JPH0659141A - Large-input optical cable - Google Patents
Large-input optical cableInfo
- Publication number
- JPH0659141A JPH0659141A JP4210477A JP21047792A JPH0659141A JP H0659141 A JPH0659141 A JP H0659141A JP 4210477 A JP4210477 A JP 4210477A JP 21047792 A JP21047792 A JP 21047792A JP H0659141 A JPH0659141 A JP H0659141A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- optical fiber
- brillouin
- optical cable
- optical fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Light Guides In General And Applications Therefor (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は長距離通信に適した大入
力光ケーブルに係り、特にその接続構成の改良に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large input optical cable suitable for long-distance communication, and more particularly to improvement of its connection structure.
【0002】[0002]
【従来の技術】光ケーブルを用いた光通信方式におい
て、光源から発出された光信号を光ファイバを用いて遠
隔地に伝送し、受光器により検出している。2. Description of the Related Art In an optical communication system using an optical cable, an optical signal emitted from a light source is transmitted to a remote place using an optical fiber and detected by a light receiver.
【0003】光ファイバ中を伝ぱんする光信号のパワー
が大きく、伝送媒体である光ファイバが低損失であり、
かつ受光器の感度が高いほど長距離伝送が可能である。The power of the optical signal propagating in the optical fiber is large, the optical fiber as the transmission medium has a low loss,
Moreover, the higher the sensitivity of the light receiver, the longer the distance can be transmitted.
【0004】しかし、従来の光ケーブルでは光ファイバ
に入射させる光源パワーが、誘導ブリルアン散乱現象
(以下、SBS:stimulated Brillouin scattering と
呼ぶ)によってファイバ中で反射してしまうので、いか
に光源パワーを増加しても、光ファイバ中を伝送できる
光パワー(以下、透過パワーと呼ぶ。)に上限が生じて
しまう欠点があった。However, in the conventional optical cable, the light source power incident on the optical fiber is reflected in the fiber by the stimulated Brillouin scattering phenomenon (hereinafter referred to as SBS: stimulated Brillouin scattering). However, there is a drawback in that an upper limit occurs in the optical power that can be transmitted through the optical fiber (hereinafter referred to as the transmission power).
【0005】この欠点を改善したものとして、同一出願
人による特願平3−25242号に開示されているよう
に、光ファイバ長手方向に歪を分布させたケーブル構造
では、ブリルアン利得帯域幅を拡大することによって、
この透過パワーを増加させることができる。As a solution to this drawback, as disclosed in Japanese Patent Application No. 3-25242 filed by the same applicant, in a cable structure in which strain is distributed in the longitudinal direction of the optical fiber, the Brillouin gain bandwidth is expanded. By,
This transmission power can be increased.
【0006】[0006]
【発明が解決しようとする課題】しかし、この構造では
歪の拡大に伴って光ファイバの機械的強度の劣化や、光
ファイバ伝送損失の増加が生じるなど、新たな欠点が生
じる可能性があった。However, in this structure, there is a possibility that new defects may occur such as deterioration of mechanical strength of the optical fiber and increase of transmission loss of the optical fiber due to expansion of strain. .
【0007】そこで本発明は、以上のような点に鑑みて
なされたもので、ブリルアンシフト周波数の異なった光
ファイバを合理的に接続することによって、従来よりも
長スパンの無中継伝送が可能な、低損失かつ高信頼性を
有した大入力光ケーブルを提供することを目的としてい
る。Therefore, the present invention has been made in view of the above points, and by reasonably connecting optical fibers having different Brillouin shift frequencies, it is possible to perform unrepeatered transmission with a longer span than conventional. The purpose of the present invention is to provide a large input optical cable with low loss and high reliability.
【0008】[0008]
【課題を解決するための手段および作用】上記特願平3
−25242号に開示されているように、光ファイバ長
手方向に歪を分布させることによって、ブリルアン利得
帯域幅を拡大することができる。[Means and Actions for Solving the Problem] Japanese Patent Application No. Hei 3
As disclosed in Japanese Patent No. 25242, the Brillouin gain bandwidth can be expanded by distributing the strain in the longitudinal direction of the optical fiber.
【0009】図1に歪を正弦波状に変化させた場合の、
歪振幅と帯域幅の関係の計算結果をリニヤスケールで示
す。縦軸の目盛りは任意である。計算では無歪における
帯域幅を50MHz とした。また、ブリルアンシフト周波数
Vの算出には次式を用いた。FIG. 1 shows a case where the distortion is changed in a sine wave shape.
