JPH0555600B2 - - Google Patents
Info
- Publication number
- JPH0555600B2 JPH0555600B2 JP61022044A JP2204486A JPH0555600B2 JP H0555600 B2 JPH0555600 B2 JP H0555600B2 JP 61022044 A JP61022044 A JP 61022044A JP 2204486 A JP2204486 A JP 2204486A JP H0555600 B2 JPH0555600 B2 JP H0555600B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- organometallic compound
- metal
- temperature
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1229—Composition of the substrate
- C23C18/1233—Organic substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Chemically Coating (AREA)
Description
〔産業上の利用分野〕
この発明は、加熱により溶液中に含有されてい
る有機金属化合物を分解させ、金属又は金属の化
合物からなる無機質被膜を基板上に被覆させてな
る無機質被膜の形成方法、特に上記加熱温度の低
下による基板の変形防止に関するものである。
〔従来の技術〕
基板上に無機質被膜を形成する方法としては、
真空蒸着法、スパツタリング法、プラズマCVD
法、イオンプレーテイング法などがある。しか
し、これらの方法を実施するための設備は大規模
とならざるを得ない。また、これらの方法は被膜
をバツチ式で形成するものであるため、連続的に
大面積の無機質被膜を形成することができない。
従つて、これらの方法は、基板上に無機質被膜を
形成する方法として、その処理コストも高くなら
ざるを得ないという欠点がある。
小規模な設備で、基板上に連続的に大面積の無
機質被膜を形成させることができる方法として
は、ガラス、セラミツク等の基板上に有機金属化
合物(金属アセチルアセトネート、金属アルコレ
ート、有機酸金属等)、又は無機酸金属塩(硝酸
金属塩、塩化金属等)を含有する溶液を浸漬によ
り付着させ、この付着溶液を基板と共に400〜600
℃程度の温度で加熱し、付着溶液中の有機金属化
合物又は無機酸金属塩を分解させ、基板上に金属
又は金属化合物からなる無機質被膜を形成させる
方法が知られている。
しかし、この方法は、付着溶液中の有機金属化
合物又は無機酸金属塩を分解させる際に、400〜
600℃という高温で基板を加熱するので、耐熱温
度の低いプラスチツク板を基板として使用した場
合は、基板が大きく変形してしまうという欠点が
あり、従つて、この方法でプラスチツク基板に無
機質被膜を形成させることは困難である。
また、基板としてプラスチツク板よりも耐熱温
度の高いガラス板を使用する場合でも、溶液に含
有されている有機金属化合物、または無機酸金属
塩を分解させるための加熱温度がガラスの軟化点
温度に近いので、加熱による基板の変形が大き
く、高い精度を必要とする基板に、この方法で無
機質被膜を形成することは不適当である。
このため、浸漬法の利点を生かし、しかも低温
で無機質被膜を形成する方法として、金属アルコ
レートを含有する溶液の加水分解による成膜法
(ゾル−ゲル法)が提案されている。
〔発明が解決しようとする問題点〕
上記のような、金属アルコレートを含有する溶
液の加水分解による成膜法では、無機質被膜を形
成できる有機金属化合物が限られ、しかも有機金
属化合物が分解しきらずに無機質被膜中に残留
し、弱い無機質被膜しか形成できないという問題
点がある。
この発明は、かかる問題点を解決するためにな
されたもので、浸漬法の利点を生かしつつ、300
℃以下の低温加熱で強度の高い無機質被膜を形成
する方法を得ることを目的とする。
〔問題点を解決するための手段〕
この発明に係る無機質被膜の形成方法は、プラ
スチツク基板を最高耐熱温度まで加熱し、オリゴ
マーの析出、熱収縮を飽和させ、析出したオリゴ
マーを有機溶媒で拭き取り、次いで、該基板に
シクロペンタジエニル基とSn、U、Tl、
Mo、In、Ni、Th、Pb、Ti、Zn、Hg、Biか
ら選ばれる1種の金属とからなる有機金属化合
物、
