992
- 1992-09-01 JP JP4233426A patent/JPH0682399A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009016360A (en) * | 2008-10-20 | 2009-01-22 | Hitachi Ltd | Inspection method and device using electron beam |
JP4548537B2 (en) * | 2008-10-20 | 2010-09-22 | 株式会社日立製作所 | Inspection method and inspection apparatus using electron beam |
JP2010257994A (en) * | 2010-08-11 | 2010-11-11 | Hitachi Ltd | Inspection method and inspection device using electron beam |
JP2015090360A (en) * | 2013-11-07 | 2015-05-11 | 株式会社日立ハイテクノロジーズ | Electron beam application device and fault classification method using electron beam application device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10125271A (en) | Scanning electron microscope | |
JP3401426B2 (en) | Sample processing method in FIB-SEM device and FIB-SEM device | |
JPH0682399A (en) | Electron beam analyzing method and apparatus | |
JPH08313244A (en) | Method of measuring thickness of thin film | |
JP3266814B2 (en) | Micro part analyzer | |
JP3155570B2 (en) | Focused ion beam mass analysis method and combined ion beam mass spectrometry device | |
JP2002139464A (en) | Inspection method and device of semiconductor device | |
US5457725A (en) | Analyzing method for foreign matter states | |
JP3467189B2 (en) | Elemental analysis method | |
JPH0119804Y2 (en) | ||
JP2000188310A (en) | Circuit pattern inspection device | |
JP2001343340A (en) | Photoelectron spectrophotometric device and measuring method | |
JPH05291195A (en) | Thin film processing apparatus and its method | |
JPH07134967A (en) | Composite charged particle beam device | |
JP2996210B2 (en) | Sample absorption current spectroscopy | |
JPS62113052A (en) | Element analysis | |
JPS61224319A (en) | Ion beam processing method and device thereof | |
JPH09257445A (en) | Measuring method and surface shape by using focused ion beam apparatus and focused ion beam apparatus | |
JPH1167138A (en) | Micro-area observation device | |
JP2735192B2 (en) | Energy beam processing method and apparatus | |
JPS61220330A (en) | Method and apparatus for ion beam processing of semiconductor device | |
JPH0620059B2 (en) | Ion beam processing method | |
JPH04259742A (en) | Secondary ion mass spectrometer device | |
JP2557847B2 (en) | Operation analysis method and operation analysis apparatus for semiconductor integrated circuit | |
JPS60200529A (en) | Process of ion-beam etching |