The linear scale shows the calculation result of the relation between the distortion amplitude and the bandwidth. The scale of the vertical axis is arbitrary. In the calculation, the bandwidth without distortion was set to 50 MHz. Further, the following equation was used to calculate the Brillouin shift frequency V.
【0010】 V=12680xCxε ……(1) ただしεは光ファイバ歪、定数C=4.6 図から歪量に応じて利得のピークが低くなることがわか
る。ピーク高さが半分になるときの帯域幅をブリルアン
利得帯域幅と定義すれば、振幅が約0.8%の歪を付与すれ
ば、帯域幅は約900MHzつまり初期の18倍に拡大すること
ができる。V = 12680xCxε (1) However, ε is the optical fiber strain, and the constant C = 4.6 It can be seen from FIG. 6 that the gain peak decreases according to the strain amount. If the bandwidth at which the peak height is halved is defined as the Brillouin gain bandwidth, the bandwidth can be expanded to about 900 MHz, or 18 times the initial value, by adding a distortion with an amplitude of about 0.8%.
【0011】誘導ブリルアン散乱が発生する臨界光入力
がブリルアン利得帯域幅に比例すると仮定すれば、18倍
つまり12.5dBの光パワーを入力することが可能になるの
で、光ファイバの損失を0.18dB/km とすれば伝送距離を
約69kmに拡大できる。Assuming that the critical optical input that causes stimulated Brillouin scattering is proportional to the Brillouin gain bandwidth, it is possible to input 18 times, that is, 12.5 dB of optical power, so that the loss of the optical fiber is 0.18 dB / If the distance is km, the transmission distance can be expanded to about 69 km.
【0012】この手法では概ね利得帯域幅を2倍拡大す
るには、光ファイバの歪量を2倍にする必要がある。In this method, it is necessary to double the distortion amount of the optical fiber in order to roughly double the gain bandwidth.
【0013】一方、図2に(1) 歪が振幅0.4%の正弦波状
に分布した光ファイバと、(2) 歪振幅0.2%で平均歪が+
0.2% および-0.2% の正弦波状に分布した2種の光ファ
イバをタンデムに接続した場合のブリルアン利得波形の
計算値(3) を示す。On the other hand, FIG. 2 shows (1) an optical fiber in which the distortion is distributed in a sinusoidal shape with an amplitude of 0.4%, and (2) the average distortion is + with an amplitude of 0.2%.
The calculated Brillouin gain waveforms (3) when two types of optical fibers distributed in a 0.2% and -0.2% sinusoidal shape are connected in tandem are shown.
【0014】図2からわかるように(1) と(2) のブリル
アン利得帯域幅は約440MHzで等しい。このように個々の
歪振幅は小さくとも、ブリルアンシフト周波数が異なっ
た光ファイバを組み合わせることによって、大きな歪振
幅を与えた場合と同等の帯域幅を得ることができる。As can be seen from FIG. 2, the Brillouin gain bandwidths of (1) and (2) are equal at about 440 MHz. Thus, even if the individual strain amplitudes are small, by combining optical fibers having different Brillouin shift frequencies, it is possible to obtain the same bandwidth as when a large strain amplitude is applied.
【0015】従って、このようにブリルアンシフト周波
数A(MHz) でブリルアン利得帯域半値全幅2B(MHz) の
光ファイバを複数本タンデム(長手方向)に接続する場
合、図3のように、長手方向に隣あった光ファイバ1,2,
3 …i-1,i,i+1 …がそれぞれ Ai-1 +Bi-1 ≦Ai −Bi 、 Ai +Bi ≦Ai+1 −Bi+1 …(2) の関係を概ね満足するよう接続して、それぞれの光ファ
イバのブリルアン利得周波数が重畳しないよう配慮する
必要がある。ただしi=1,2,3 …はタンデムに接続され
たi番目の光ファイバを示す。また、(2) 式の関係を概
ね満足するように光ファイバを長手方向に接続すること
で、歪を小さくすることができる。Therefore, when a plurality of optical fibers having a Brillouin shift frequency A (MHz) and a Brillouin gain band full width at half maximum 2B (MHz) are connected in a tandem (longitudinal direction) as shown in FIG. Optical fibers that were next to each other 1,2,
3 ... i-1, i, i + 1 ... each A i-1 + B i- 1 ≦ A i -B i, A i + B i ≦ A i + 1 -B i + 1 ... the relationship (2) It is necessary to make connections so as to satisfy the requirements so that the Brillouin gain frequencies of the respective optical fibers do not overlap. However, i = 1,2,3 ... indicates the i-th optical fiber connected in tandem. Further, by connecting the optical fibers in the longitudinal direction so that the relationship of the expression (2) is almost satisfied, the strain can be reduced.