メチルシクロペンタジエニル基とIn、Ni、
Sn、Zn、La、Mgから選ばれる1種の金属と
からなる有機金属化合物、
低級アルキル基とAl、As、B、Be、Bi、
Cd、Ga、Hg、In、P、Sb、Se、Te、Znから
選ばれる1種の金属とからなる有機金属化合
物、
(C6H6)2Cr、(C6H6)2Moまたは
(C6H5)2SnH2から選ばれる有機金属化合物
よりなる有機金属化合物の群より選ばれる1種ま
たは2種以上と、
酸素と水分が除去された有機溶媒と
からなる溶液を、残留酸素、水分が10ppm以下に
制御された不活性ガス雰囲気下で付着させ、該付
着溶液を該基板と共に昇温速度2〜50℃/秒、最
高保持温度300℃以下で加熱することを特徴とす
るものである。
また、この発明に係る無機質被膜形成用の溶液
は、上記有機金属化合物と、酸素と水分が除去さ
れた有機溶媒とからなり、有機金属化合物が濃度
2〜30wt%で含有されてなることを特徴とする
ものである。
〔作用〕
この発明においては、基板に付着させた溶液が
反応性の高い所定の有機金属化合物を含有するの
で、加熱した場合に、この有機金属化合物が300
℃以下の低温で分解して、基板上に金属又はその
金属化合物からなる無機質被膜が形成される。
〔実施例〕
この出願の発明は、反応性の高い所定の有機金
属化合物を低沸点の有機溶媒に所定量溶解し、そ
の溶液を浸漬法により基板上に塗布し、還元ある
いは、酸化雰囲気下で300℃以下の低温でこの溶
液を加熱して基板上に無機質被膜を形成させるも
のである。
ここで、反応性が高い有機金属化合物として
は、M(ClHm)n(ここで、Mは金属、l、m及
びnは整数、nは金属Mの価数を表わす。)の一
般式で表わされるものをいい、例えば、シクロペ
ンタジエン又はその誘導体と金属とからなる有機
金属化合物、アルキル金属、ベンゼン、フエニル
基又はそれらの誘導体と金属とからなる有機金属
化合物、又はこれらの有機金属化合物の混合物を
挙げることができる。
反応性の高い有機金属化合物としてこの発明で
使用可能なものは、次のとおりである。ここで、
Cpはシクロペンタジエニル、Meはメチル、Etは
エチル、Prはプロピル、Buはブチル、Phはフエ
ニルを示す。
★ シクロペンタジエン又はその誘導体からなる
有機金属化合物
CpNa、Cp2Sn、Cp4U、CpTl、
(MeCp)2Sn、Cp4Mo、Cp4Sn、CpIn、Cp2Ni、
Cp4Th、Cp2Pb、Cp2Ti、Cp3Ti、Cp3In、
Cp2Zn、MeCpIn、Cp2Hg、Cp3Bi、
(MeCp)3In、(MeCp)2Ni
★ アルキル金属
Me3Al、Et3Al、Pr3Al、Bu3Al、Me3As、
Et3As、Me3B、Et3B、Pr3B、Bu3B、Me2Be、
Et2Be、Pr2Be、Bu2Be、Me3Bi、Me2Cd、
Et2Cd、Pr2Cd、Bu2Cd、Me3Ga、Et3Ga、
Pr3Ga、Bu3Ga、Me2Hg、Et2Hg、Me3In、
Et3In、Pr3In、Bu3In、MeLi、EtLi、PrLi、
BuLi、Me3P、Et3P、Pr3P、Bu3P、Me3Sb、
Et3Sb、Pr3Sb、Bu3Sb、Me2Se、Et2Se、
Me2Te、Et2Te、Me2Zn、Et2Zn、
(MeCp)2Zn、(MeCp)3La、(MeCp)2Mg
★ ベンゼン化合物
(C6H6)2Cr、(C6H6)2Mo
★ フエニル化合物
Ph2SnH2
これらの有機金属化合物は常温付近で大気中の
酸素と反応し、自然発火、発熱、発煙あるいは変
色等を起こす高反応性の物質である。ただし、こ
れらの有機金属化合物も、有機溶媒に溶解した状
態では、その反応性はかなり緩和される。しか
し、溶液から有機溶媒が気化分離されると、反応
性が現われるので、低い温度で分解又は、酸化分
解反応を起こし、基板上に無機質被膜を形成す
る。また、この発明で使用する有機金属化合物は
高純度でなければならないし、反応性が高いた
め、操作雰囲気中に残留した酸素による変質を受
けないようにする必要がある。変質を受けた有機
金属化合物は、酸化分解温度が高くなり、また、
有機溶媒に対する溶解性も悪くなるからである。
この発明で用いる低沸点の有機溶媒としては、
ベンゼン(b.p.80.5℃)、メチルエチルタトン
(MEK)(b.p.79.6℃)、テトラヒドロフラン
(THF)(b.p.88℃)、ジエチルエーテル(Et2O)
(b.p.34.6℃)、シクロペンタン(b.p.49.5℃)、シ
クロペンタジエン(b.p.41℃)、n−ペンタン(b.
p.36.1℃)等を挙げることができる。アルキル金
属は、THF、Et2O等と付加物を作り、より安定
化する。
この発明における有機金属化合物の濃度は2〜
30wt%とするのが好ましい。2wt%以下では形成
される無機質被膜の厚さが薄くなり過ぎ、また、
30wt%を越えると溶液中に不溶物が生ずるよう
になるからである。
基板としては、通常使用されるガラス板、セラ
ミツク板、金属板の他、耐熱性プラスチツク板も
使用できる。耐熱性プラスチツクとしては、例え
ば、ポリエチレンテレフタレート(PET)(耐熱
温度150℃)、ポリエチレンサルフアイド(PES)
(耐熱温度190℃)、ポリエチルエチルケトン
(PEEK)(耐熱温度220℃)、ポリイミド樹脂(耐
熱温度400℃)等を挙げることができる。これら
のプラスチツク板は、上記の有機溶媒とぬれ性は
良いが、無機質被膜との密着強度が増すには、必
要に応じて表面処理を行う必要がある。
また、プラスチツク板を基板とする場合は、熱
処理によりオリゴマーの析出や収縮が起こること
がある。オリゴマーの析出や収縮は、無機質被膜
の密着性に悪影響を与えるので、使用前に各プラ
スチツク基板を最高耐熱温度まで約5〜15秒間加
熱し、オリゴマーの析出、熱収縮を飽和させ、ま
た、析出したオリゴマーは、有機溶媒で拭き取る
必要がある。
本発明で設定する熱処理条件は、使用する基
板、と有機金属化合物の種類にもよるが、次のよ
うにするのが好ましい。昇温速度2℃/秒以上と
する。2℃/秒以下だと、有機金属化合物の分解
が不完全となつて、残査が生じるし、あまり早い
とプラスチツク基板を用いた場合、基板が変形
し、又そのため、形成された無機質被膜も変形し
たり、クラツクを生じたりする。せいぜい40〜50
℃/秒が上限である。最高保持温度は300℃以下
とする。300℃を越えると、基板が変形するから
である。保持時間は20〜90分程度とする。
酸化物被膜を形成する時は、加熱と同時に基板
上の有機金属化合物が酸素と接触するようにす
る。一方、金属被膜を形成する時は、還元雰囲気
(例えば、窒素ガス、Arガス雰囲気)下で加熱す
る。状況に応じ、有機溶媒を気化させる予備加熱
が必要となるが、その時は、酸素との接触を充分
避けて、また、昇温速度を比較的遅くする。
この発明では、反応性の高い有機金属化合物の
基板への付着は、溶液状態で浸漬法により行う
が、MO−CVD法やスプレー法等で基板に付着
させてもよい。膜厚は、溶液の濃度や基板の引き
上げ速度の調節、さらに、浸漬、熱処理を繰り返
すことにより制御する。
熱処理の過程で、有機金属化合物層部分が、自
己発熱の熱蓄積により短時間ではあるが、基板加
熱温度よりかなり高くなる。従つて、有機金属化
合物の分解あるいは、酸化分解が充分進み、低温
加熱でも残留有機物分がほとんどない、金属膜又
は透明な酸化金属膜からなる無機質被膜が形成さ
れる。この金属膜や金属酸化膜は、高導電性を示
し、また、基板への密着力もかなり強い。
この発明で使用する有機金属化合物は、酸素、
水分や熱(常温程度以上)により変質を受ける。
変質物は、分子中に酸素を取り込んだ状態で、部
分酸化、水酸化物となり、金属酸化物となり、金
属析出物と混合されたようになる。従つて、有機
金属化合物を取り扱う場合は、不活性ガス(例え
ば、窒素ガス、アルゴンガス等)下で行う必要が
あり、残留酸素や水分については、約5〜10ppm
以下に制御する必要がある。また、有機溶媒中に
混入している酸素や水分を除去するため、蒸留や
不活性ガスによるバブリング等を施す必要があ
る。更に、有機金属化合物は常温でも除々に変質
が進むので、低温に保存しておく必要がある。
この発明による無機質被膜の形成方法は、真空
蒸着法、スパツタリング法、スプレー法等によら
ず、単なる浸漬法に基づき、塗布、焼成工程や設
備を簡単化できるので、低コストで大面積を連続
的に処理でき、また、反応性の高い有機金属化合
物を用いることにより、300℃以下の低温熱処理
でほぼ完全な無機質被膜が形成できるので、プラ
スチツク等の熱に弱い基板にも成膜が可能なので
極めて有利である。
実施例 1
溶液は浸漬法で基板に付着させ、低温加熱で成
膜させた。この溶液の溶媒としては窒素ガスフロ
ー状態で蒸留精製したベンゼンを用い、溶質とし
てはシクロペンタジエン又はその誘導体と金属と
からなる有機金属化合物を用い、この有機金属化
合物の濃度は約5wt%とした。基板は、ガラス板
とポリイミド板とPET板を使用した。ガラス板
は、アルカリ洗剤洗浄後、UV(紫外線)照射で
洗浄したものを、ポリイミド板とPET板は、150
℃、10min間熱処理し、析出したオリゴマーを有
機溶媒で拭き取つたものを用いた。
浸漬は浸漬装置を用い、浸漬速度約25cm/min
で行つた。雰囲気としては窒素ガスを用い、残留
O2、H2Oを約5〜10ppm以下におさえた。
熱処理は赤外線炉を用い、窒素、空気、酸素雰
囲気下で、昇温速度3〜5℃/秒、焼成温度100
〜400℃とした。
熱処理後の無機質被膜はいずれも充分な強度を
持つていた。
熱処理後、基板の上に生成した無機質被膜をX
線回折により測定した。酸化物と金属との回折パ
ターンが重なつて現われたが、窒素、空気、酸素
の順に金属のピークが低くなる。それに伴つて、
導電性も悪くなる。窒素雰囲気下で焼成した被膜
の導電性をガラス基板のものについては第1表
に、ポリイミド基板とPET基板のものについて
は第2表に示す。ここで、窒素雰囲気下であるに
も拘わらず無機質被膜中に酸化物のX線回折パタ
ーンが現れる理由は、有機金属化合物を含有する
溶液を浸漬法により基板上に塗布した後、焼成す
るまでの間に酸素が取り込まれていたためであろ
うと考えられる。
[Industrial Field of Application] This invention provides a method for forming an inorganic film by decomposing an organometallic compound contained in a solution by heating and coating a substrate with an inorganic film made of a metal or a metal compound; In particular, the present invention relates to prevention of deformation of the substrate due to a decrease in the heating temperature. [Prior art] As a method of forming an inorganic film on a substrate,
Vacuum deposition method, sputtering method, plasma CVD
method, ion plating method, etc. However, the equipment for carrying out these methods must be large-scale. Furthermore, since these methods form the coating in batches, it is not possible to continuously form an inorganic coating over a large area.