【0016】[0016]
【実施例】図4に波長1.550 μmの光源を用いた場合の
ブリルアンシフト周波数の実験結果を示す。EXAMPLE FIG. 4 shows an experimental result of Brillouin shift frequency when a light source having a wavelength of 1.550 μm is used.
【0017】図5は用いた光ファイバのパラメータを示
している。図4及び図5中、PSF は純石英コア光ファイ
バ、SMは1.3 μm零分散光ファイバ、DSF は1.55μm零
分散光ファイバを示す。FIG. 5 shows the parameters of the optical fiber used. 4 and 5, PSF is a pure silica core optical fiber, SM is a 1.3 μm zero-dispersion optical fiber, and DSF is a 1.55 μm zero-dispersion optical fiber.
【0018】これらの光ファイバのGe O2 モル濃度は
約0% 、約 3.7% および約8% (中央部10% 、周辺部
2% )であり、Ge O2 モル濃度が0〜10% の範囲で
はGe O2 量に比例して、ブリルアンシフト周波数は少
なくなることがわかる。The G e O 2 molar concentration of these optical fibers is about 0%, about 3.7% and about 8% (central portion 10%, peripheral portion 2%), and the Ge O 2 molar concentration is 0-10. It can be seen that the Brillouin shift frequency decreases in proportion to the amount of G e O 2 in the range of%.
【0019】また、これら3種の光ファイバのブリルア
ンシフト周波数は、図4からSMを中心に、それぞれ約 3
30MHz 離れていることがわかる。Further, the Brillouin shift frequencies of these three types of optical fibers are about 3 each centering on SM from FIG.
You can see that they are 30MHz apart.
【0020】図6及び図7にDSF もしくはPSF 光ファイ
バとSM光ファイバを接続した場合のブリルアン利得波形
の計算値を歪振幅をパラメータにして示す。FIGS. 6 and 7 show the calculated values of the Brillouin gain waveform when the DSF or PSF optical fiber and the SM optical fiber are connected, using the distortion amplitude as a parameter.
【0021】これより、振幅0.26% から0.28% の歪を与
えることによってブリルアン利得の合成波形のピークを
最も低くできることがわかる。From this, it can be seen that the peak of the combined waveform of the Brillouin gain can be minimized by applying the distortion of 0.26% to 0.28%.
【0022】また、これら3種の光ファイバをSM光ファ
イバを中心にして接続することによって、ブリルアン利
得帯域を330MHzの約3倍、つまり1GHz に拡大すること
ができる。By connecting these three types of optical fibers with the SM optical fiber as the center, the Brillouin gain band can be expanded to about 3 times 330 MHz, that is, 1 GHz.
【0023】これは通常の光ケーブルのブリルアン利得
帯域幅50MHz の20倍(13dB) に相当する。This corresponds to 20 times (13 dB) the Brillouin gain bandwidth of 50 MHz of a normal optical cable.
【0024】この場合の付与歪みは図1における付与歪
0.8 % と比較してわずか1/3 であり、大幅な歪量の減少
が可能になる。The applied strain in this case is the applied strain in FIG.
It is only 1/3 of 0.8%, which makes it possible to significantly reduce the amount of strain.
【0025】以上の計算結果に基づいて、これら3種の
光ファイバを図8に示したような歪保持光ユニット10
1を用いる2重螺旋構造にケーブル化することによって
試作ケーブル100を作成し、これに振幅0.27% の正弦
波状の歪分布を加えた。図9に試作ケーブル100およ
び歪保持ユニット101の寸法を示す。用いたケーブル
材料は特願平3−25242号記載の光ケーブルと同等
である。Based on the above calculation results, the strain holding optical unit 10 shown in FIG.
A prototype cable 100 was prepared by forming a double spiral structure using No. 1, and a sinusoidal strain distribution with an amplitude of 0.27% was added to this. FIG. 9 shows the dimensions of the prototype cable 100 and the strain holding unit 101. The cable material used is the same as the optical cable described in Japanese Patent Application No. 3-25242.
【0026】すなわち、歪保持光ユニット101は外径
0.4mm の鋼線にUVウレタンを被覆して外径0.5mm とし
た中心体102の周囲に外径0.4mm でUVウレタンを被
覆してなる光ファイバ中心線103を6本配置してZ撚
りとしたものに、第1および第2の接着性樹脂層10
4,105を被覆してなる。That is, the strain maintaining optical unit 101 has an outer diameter
Six optical fiber center lines 103 each having a 0.4 mm outer diameter and a UV urethane coating are arranged around a central body 102 having a 0.4 mm outer diameter and a 0.5 mm outer diameter, and a Z twist. The first and second adhesive resin layers 10
4, 105 are coated.
【0027】また、試作ケーブル100は上述したよう
な歪保持光ユニット101が6本共円周上に配置され、
抗張力体106、スロット107、吸水テープ108、
ステンレスステープ109、外被110から構成され、
図9に示すような寸法関係を有している。In the prototype cable 100, six strain holding optical units 101 as described above are arranged on the circumference of the circle.
Tensile strength member 106, slot 107, water absorbing tape 108,
Consists of stainless steel tape 109 and jacket 110,
It has a dimensional relationship as shown in FIG.
【0028】図10に試作ケーブル100の伝送試験結
果を示す。この試作ケーブル長は1kmであり、6本の光
ユニットのうち2本づつに同一プリホームから線引き
し、カーボンコートを施した光ファイバを用いることに
よって、各々12km長のPSF 、SMおよびDSF の光ファイバ
線路を構成し、さらにこれらを融着接続して計36kmとし
た。FIG. 10 shows the transmission test result of the prototype cable 100. The length of this prototype cable is 1km, and two of the six optical units are drawn from the same preform and the carbon coated optical fiber is used to make the optical fiber of PSF, SM and DSF of 12km length. A fiber line was constructed and these were fusion-spliced for a total length of 36km.
【0029】ケーブル化工程での光損失増加はSM光フ
ァイバが最も大きいが、最大でも波長1.55μmで10/100
0dB/km以下であった。The increase in optical loss in the cabling process is greatest in SM optical fibers, but at a maximum wavelength of 1.55 μm, 10/100
It was less than 0 dB / km.
【0030】この線路に光アンプで増幅した波長1.55μ
m、最大20dBm のCW光を入射した。A wavelength of 1.55μ amplified by an optical amplifier on this line
m, maximum 20 dBm of CW light was incident.
【0031】従来の光ケーブルの場合は約7dBm 以上の
光パワーで誘導ブリルアン散乱が発生し、反射光の急増
現象が確認されるが、試作したケーブルでは最大入力ま
で反射光が急増することはなく、設計値通り13dBの改善
効果が確認された。本試験では発明の効果を確認するた
め1km長のケーブルを試作したが、本発明が適用される
実際の海底伝送路では、光ファイバの接続損失を低減
し、かつケーブルの接続費用を節約するため、光ファイ
バ単長は20km程度、光ケーブル単長は30から70km程度で
用いられることは言うまでもない。In the case of the conventional optical cable, stimulated Brillouin scattering occurs at an optical power of about 7 dBm or more, and a sudden increase in reflected light is confirmed. However, in the prototype cable, the reflected light does not increase sharply up to the maximum input. An improvement effect of 13 dB was confirmed as designed. In this test, a 1 km-long cable was prototyped in order to confirm the effect of the invention, but in the actual submarine transmission line to which the present invention is applied, in order to reduce the connection loss of the optical fiber and save the cable connection cost. Needless to say, the single length of the optical fiber is about 20 km, and the single length of the optical cable is about 30 to 70 km.
【0032】従って、光ケーブル1ピース中には、ブリ
ルアン利得周波数が重畳しない2から4ピースの光ファ
イバがタンデムに接続されることになる。Therefore, in one piece of the optical cable, two to four pieces of optical fibers in which the Brillouin gain frequency is not superimposed are connected in tandem.
【0033】[0033]
【発明の効果】以上説明したよう、に本発明によれば誘
導ブリルアン散乱の抑制に要する光ファイバへの歪付与
量を従来の1/3 程度に小さくすることができるので、ケ
ーブル化工程での損失増が小さく、かつ長期信頼性に優
れた長スパン伝送用光ケーブルを実現できる。As described above, according to the present invention, the amount of strain applied to the optical fiber required for suppressing the stimulated Brillouin scattering can be reduced to about 1/3 of that of the conventional one. It is possible to realize an optical cable for long-span transmission with little loss increase and excellent long-term reliability.