Therefore, these methods have the disadvantage that the processing cost must be high as a method for forming an inorganic film on a substrate. A method that can continuously form a large-area inorganic film on a substrate using small-scale equipment is to use an organic metal compound (metal acetylacetonate, metal alcoholate, organic acid) on a substrate such as glass or ceramic. A solution containing a metal salt (metal, etc.) or an inorganic acid metal salt (metal nitrate, metal chloride, etc.) is applied by immersion, and this adhesion solution is applied together with the substrate at a temperature of 400 to 600 ml.
A method is known in which an organic metal compound or an inorganic acid metal salt in an adhesion solution is decomposed by heating at a temperature of about .degree. C. to form an inorganic film made of a metal or a metal compound on a substrate. However, when decomposing the organometallic compound or inorganic acid metal salt in the adhesion solution, this method
Since the substrate is heated to a high temperature of 600℃, if a plastic plate with a low heat resistance temperature is used as the substrate, the substrate will be significantly deformed. Therefore, this method is used to form an inorganic film on the plastic substrate. It is difficult to do so. In addition, even when using a glass plate with a higher heat resistance temperature than a plastic plate as a substrate, the heating temperature for decomposing the organic metal compound or inorganic acid metal salt contained in the solution is close to the softening point temperature of the glass. Therefore, it is inappropriate to form an inorganic film by this method on a substrate that undergoes large deformation due to heating and requires high precision. For this reason, a film forming method (sol-gel method) using hydrolysis of a solution containing a metal alcoholate has been proposed as a method for forming an inorganic film at a low temperature while taking advantage of the immersion method. [Problems to be Solved by the Invention] In the above-mentioned film formation method using hydrolysis of a solution containing a metal alcoholate, the number of organometallic compounds that can form an inorganic film is limited, and moreover, the organometallic compound decomposes. There is a problem that it remains in the inorganic coating without being removed, and only a weak inorganic coating can be formed. This invention was made to solve these problems, and while taking advantage of the immersion method, it
The purpose of this invention is to obtain a method for forming a strong inorganic film by heating at a low temperature below ℃. [Means for Solving the Problems] The method for forming an inorganic film according to the present invention includes heating a plastic substrate to the maximum heat-resistant temperature to saturate oligomer precipitation and thermal shrinkage, wiping off the precipitated oligomer with an organic solvent, Next, a cyclopentadienyl group and Sn, U, Tl,
An organometallic compound consisting of a metal selected from Mo, In, Ni, Th, Pb, Ti, Zn, Hg, Bi, a methylcyclopentadienyl group and In, Ni,
Organometallic compound consisting of one metal selected from Sn, Zn, La, Mg, lower alkyl group and Al, As, B, Be, Bi,
Organometallic compound consisting of one metal selected from Cd, Ga, Hg, In, P, Sb, Se, Te, Zn, (C 6 H 6 ) 2 Cr, (C 6 H 6 ) 2 Mo or ( A solution consisting of one or more selected from the group of organometallic compounds selected from C 6 H 5 ) 2 SnH 2 and an organic solvent from which oxygen and moisture have been removed is heated to remove residual oxygen, The adhesive is deposited under an inert gas atmosphere with moisture content controlled to be 10 ppm or less, and the deposition solution is heated together with the substrate at a heating rate of 2 to 50°C/sec and a maximum holding temperature of 300°C or less. be. Further, the solution for forming an inorganic film according to the present invention is characterized in that it consists of the above-mentioned organometallic compound and an organic solvent from which oxygen and moisture have been removed, and contains the organometallic compound at a concentration of 2 to 30 wt%. That is. [Function] In this invention, since the solution deposited on the substrate contains a predetermined highly reactive organometallic compound, when heated, this organometallic compound becomes 300%