【図1】歪を制限波状に変化させた場合の、歪域幅の関
係の計算結果を示す図。FIG. 1 is a diagram showing a calculation result of a relation of a strain range width when strain is changed in a limiting wave shape.
【図2】(1) 歪が振幅0.4%の正弦波状に分布した光ファ
イバと、(2) 歪振幅0.2%で平均歪が+0.2% および-0.2%
の正弦波状に分布した2種の光ファイバをタンデムに接
続した場合のブリルアン利得波形の計算値(3) を示す
図。[Fig. 2] (1) Optical fiber in which strain is distributed in a sinusoidal shape with an amplitude of 0.4%, and (2) Average strain is + 0.2% and -0.2% at a strain amplitude of 0.2%.
FIG. 6 is a diagram showing a calculated value (3) of a Brillouin gain waveform when two types of optical fibers distributed in a sine wave are connected in tandem.
【図3】本発明の構成と原理を説明するための図。FIG. 3 is a diagram for explaining the configuration and principle of the present invention.
【図4】本発明の一実施例によるブリルアンシフト周波
数の光ファイバ依存性の試験結果を示す図。FIG. 4 is a diagram showing a test result of dependence of a Brillouin shift frequency on an optical fiber according to an embodiment of the present invention.
【図5】本発明の一実施例に用いる光ファイバのパラメ
ータを示す図。FIG. 5 is a diagram showing parameters of an optical fiber used in one embodiment of the present invention.
【図6】本発明によるDSF もしくはPSF 光ファイバとSM
光ファイバを接続したケーブルのブリルアン利得波形の
計算値を示す図。[FIG. 6] DSF or PSF optical fiber and SM according to the present invention
The figure which shows the calculated value of the Brillouin gain waveform of the cable which connected the optical fiber.
【図7】同じく、本発明によるDSF もしくはPSF 光ファ
イバとSM光ファイバを接続したケーブルのブリルアン利
得波形の計算値を示す図。FIG. 7 is a diagram showing a calculated value of a Brillouin gain waveform of a cable in which a DSF or PSF optical fiber according to the present invention and an SM optical fiber are connected.
【図8】本発明の一実施例による歪保持光ユニットと2
重螺旋構造ケーブルを示す断面図。FIG. 8 shows a distortion maintaining optical unit and 2 according to an embodiment of the present invention.
Sectional drawing which shows a heavy spiral structure cable.
【図9】本発明による試作ケーブルの伝送試験結果を示
す図。FIG. 9 is a diagram showing a transmission test result of a prototype cable according to the present invention.
【図10】図8のケーブルおよび歪保持ユニットの寸法
関係を示す図。10 is a diagram showing a dimensional relationship between the cable and the strain holding unit of FIG.
1,2,3…i−1,i,i+1…光ファイバ A…ブリルアンシフト周波数 B…ブリルアン利得帯域半値幅 100…試作ケーブル 101…歪保持光ユニット 1, 2, 3 ... i-1, i, i + 1 ... Optical fiber A ... Brillouin shift frequency B ... Brillouin gain band half width 100 ... Prototype cable 101 ... Strain holding optical unit
───────────────────────────────────────────────────── フロントページの続き (72)発明者 今井 健之 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeyuki Imai 1-1-6, Saiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation
Claims (4)
ルアン利得帯域半値全幅2B(MHz)の光ファイバを複数
本タンデムに接続して構成される光ケーブルにおいて、
長手方向に隣あった光ファイバがそれぞれAi-1 +B
i-1 ≦Ai −Bi 、 Ai +Bi ≦Ai+1 −Bi+1 (た
だしi=1,2,3 …はi番目の光ファイバを示す)の関係
を概略満足することを特徴とする大入力光ケーブル。1. An optical cable constructed by connecting a plurality of optical fibers having a Brillouin shift frequency A (MHz) and a Brillouin gain band full width at half maximum 2B (MHz) in tandem,
Adjacent optical fibers in the longitudinal direction are A i-1 + B
i-1 ≤ A i -B i , A i + B i ≤ A i + 1 -B i +1 (where i = 1,2,3 ... indicates the i-th optical fiber) is approximately satisfied. Large input optical cable featuring.
を 0〜10% としたことを特徴とする請求項1の大入力光
ケーブル。2. The large input optical cable according to claim 1, wherein the molar concentration of G e O 2 in the optical fiber core portion is set to 0 to 10%.