It decomposes at a low temperature of .degree. C. or lower, and an inorganic film made of metal or a metal compound thereof is formed on the substrate. [Example] The invention of this application involves dissolving a predetermined amount of a highly reactive organometallic compound in a low boiling point organic solvent, applying the solution onto a substrate by a dipping method, and applying the solution in a reducing or oxidizing atmosphere. This solution is heated at a low temperature of 300°C or less to form an inorganic film on the substrate. Here, highly reactive organometallic compounds are represented by the general formula M(ClHm)n (where M is a metal, l, m, and n are integers, and n represents the valence of the metal M). For example, an organometallic compound consisting of cyclopentadiene or a derivative thereof and a metal, an organometallic compound consisting of an alkyl metal, benzene, phenyl group or a derivative thereof and a metal, or a mixture of these organometallic compounds. can be mentioned. The highly reactive organometallic compounds that can be used in the present invention are as follows. here,
Cp represents cyclopentadienyl, Me represents methyl, Et represents ethyl, Pr represents propyl, Bu represents butyl, and Ph represents phenyl. ★ Organometallic compound consisting of cyclopentadiene or its derivatives CpNa, Cp 2 Sn, Cp 4 U, CpTl,
(MeCp) 2 Sn, Cp 4 Mo, Cp 4 Sn, CpIn, Cp 2 Ni,
Cp 4 Th, Cp 2 Pb, Cp 2 Ti, Cp 3 Ti, Cp 3 In,
Cp2Zn , MeCpIn, Cp2Hg , Cp3Bi ,
(MeCp) 3 In, (MeCp) 2 Ni ★ Alkyl metal Me 3 Al, Et 3 Al, Pr 3 Al, Bu 3 Al, Me 3 As,
Et 3 As, Me 3 B, Et 3 B, Pr 3 B, Bu 3 B, Me 2 Be,
Et 2 Be, Pr 2 Be, Bu 2 Be, Me 3 Bi, Me 2 Cd,
Et 2 Cd, Pr 2 Cd, Bu 2 Cd, Me 3 Ga, Et 3 Ga,
Pr 3 Ga, Bu 3 Ga, Me 2 Hg, Et 2 Hg, Me 3 In,
Et 3 In, Pr 3 In, Bu 3 In, MeLi, EtLi, PrLi,
BuLi, Me 3 P, Et 3 P, Pr 3 P, Bu 3 P, Me 3 Sb,
Et 3 Sb, Pr 3 Sb, Bu 3 Sb, Me 2 Se, Et 2 Se,
Me 2 Te, Et 2 Te, Me 2 Zn, Et 2 Zn,
(MeCp) 2 Zn, (MeCp) 3 La, (MeCp) 2 Mg ★ Benzene compound (C 6 H 6 ) 2 Cr, (C 6 H 6 ) 2 Mo ★ Phenyl compound Ph 2 SnH 2These organometallic compounds are It is a highly reactive substance that reacts with oxygen in the atmosphere at room temperature, causing spontaneous combustion, heat generation, smoke, and discoloration. However, when these organometallic compounds are dissolved in an organic solvent, their reactivity is considerably reduced. However, when the organic solvent is vaporized and separated from the solution, reactivity appears, so that a decomposition or oxidative decomposition reaction occurs at a low temperature, forming an inorganic film on the substrate. Furthermore, the organometallic compound used in the present invention must be of high purity and, since it is highly reactive, must be protected from deterioration by oxygen remaining in the operating atmosphere. Organometallic compounds that have undergone alteration have a higher oxidative decomposition temperature, and
This is because solubility in organic solvents also deteriorates. The low boiling point organic solvent used in this invention is:
Benzene (bp80.5℃), methylethyltaton (MEK) (bp79.6℃), tetrahydrofuran (THF) (bp88℃), diethyl ether ( Et2O )
(bp34.6℃), cyclopentane (bp49.5℃), cyclopentadiene (bp41℃), n-pentane (b.
p.36.1℃). Alkyl metals form adducts with THF, Et 2 O, etc., making them more stable. The concentration of the organometallic compound in this invention is 2 to
The content is preferably 30wt%. If it is less than 2wt%, the thickness of the inorganic film formed will be too thin, and
This is because if the amount exceeds 30 wt%, insoluble matter will be generated in the solution. As the substrate, in addition to commonly used glass plates, ceramic plates, and metal plates, heat-resistant plastic plates can also be used. Examples of heat-resistant plastics include polyethylene terephthalate (PET) (heat-resistant temperature 150°C) and polyethylene sulfide (PES).
(heat resistant temperature: 190°C), polyethyl ethyl ketone (PEEK) (heat resistant temperature: 220°C), polyimide resin (heat resistant temperature: 400°C), etc. These plastic plates have good wettability with the above-mentioned organic solvent, but in order to increase the adhesion strength with the inorganic coating, it is necessary to perform surface treatment as necessary. Furthermore, when a plastic plate is used as a substrate, precipitation and shrinkage of oligomers may occur due to heat treatment. Precipitation and shrinkage of oligomers have a negative effect on the adhesion of the inorganic coating, so before use, each plastic substrate is heated to its maximum heat-resistant temperature for about 5 to 15 seconds to saturate the precipitation and thermal shrinkage of oligomers, and to prevent precipitation. The oligomers must be wiped off with an organic solvent. The heat treatment conditions set in the present invention depend on the type of substrate and organometallic compound used, but are preferably as follows. The temperature increase rate shall be 2°C/sec or more. If it is less than 2°C/sec, the decomposition of the organometallic compound will be incomplete and a residue will be produced.If it is too fast, if a plastic substrate is used, the substrate will be deformed and the formed inorganic film will also be damaged. This may cause deformation or cracks. 40-50 at most
C/sec is the upper limit. The maximum holding temperature shall be 300℃ or less. This is because if the temperature exceeds 300°C, the substrate will deform. The holding time is approximately 20 to 90 minutes. When forming an oxide film, the organometallic compound on the substrate is brought into contact with oxygen at the same time as heating is performed. On the other hand, when forming a metal film, heating is performed in a reducing atmosphere (eg, nitrogen gas or Ar gas atmosphere). Depending on the situation, preheating to vaporize the organic solvent may be required, but in that case, contact with oxygen should be sufficiently avoided and the temperature increase rate should be relatively slow. In this invention, the highly reactive organometallic compound is attached to the substrate in a solution state by a dipping method, but it may also be attached to the substrate by an MO-CVD method, a spray method, or the like. The film thickness is controlled by adjusting the concentration of the solution and the speed at which the substrate is pulled up, and by repeating dipping and heat treatment. During the heat treatment process, the organometallic compound layer portion becomes significantly higher than the substrate heating temperature, albeit for a short time, due to heat accumulation due to self-heating. Therefore, the decomposition or oxidative decomposition of the organometallic compound progresses sufficiently, and an inorganic film made of a metal film or a transparent metal oxide film is formed with almost no residual organic matter even when heated at low temperatures. This metal film or metal oxide film exhibits high conductivity and also has fairly strong adhesion to the substrate. The organometallic compound used in this invention includes oxygen,
Changes in quality due to moisture and heat (above room temperature).
The altered substance incorporates oxygen into its molecules, undergoes partial oxidation, becomes a hydroxide, becomes a metal oxide, and becomes mixed with metal precipitates. Therefore, when handling organometallic compounds, it is necessary to do so under an inert gas (e.g., nitrogen gas, argon gas, etc.), and the residual oxygen and moisture content must be approximately 5 to 10 ppm.
It is necessary to control the following. Further, in order to remove oxygen and moisture mixed in the organic solvent, it is necessary to perform distillation, bubbling with an inert gas, etc. Furthermore, since organometallic compounds gradually deteriorate even at room temperature, they must be stored at low temperatures. The method for forming an inorganic film according to the present invention is based on a simple dipping method, without using vacuum evaporation, sputtering, spraying, etc., and can simplify the coating and baking processes and equipment, so it can continuously cover a large area at low cost. In addition, by using a highly reactive organometallic compound, a nearly complete inorganic film can be formed with low-temperature heat treatment below 300°C, making it possible to form a film even on heat-sensitive substrates such as plastics, making it extremely effective. It's advantageous. Example 1 A solution was applied to a substrate by a dipping method, and a film was formed by heating at a low temperature. As the solvent for this solution, benzene purified by distillation under a nitrogen gas flow state was used, and as the solute, an organometallic compound consisting of cyclopentadiene or its derivative and a metal was used, and the concentration of this organometallic compound was approximately 5 wt%. The substrates used were glass plates, polyimide plates, and PET plates. Glass plates are washed with alkaline detergent and then UV (ultraviolet) irradiation. Polyimide plates and PET plates are washed with 150
The sample was heat-treated at ℃ for 10 minutes, and the precipitated oligomer was wiped off with an organic solvent. For dipping, use a dipping device at a dipping speed of approximately 25cm/min.
I went there. Nitrogen gas is used as the atmosphere, and residual
O 2 and H 2 O were kept below about 5 to 10 ppm. Heat treatment was performed using an infrared furnace in nitrogen, air, and oxygen atmospheres at a heating rate of 3 to 5°C/sec and a firing temperature of 100°C.
~400℃. All inorganic coatings after heat treatment had sufficient strength. After heat treatment, the inorganic film formed on the substrate is
Measured by line diffraction. The diffraction patterns of the oxide and metal appeared to overlap, but the metal peak became lower in the order of nitrogen, air, and oxygen. Along with that,
Conductivity also deteriorates. The electrical conductivity of the films fired in a nitrogen atmosphere is shown in Table 1 for the glass substrate, and in Table 2 for the films on the polyimide and PET substrates. Here, the reason why an oxide X-ray diffraction pattern appears in an inorganic film even under a nitrogen atmosphere is because a solution containing an organometallic compound is applied onto a substrate by a dipping method, and then until it is fired. It is thought that this is because oxygen was taken in between them.
【表】【table】
【表】【table】
【表】
実施例 2
アルキル金属を溶質として用い、成膜実験を行
つた。溶媒、基板、浸漬操作、焼成条件等は、実
施例1と同じである。
実験結果も実施例1とほぼ同様であつた。ガラ
ス基板のものの被膜の導電性を第3表に、PET
基板のものの被膜の導電性を第4表に示す。[Table] Example 2 A film formation experiment was conducted using an alkyl metal as a solute. The solvent, substrate, dipping operation, firing conditions, etc. are the same as in Example 1. The experimental results were also almost the same as in Example 1. Table 3 shows the conductivity of coatings on glass substrates.
The conductivity of the coating on the substrate is shown in Table 4.
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】
実施例 3
ベンゼン化合物、フエニル化合物を溶質として
用い、成膜実験を行つた。溶媒、基板、浸漬操
作、焼成条件等は、実施例1と同じである。
実験結果も実施例1とほぼ同様であつた。ガラ
ス基板のものの被膜の導電性を第5表に、ポリイ
ミド基板のものの被膜の導電性を第6表に示す。[Table] Example 3 A film formation experiment was conducted using a benzene compound and a phenyl compound as solutes. The solvent, substrate, dipping operation, firing conditions, etc. are the same as in Example 1. The experimental results were also almost the same as in Example 1. Table 5 shows the electrical conductivity of the coating on the glass substrate, and Table 6 shows the electrical conductivity of the coating on the polyimide substrate.
【表】【table】
この発明は以上説明したとおり、反応性の高い
所定の有機金属化合物を用いることにより、プラ
スチツク等の熱に弱い基板上に、高導電性を有
し、密着力も強い無機質被膜を低温加熱で形成で
きるという効果がある。
As explained above, this invention enables the formation of an inorganic film with high conductivity and strong adhesion on heat-sensitive substrates such as plastics by low-temperature heating by using a predetermined highly reactive organometallic compound. There is an effect.
Claims (1)
し、オリゴマーの析出、熱収縮を飽和させ、析出
したオリゴマーを有機溶媒で拭き取り、次いで、
該基板に シクロペンタジエニル基とSn、U、Tl、
Mo、In、Ni、Th、Pb、Ti、Zn、Hg、Biか
ら選ばれる1種の金属とからなる有機金属化合
物、 メチルシクロペンタジエニル基とIn、Ni、
Sn、Zn、La、Mgから選ばれる1種の金属と
からなる有機金属化合物、 低級アルキル基とAl、As、B、Be、Bi、
Cd、Ga、Hg、In、P、Sb、Se、Te、Znから
選ばれる1種の金属とからなる有機金属化合
物、 (C6H6)2Cr、(C6H6)2Moまたは
(C6H5)2SnH2から選ばれる有機金属化合物 よりなる有機金属化合物の群より選ばれる1種ま
たは2種以上と、 酸素と水分が除去された有機溶媒と からなる溶液を、残留酸素、水分が10ppm以下に
制御された不活性ガス雰囲気下で付着させ、該付
着溶液を該基板と共に昇温速度2〜50℃/秒、最
高保持温度300℃以下で加熱することを特徴とす
る無機質被膜の形成方法。[Claims] 1. Heating the plastic substrate to the highest heat-resistant temperature to saturate oligomer precipitation and heat shrinkage, wiping off the precipitated oligomer with an organic solvent, and then
The substrate has a cyclopentadienyl group and Sn, U, Tl,
An organometallic compound consisting of a metal selected from Mo, In, Ni, Th, Pb, Ti, Zn, Hg, Bi, a methylcyclopentadienyl group and In, Ni,
Organometallic compound consisting of one metal selected from Sn, Zn, La, Mg, lower alkyl group and Al, As, B, Be, Bi,
Organometallic compound consisting of one metal selected from Cd, Ga, Hg, In, P, Sb, Se, Te, Zn, (C 6 H 6 ) 2 Cr, (C 6 H 6 ) 2 Mo or ( A solution consisting of one or more selected from the group of organometallic compounds selected from C 6 H 5 ) 2 SnH 2 and an organic solvent from which oxygen and moisture have been removed is heated to remove residual oxygen, An inorganic coating characterized by being deposited under an inert gas atmosphere with moisture content controlled to be 10 ppm or less, and heating the deposition solution together with the substrate at a heating rate of 2 to 50°C/sec and a maximum holding temperature of 300°C or less. How to form.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2204486A JPS62182279A (en) | 1986-02-05 | 1986-02-05 | Formation of inorganic film and solution therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2204486A JPS62182279A (en) | 1986-02-05 | 1986-02-05 | Formation of inorganic film and solution therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62182279A JPS62182279A (en) | 1987-08-10 |
JPH0555600B2 true JPH0555600B2 (en) | 1993-08-17 |
Family
ID=12071935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2204486A Granted JPS62182279A (en) | 1986-02-05 | 1986-02-05 | Formation of inorganic film and solution therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62182279A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190309422A1 (en) * | 2018-04-06 | 2019-10-10 | Versum Materials Us, Llc | Spin-On Metallization |
JP2021024846A (en) * | 2019-08-09 | 2021-02-22 | 株式会社高純度化学研究所 | Bis(ethylcyclopentadienyl)tin |
WO2021029215A1 (en) * | 2019-08-09 | 2021-02-18 | 株式会社高純度化学研究所 | Bis(ethylcyclopentadienyl) tin, raw materials for chemical vapor deposition, method for producing thin film containing tin, and method for producing tin oxide thin film |
JP2021025121A (en) * | 2019-08-09 | 2021-02-22 | 株式会社高純度化学研究所 | Chemical vapor deposition raw material, method for manufacturing tin containing thin film and method for manufacturing tin oxide thin film |
KR20220052968A (en) * | 2019-08-29 | 2022-04-28 | 시스타 케미칼즈 유엘씨 | Dry Etching and Deposition Reactor for Organometallic Compounds and Tin Oxide Films for Deposition of High-Purity Tin Oxide |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5819746B2 (en) * | 1978-03-31 | 1983-04-19 | 昭栄化学工業株式会社 | Method of forming ruthenium film |
JPS5524923A (en) * | 1978-08-08 | 1980-02-22 | Teijin Ltd | Manufacture of transparent titanium oxide film |
DE2941896A1 (en) * | 1979-10-17 | 1981-04-30 | Ruhrchemie Ag, 4200 Oberhausen | METHOD FOR PRODUCING ADHESIVE LAYERS ON POLYOLEFINES |
JPH0235029B2 (en) * | 1980-11-04 | 1990-08-08 | Seiko Epson Corp | SEIMITSUSHUDOBUHIN |
JPS5948865B2 (en) * | 1981-09-21 | 1984-11-29 | 科学技術庁無機材質研究所長 | Multicolor coloring method for metal surfaces |
JPS58141389A (en) * | 1982-02-16 | 1983-08-22 | Kamaya Kagaku Kogyo Kk | Decorating method |
JPS60217619A (en) * | 1984-04-12 | 1985-10-31 | Yaskawa Electric Mfg Co Ltd | Manufacture of rigid magnetic film |
JPS60243279A (en) * | 1984-05-14 | 1985-12-03 | Alps Electric Co Ltd | Formation of transparent electrode |
-
1986
- 1986-02-05 JP JP2204486A patent/JPS62182279A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62182279A (en) | 1987-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4252841A (en) | Process for producing transparent conductive film | |
CA3072159C (en) | Method for synthesis of films made of light-absorbing material with perovskite-like structure | |
JPH0555600B2 (en) | ||
JP2021510924A (en) | A method for producing a light absorbing film having a perovskite-like structure | |
JPS62114205A (en) | Manufacture of thick film electronic parts | |
JPH064497B2 (en) | Method for forming tin oxide film | |
JP4377003B2 (en) | Method for adjusting sheet resistance value of transparent conductive film and method for forming transparent conductive film | |
JP4522566B2 (en) | Method for adjusting sheet resistance value of transparent conductive film | |
EP0316452B1 (en) | Process for preparing thin film of base metal and application of the same | |
JPH0593915A (en) | Pattern formation | |
JP4495798B2 (en) | Method for forming transparent conductive film | |
JPS5930723A (en) | Manufacture of transparent tin oxide film | |
JPH0699809B2 (en) | Method for forming sulfide thin film | |
JP2702713B2 (en) | Method for producing base metal thin film | |
JPH0467285B2 (en) | ||
JPS639327B2 (en) | ||
JPS6222312A (en) | Formation of transparent conducting film | |
JPH0193004A (en) | Transparent conductive glass substrate and its manufacture | |
JP2752968B2 (en) | Method of forming silica-based coating | |
JPH05217814A (en) | Manufacture of laminated film | |
JPH0572685B2 (en) | ||
JPS62267476A (en) | Composition for forming transparent electrically conductive coated film | |
JPS58110427A (en) | Manufacture of transparent tin oxide film | |
JPS60243279A (en) | Formation of transparent electrode | |
JPS60135576A (en) | Production of thin film consisting of cadmium-tin composite oxide |