光ファイバ(コア部Ge O2 モル濃度約3% )、さらに
1.55μm零分散光ファイバ(コア部Ge O2モル濃度約
8% )の3種の光ファイバを接続したことを特徴とする
請求項1の大入力光ケーブル。3. A pure silica core optical fiber, a 1.3 μm zero dispersion optical fiber (core portion G e O 2 molar concentration: about 3%), and
Large input optical cable according to claim 1, characterized in that connecting the three optical fibers of 1.55μm zero dispersion optical fiber (core portion G e O 2 molar concentration of about 8%).
バを2重螺旋に集合してブリルアン利得帯域幅を拡大し
たことを特徴とする請求項1の大入力光ケーブル。4. A large input optical cable according to claim 1, wherein a strain-holding type optical unit is used, and the optical fibers are assembled into a double spiral to expand the Brillouin gain bandwidth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21047792A JP3234292B2 (en) | 1992-08-06 | 1992-08-06 | Large input optical cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21047792A JP3234292B2 (en) | 1992-08-06 | 1992-08-06 | Large input optical cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0659141A true JPH0659141A (en) | 1994-03-04 |
JP3234292B2 JP3234292B2 (en) | 2001-12-04 |
Family
ID=16589998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21047792A Expired - Fee Related JP3234292B2 (en) | 1992-08-06 | 1992-08-06 | Large input optical cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3234292B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7190868B2 (en) | 2005-02-23 | 2007-03-13 | Sumitomo Electric Industries, Ltd. | Optical transmission line |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0415626A (en) * | 1990-05-09 | 1992-01-21 | Nippon Telegr & Teleph Corp <Ntt> | Optical transmission line |
JPH04212114A (en) * | 1990-05-28 | 1992-08-03 | Nippon Telegr & Teleph Corp <Ntt> | Optical cable and manufacture thereof |
-
1992
- 1992-08-06 JP JP21047792A patent/JP3234292B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0415626A (en) * | 1990-05-09 | 1992-01-21 | Nippon Telegr & Teleph Corp <Ntt> | Optical transmission line |
JPH04212114A (en) * | 1990-05-28 | 1992-08-03 | Nippon Telegr & Teleph Corp <Ntt> | Optical cable and manufacture thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7190868B2 (en) | 2005-02-23 | 2007-03-13 | Sumitomo Electric Industries, Ltd. | Optical transmission line |
Also Published As
Publication number | Publication date |
---|---|
JP3234292B2 (en) | 2001-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yoshizawa et al. | Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling | |
US6335995B1 (en) | Dispersion-shifted fiber | |
KR100642035B1 (en) | Optical fiber and optical transmission system including the same | |
US8718468B2 (en) | Optical fiber communication system | |
WO2013129234A1 (en) | Multicore optical fiber, multicore optical fiber cable, and multicore optical fiber transmission system | |
US6256440B1 (en) | Dispersion-shifted optical fiber | |
Sakamoto et al. | Spatial density and splicing characteristic optimized few-mode multi-core fiber | |
EP1311881A2 (en) | Optical fiber for wavelength division multiplexing opitcal transmission system using densely spaced optical channels | |
US6459839B1 (en) | Phase-shifted monomode optical fibre with large effective area | |
US6377740B1 (en) | Dispersion Managed optical fiber transmission-line | |
US6374027B1 (en) | Optical fiber transmission-line | |
US4206967A (en) | Optical fiber | |
US6522819B2 (en) | Optical fiber and optical transmission line using the optical fiber | |
JPH0659141A (en) | Large-input optical cable | |
WO2020209170A1 (en) | Optical amplification device, optical transmission system, and optical amplification method | |
US6668121B2 (en) | Optical fiber, and dispersion compensator using same, optical transmission line using same and optical transmission system using same | |
CA2403206A1 (en) | Dispersion compensator | |
US6473550B1 (en) | Optical fiber transmission-line | |
US6856736B2 (en) | Lightwaveguide cable and process for carrying an optical signal using dispersion management | |
US6804046B2 (en) | Optical amplification fiber, fiber optic amplifier, and optical communication system | |
US6533464B1 (en) | Connection unit, optical fiber line unit, optical cable, and optical transmission system | |
Saitoh et al. | Design and analysis of weakly-and strongly-coupled multicore fibers | |
CN118778191A (en) | Optical cable structure for realizing ultra-high ultraviolet transmission efficiency | |
JPH05150122A (en) | Long-span submarine beam path | |
JPS60140305A (en) | Optical star coupler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |