JPH0533765A - Swash plate type compressor - Google Patents
Swash plate type compressorInfo
- Publication number
- JPH0533765A JPH0533765A JP3187851A JP18785191A JPH0533765A JP H0533765 A JPH0533765 A JP H0533765A JP 3187851 A JP3187851 A JP 3187851A JP 18785191 A JP18785191 A JP 18785191A JP H0533765 A JPH0533765 A JP H0533765A
- Authority
- JP
- Japan
- Prior art keywords
- swash plate
- discharge
- passage
- drive shaft
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B25/00—Multi-stage pumps
- F04B25/04—Multi-stage pumps having cylinders coaxial with, or parallel or inclined to, main shaft axis
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Compressor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、車両空調用に供して好
適な斜板式圧縮機の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a swash plate type compressor suitable for vehicle air conditioning.
【0002】[0002]
【従来の技術】従来の斜板式圧縮機として、特開平3−
92587号公報記載のものが知られている。この斜板
式圧縮機では、一対のシリンダブロックが前後に対設さ
れて結合部分に帰還冷媒の吸入口と連通する斜板室が形
成されており、シリンダブロックはその両外端をそれぞ
れ弁板を介して前後のハウジングにより閉塞されてい
る。両ハウジングには、共に吸入室及び吐出室が形成さ
れ、後部の吐出室は吐出冷媒を吐出する吐出口と連通さ
れている。両シリンダブロックの共通中心軸孔には駆動
軸が挿嵌支承されており、この駆動軸に固着された斜板
は斜板室内に回転可能に収容されている。また、同シリ
ンダブロックには駆動軸周りに平行状に配列した前後複
数対のボアが形成され、各ボアにはシューを介して斜板
に係留された両頭形のピストンが直動自在に嵌入されて
いる。各弁板には、各ボアとの間に吸入弁を介して前後
の吸入室と連通する吸入ポート、及び吐出弁を介して前
後の吐出室と連通する吐出ポートが形成されている。そ
して各シリンダブロックには、斜板室と前後の吸入室と
を連通する複数本の吸入通路及び前後の吐出室を連通す
る一本の吐出通路が形成されている。2. Description of the Related Art As a conventional swash plate type compressor, Japanese Patent Laid-Open No.
The one described in Japanese Patent No. 92587 is known. In this swash plate compressor, a pair of cylinder blocks are provided in front and back, and a swash plate chamber communicating with the return refrigerant suction port is formed in the coupling portion, and both outer ends of the cylinder block are connected via valve plates. It is closed by the front and rear housings. A suction chamber and a discharge chamber are formed in both housings, and the rear discharge chamber is in communication with a discharge port for discharging the discharged refrigerant. A drive shaft is inserted and supported in a common central shaft hole of both cylinder blocks, and a swash plate fixed to the drive shaft is rotatably accommodated in a swash plate chamber. In addition, a plurality of pairs of front and rear bores arranged in parallel around the drive shaft are formed in the cylinder block, and a double-headed piston moored to a swash plate is linearly inserted into each bore via shoes. ing. Each valve plate is formed with a suction port communicating with the front and rear suction chambers via a suction valve, and a discharge port communicating with the front and rear discharge chambers via a discharge valve between the respective valve plates. Each cylinder block is formed with a plurality of suction passages that communicate the swash plate chamber and the front and rear suction chambers, and one discharge passage that communicates the front and rear discharge chambers.
【0003】この斜板式圧縮機では、吸入口から流入し
た帰還冷媒が斜板室に導入され、斜板室内に開口する各
吸入通路を介して前後の吸入室に導かれる。そして駆動
軸と共に回転する斜板を介してピストンが各ボア内を直
動することにより、両吸入室内の冷媒はそれぞれの吸入
ポートから容積拡大途上の各ボア内に吸入され、次いで
容積縮小途上の各ボア内の圧縮冷媒はそれぞれの吐出ポ
ートから両吐出室に吐出される。このようにして吐出さ
れた圧縮冷媒は吐出通路を介して後部の吐出室に集めら
れ、同吐出室と連通する吐出口から冷凍回路に送出循環
される。In this swash plate type compressor, the return refrigerant flowing from the suction port is introduced into the swash plate chamber and is guided to the front and rear suction chambers through the respective suction passages opening in the swash plate chamber. Then, the piston directly moves in each bore through the swash plate that rotates together with the drive shaft, so that the refrigerant in both suction chambers is sucked from each suction port into each bore that is in the process of volume expansion, and then in the process of volume reduction. The compressed refrigerant in each bore is discharged from each discharge port into both discharge chambers. The compressed refrigerant discharged in this way is collected in the rear discharge chamber via the discharge passage, and is sent and circulated to the refrigeration circuit from the discharge port communicating with the discharge chamber.
【0004】[0004]
【発明が解決しようとする課題】さて、上述の斜板式圧
縮機において、吐出通路はシリンダブロック内の斜板室
を含む吸入経路と干渉しない位置に形成されるが、外郭
寸法など設計上の制限から必然的に同吸入経路及びボア
のごく近傍に配置せざるを得ない。このため、冷凍回路
から吸入口を経て、斜板室、各吸入通路を順次流動する
冷媒は、吐出通路を介して、高温化された圧縮冷媒の熱
影響を受けやすく、この影響によって加熱された冷媒は
圧縮により一層高温となって吐出される。その結果、か
かる高温の吐出冷媒の循環は、冷凍回路の負担を増加さ
せ、ひいては冷房能力を低下させる要因となる。In the swash plate type compressor described above, the discharge passage is formed at a position where it does not interfere with the suction passage including the swash plate chamber in the cylinder block, but due to design restrictions such as outer dimensions. Inevitably, it must be placed very close to the suction route and the bore. Therefore, the refrigerant that sequentially flows from the refrigeration circuit through the suction port, the swash plate chamber, and the respective suction passages is easily affected by the heat of the compressed refrigerant that has been heated to a high temperature through the discharge passage. Is discharged at a higher temperature due to compression. As a result, the circulation of the high-temperature discharged refrigerant increases the load on the refrigeration circuit, and eventually reduces the cooling capacity.
【0005】また、上記圧縮機では、冷媒ガス中に混在
させた潤滑油が吐出冷媒と共に回路に流出して、熱交換
不良に伴う冷凍効率の低下や圧縮機の潤滑不足が生じる
ことを防止するため、圧縮機の高圧部に油分離機構を内
装して分離された油成分を低圧部へ還流させる技術が知
られているが、油分離室それ自体にも相当のスペ−スを
必要とする結果、機体の大型化を免れえないという新た
な問題が指摘されている。Further, in the above compressor, it is possible to prevent the lubricating oil mixed in the refrigerant gas from flowing out into the circuit together with the discharged refrigerant, thereby causing a reduction in refrigeration efficiency and insufficient lubrication of the compressor due to poor heat exchange. For this reason, a technique is known in which an oil separation mechanism is installed in the high pressure part of the compressor to recirculate the separated oil component to the low pressure part, but the oil separation chamber itself also requires a considerable space. As a result, a new problem has been pointed out that the size of the aircraft is inevitable.
【0006】本発明は、吸入系への熱影響を可及的に回
避した吐出通路の形成と、簡潔的な油分離機構の装設と
を同時に達成することを、解決すべき技術課題とするも
のである。In the present invention, it is a technical problem to be solved to simultaneously achieve the formation of the discharge passage while avoiding the thermal influence on the suction system as much as possible and the simple installation of the oil separation mechanism. It is a thing.
【0007】[0007]
【課題を解決するための手段】本発明は上記課題解決の
ため、吐出通路が駆動軸内に穿設されて前後の吐出室を
連通する中空通路を含んで構成され、該中空通路の周壁
には軸方向に延びるスパイラル溝が刻設されるととも
に、少なくとも一方の吐出室と上記斜板室とは該スパイ
ラル溝によって分離移送された油成分を還流させる細孔
により連通されているという新規な技術手段を採用しい
る。According to the present invention, in order to solve the above-mentioned problems, a discharge passage is formed in a drive shaft to include a hollow passage communicating with front and rear discharge chambers, and a peripheral wall of the hollow passage. Is provided with a spiral groove extending in the axial direction, and at least one of the discharge chamber and the swash plate chamber are communicated with each other by a fine hole for returning the oil component separated and transferred by the spiral groove. Is adopted.
【0008】[0008]
【作用】したがって、一方の吐出室に吐出された圧縮冷
媒は、駆動軸内に穿設された中空通路を介して他方の吐
出室に導かれ、同吐出室内の圧縮冷媒と合流したのち、
吐出口を経由して冷凍回路へと送出されるが、このよう
に吐出通路を形成する中空通路がとくに駆動軸の内部に
穿設されているめ、吸入口から流入して斜板室を含む吸
入経路を流動する冷媒は、比較的離隔した関係位置にあ
る上記吐出通路(高温冷媒)からの熱影響を受けにく
く、無用な加熱は合理的に回避される。Therefore, the compressed refrigerant discharged into one of the discharge chambers is guided to the other discharge chamber through the hollow passage bored in the drive shaft, and merges with the compressed refrigerant in the discharge chamber.
Although it is delivered to the refrigeration circuit via the discharge port, since the hollow passage forming the discharge passage is especially bored inside the drive shaft, the suction passage including the swash plate chamber flows in from the suction port. The refrigerant flowing through the path is less likely to be affected by heat from the discharge passage (high-temperature refrigerant) located at a relatively separated relational position, and unnecessary heating is reasonably avoided.
【0009】また、圧縮冷媒が中空通路内を流動する
際、通路断面積の異なるスパイラル溝によって圧縮冷媒
には流れと直交する二次流が発生し、この二次流が溝壁
と干渉することにより圧縮冷媒中の油成分は分離され
る。そして分離された油成分は駆動軸の回転遠心力に支
えられつつスパイラル溝のリードに従って他方の吐出室
へと移送され、同吐出室の底部に蓄溜されたのち、冷媒
ガスの吹き抜けを許さない程度の細孔を介して斜板室に
還流されるので、再び吸入冷媒に混入して斜板、シユー
等の潤滑に供される。Further, when the compressed refrigerant flows in the hollow passage, a secondary flow which is orthogonal to the flow is generated in the compressed refrigerant due to the spiral grooves having different passage cross-sectional areas, and the secondary flow interferes with the groove wall. Thus, the oil component in the compressed refrigerant is separated. Then, the separated oil component is transferred to the other discharge chamber according to the lead of the spiral groove while being supported by the rotational centrifugal force of the drive shaft, and is stored in the bottom of the discharge chamber, and then the refrigerant gas is not allowed to blow through. Since it is returned to the swash plate chamber through the small pores, it is mixed with the suction refrigerant again and used for lubrication of the swash plate, the shoe, and the like.
【0010】[0010]
【実施例】以下、図に基づいて本発明を具体化した実施
例を説明する。図1において、前後に対設された一対の
シリンダブロック1、2は、その結合部分に帰還冷媒の
吸入口(図示せず)と連通する斜板室4が形成され、該
シリンダブロック1、2はその両外端をそれぞれ弁板
5、6を介して前部ハウジング7及び後部ハウジング8
により閉塞されている。これら前後のハウジング7、8
には、その外方域を占める環状の吸入室9、10及びそ
の内方域を占める円形状の吐出室11、12が区画形成
され(図2)、前部の吐出室11は後述する駆動軸18
の周辺を囲包する形態で配置されている。Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, a pair of cylinder blocks 1 and 2 arranged in front and back are provided with a swash plate chamber 4 communicating with an inlet (not shown) of a return refrigerant at a connecting portion thereof. Both outer ends of the front housing 7 and the rear housing 8 via the valve plates 5 and 6, respectively.
Is blocked by. Front and rear housing 7, 8
The annular suction chambers 9 and 10 occupying the outer region thereof and the circular discharge chambers 11 and 12 occupying the inner region thereof are defined and formed (FIG. 2), and the front discharge chamber 11 is driven later. Axis 18
It is arranged so as to surround the periphery of.
【0011】両シリンダブロック1、2の共通中心軸孔
にはラジアル軸受14、15及び封止装置16、17を
介して駆動軸18が挿嵌支承されており、この駆動軸1
8は前部の弁板5の貫通孔5cを貫通し、軸封装置19
を介して前部ハウジング7の外端側に延出されている。
駆動軸18には斜板室4内において回転可能に斜板23
が固着されており、この斜板23はスラスト軸受21、
22を介して両シリンダブロック1、2に挟持されてい
る。また、両シリンダブロック1、2には駆動軸18周
りに平行状に配列した前後複数対のボア1a、2aが形
成され、各ボア1a、2aには斜板23に一対のシュー
24、24を介して係留された両頭形のピストン25が
直動自在に嵌入されている。弁板5、6には、各ボア1
a、2aとの間に吸入弁26、27を介して前後の吸入
室9、10と連通する吸入ポート5a、6aとともに、
吐出弁30、31を介して前後の吐出室11、12と連
通する吐出ポート5b、6bが形成されている。そし
て、両シリンダブロック1、2の外方域には、斜板室4
と両吸入室9、10とを連通する複数本の吸入通路32
が通しボルト33を囲包して形成されている。なお、後
部の吐出室12は、弁板6に貫設された通孔6cによっ
てシリンダブロック2の上記中心軸孔と導通されてい
る。A drive shaft 18 is inserted into and supported by a common central shaft hole of both cylinder blocks 1 and 2 via radial bearings 14 and 15 and sealing devices 16 and 17.
8 passes through the through hole 5c of the valve plate 5 at the front part, and the shaft sealing device 19
Is extended to the outer end side of the front housing 7.
The swash plate 23 is rotatably attached to the drive shaft 18 in the swash plate chamber 4.
Is fixed to the thrust bearing 21.
It is sandwiched between both cylinder blocks 1 and 2 via 22. In addition, a plurality of pairs of front and rear bores 1a, 2a arranged in parallel around the drive shaft 18 are formed in both cylinder blocks 1, 2, and a pair of shoes 24, 24 are provided on a swash plate 23 in each bore 1a, 2a. A double-headed piston 25 moored through is fitted in such a way that it can move linearly. Each valve plate 5 and 6 has a bore 1
a, 2a, and suction ports 5a, 6a communicating with front and rear suction chambers 9, 10 via suction valves 26, 27,
Discharge ports 5b and 6b that communicate with the front and rear discharge chambers 11 and 12 via the discharge valves 30 and 31 are formed. The swash plate chamber 4 is provided outside the cylinder blocks 1 and 2.
And a plurality of suction passages 32 that communicate the suction chambers 9 and 10 with each other.
Is formed by surrounding the through bolt 33. The rear discharge chamber 12 is electrically connected to the central shaft hole of the cylinder block 2 by a through hole 6c penetrating the valve plate 6.
【0012】さて、本発明圧縮機の特徴的な構成である
吐出通路40は、駆動軸18内の軸心上に穿設されてそ
の一方は該駆動軸18の後端面において中心軸孔内に開
口41aし、かつその他方は駆動軸18を半径方向に貫
く貫孔41bを介して前部の吐出室11内に開口する中
空通路41と、該前部の吐出室11と冷凍回路に連なる
吐出口28とを結ぶ通路42とによって形成されてい
る。The discharge passage 40, which is a characteristic construction of the compressor of the present invention, is bored on the axial center of the drive shaft 18, and one of the discharge passages 40 is formed in the central shaft hole at the rear end face of the drive shaft 18. A hollow passage 41 that opens into the front discharge chamber 11 via a through hole 41b that penetrates the drive shaft 18 in the radial direction, and a discharge passage that is connected to the front discharge chamber 11 and the refrigeration circuit. It is formed by a passage 42 connecting the outlet 28.
【0013】そして該中空通路41の周壁には、駆動軸
18の回転に対して圧縮冷媒の流れに順方向となる向き
のリードを有して軸方向に延びるスパイラル溝50が刻
設されており、該スパイラル溝50の終末部は通孔51
を介して軸封室13に開口されている。52は該スパイ
ラル溝50によって分離移送され、前部の吐出室11に
蓄溜された油成分を斜板室4へ還流させる細孔であっ
て、実質的に冷媒ガスの吹き抜けを許さない程度の孔径
が選択されている。なお、上記スパイラル溝50によっ
て分離された油成分は、例えば図に示す導孔53を介し
て適宜ラジアル軸受部分に積極供給することも可能であ
る。On the peripheral wall of the hollow passage 41, there is formed a spiral groove 50 having an axially extending lead having a direction in which the compressed refrigerant flows in the forward direction with respect to the rotation of the drive shaft 18. , The end of the spiral groove 50 is a through hole 51.
It is opened to the shaft sealing chamber 13 via. Reference numeral 52 is a pore for separating and transferring by the spiral groove 50 and for returning the oil component accumulated in the discharge chamber 11 at the front portion to the swash plate chamber 4 and having a diameter that does not substantially allow blow-through of the refrigerant gas. Is selected. The oil component separated by the spiral groove 50 can be positively supplied to the radial bearing portion appropriately through, for example, the guide hole 53 shown in the drawing.
【0014】したがって、冷凍回路より図示しない吸入
口を介して帰還した冷媒は斜板室4に導入され、引続き
各吸入通路32を介して前後の吸入室9、10に導かれ
る。そして、駆動軸18と共に回転する斜板23を介し
て各ピストン25が各ボア1a、2a内を直動すること
により、吸入室9、10内の冷媒はそれぞれ弁板5、6
の吸入ポート5a、6aを介して容積拡大途上の各ボア
1a、2a内に吸入され、次いで、容積縮小途上の各ボ
ア1a、2aから圧縮冷媒がそれぞれ弁板5、6の吐出
ポート5b、6bを介して前後の吐出室11、12に吐
出される。このようにして後部の吐出室12内に吐出さ
れた圧縮冷媒は開口41aから中空通路41内に導か
れ、貫孔41bを介して前部の吐出室11内の圧縮冷媒
と合流し、さらに通路42を経由して吐出口28から冷
凍回路に送出循環される。Therefore, the refrigerant returned from the refrigeration circuit through the suction port (not shown) is introduced into the swash plate chamber 4, and is subsequently guided to the front and rear suction chambers 9 and 10 through the respective suction passages 32. Then, the pistons 25 linearly move in the bores 1a, 2a through the swash plate 23 that rotates together with the drive shaft 18, so that the refrigerant in the suction chambers 9, 10 is discharged into the valve plates 5, 6 respectively.
Via the suction ports 5a, 6a of the valve, the compressed refrigerant is sucked into the respective bores 1a, 2a in the process of expanding the volume, and then the compressed refrigerant is discharged from the respective bores 1a, 2a in the process of reducing the volume of the valve plates 5, 6 respectively. It is discharged to the front and rear discharge chambers 11 and 12 via. In this way, the compressed refrigerant discharged into the rear discharge chamber 12 is guided into the hollow passage 41 from the opening 41a, merges with the compressed refrigerant inside the front discharge chamber 11 through the through hole 41b, and further passes through the passage. The gas is discharged and circulated from the discharge port 28 to the refrigeration circuit via 42.
【0015】このように、吐出通路40を形成する中空
通路41がとくに駆動軸18の内部に穿設されているた
め、斜板室4及び吸入通路32を流動する吸入冷媒は、
比較的離隔した関係位置にある吐出通路40(高温冷
媒)からの熱影響を受けにくく、無用な加熱は合理的に
回避されるとともに、ボア1a、2aに対する圧力影響
つまり圧縮変形も同様に回避される。As described above, since the hollow passage 41 forming the discharge passage 40 is formed especially inside the drive shaft 18, the suction refrigerant flowing in the swash plate chamber 4 and the suction passage 32 is
It is less susceptible to heat from the discharge passage 40 (high-temperature refrigerant) at a relatively distant relation, and unnecessary heating is reasonably avoided, and pressure influence on the bores 1a, 2a, that is, compressive deformation is similarly avoided. It
【0016】また、圧縮冷媒が中空通路41内を流動す
る際、通路断面積の異なるスパイラル溝50によって圧
縮冷媒には流れと直交する二次流が発生し、この二次流
が溝壁と干渉することにより圧縮冷媒中に混在する油成
分は分離される。そして分離された油成分は駆動軸18
の回転遠心力に支えられつつスパイラル溝50のリード
に従って移送され、通孔51及び軸封室13を経て前部
の吐出室11に蓄溜されたのち、細孔52を介して斜板
室4へと還流されるので、再び吸入冷媒に混入して斜板
23、シユー24等の潤滑に供される。When the compressed refrigerant flows in the hollow passage 41, a secondary flow orthogonal to the flow is generated in the compressed refrigerant due to the spiral grooves 50 having different passage cross-sectional areas, and the secondary flow interferes with the groove wall. By doing so, the oil component mixed in the compressed refrigerant is separated. The separated oil component is the drive shaft 18
While being supported by the rotational centrifugal force of the spiral groove 50, it is transferred along the lead of the spiral groove 50, is stored in the discharge chamber 11 at the front part through the through hole 51 and the shaft sealing chamber 13, and is then transferred to the swash plate chamber 4 through the pore 52. As a result, the swash plate 23, the shoe 24, and the like are mixed with the suction refrigerant again and used for lubrication.
【0017】なお、上述の実施例は、吐出通路40が中
空通路41と、前部の吐出室11と吐出口28とを結ぶ
通路42とによって形成され、中空通路41内の圧縮冷
媒の流れが後部の吐出室12から前部の吐出室11に向
う構成について説明したが、例えば後部の吐出室12と
吐出口とを結ぶ通路を含んで吐出通路40を形成し、中
空通路41内の圧縮冷媒が前部の吐出室11から後部の
吐出室12に向って流動するよう構成することもでき
る。その場合は、吐出口と連なる通路を後部の吐出室1
2の中心から偏在した位置に開口させ、スパイラル溝5
0によって分離移送された油成分が一旦後部の吐出室1
2の壁面に衝突変向し、重力により該吐出室12の下底
部に蓄溜されるよう配慮することが望ましい。勿論、蓄
溜された油成分が上述と同様の細孔52を介して斜板室
4へ還流されることは改めて説明するまでもない。In the above-described embodiment, the discharge passage 40 is formed by the hollow passage 41 and the passage 42 connecting the discharge chamber 11 and the discharge port 28 in the front portion, and the flow of the compressed refrigerant in the hollow passage 41 is Although the configuration from the rear discharge chamber 12 to the front discharge chamber 11 has been described, for example, the discharge passage 40 is formed to include the passage connecting the rear discharge chamber 12 and the discharge port, and the compressed refrigerant in the hollow passage 41 is formed. Can also be configured to flow from the front discharge chamber 11 toward the rear discharge chamber 12. In that case, the passage communicating with the discharge port is provided in the discharge chamber 1 at the rear.
The spiral groove 5 is opened at a position eccentrically located from the center of 2.
The oil component separated and transferred by 0 is temporarily discharged from the discharge chamber 1 at the rear part.
It is desirable to consider that the wall surface of the discharge chamber 12 collides with the wall surface of No. 2 and is accumulated in the lower bottom portion of the discharge chamber 12 by gravity. Of course, it goes without saying that the stored oil component is recirculated to the swash plate chamber 4 through the pores 52 similar to the above.
【0018】また、上記スパイラル溝50を単なる環状
溝に置換え、分離された油成分を上記導孔53を通じて
ラジアル軸受部分にのみ供給するようにしても、相応の
潤滑効果を期待することができる。Even if the spiral groove 50 is replaced with a simple annular groove and the separated oil component is supplied only to the radial bearing portion through the guide hole 53, a corresponding lubricating effect can be expected.
【0019】[0019]
【発明の効果】以上詳述したように本発明の圧縮機は、
吐出通路が駆動軸内に穿設されて前後の吐出室を連通す
る中空通路を含んで構成されており、吸入冷媒に及ぼす
吐出通路の熱影響は合理的に回避されて、冷凍回路には
比較的低温の吐出冷媒が循環される結果、冷凍回路の負
担は小さく、冷房能力を好適に維持することができる。As described above in detail, the compressor of the present invention is
The discharge passage is bored in the drive shaft and includes a hollow passage that connects the front and rear discharge chambers. As a result of the circulation of the discharge refrigerant at an extremely low temperature, the load on the refrigeration circuit is small, and the cooling capacity can be preferably maintained.
【0020】しかも、駆動軸の内部を吐出通路として活
用しているため、軽量小型化と同時にシリンダブロック
を含む主要素の設計上の自由度を拡張させることができ
る。さらに、中空通路の周壁に形成したスパイラル溝に
より流動冷媒中の油成分を分離移送し、これを吐出室及
び細孔を経由して積極的に斜板室へ還流させるようにし
たものであるから、特別なスペ−スを要することなく、
回路の熱交換不良や圧縮機の潤滑不足を合理的に解消す
ることができる。Moreover, since the inside of the drive shaft is utilized as the discharge passage, it is possible to expand the degree of freedom in designing the main elements including the cylinder block while reducing the size and weight. Furthermore, since the oil component in the flowing refrigerant is separated and transferred by the spiral groove formed on the peripheral wall of the hollow passage, the oil component is positively returned to the swash plate chamber through the discharge chamber and the pores. Without needing a special space
Poor heat exchange in the circuit and insufficient lubrication of the compressor can be reasonably resolved.
【図1】本発明の実施例に係る斜板式圧縮機の断面図FIG. 1 is a sectional view of a swash plate compressor according to an embodiment of the present invention.
【図2】図1の圧縮機におけるAーA線断面図FIG. 2 is a sectional view taken along the line AA of the compressor shown in FIG.
1、2はシリンダブロック、4は斜板室、7、8は前後
のハウジング、9、10は前後の吸入室、11、12は
前後の吐出室、18は駆動軸、23は斜板、25はピス
トン、28は吐出口、32は吸入通路、40は吐出通
路、41は中空通路、50はスパイラル溝、52は細孔1, 2 is a cylinder block, 4 is a swash plate chamber, 7 and 8 are front and rear housings, 9 and 10 are front and rear suction chambers, 11 and 12 are front and rear discharge chambers, 18 is a drive shaft, 23 is a swash plate, and 25 is Piston, 28 is discharge port, 32 is suction passage, 40 is discharge passage, 41 is hollow passage, 50 is spiral groove, 52 is fine hole
───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹本 昇司 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoji Takemoto 2-chome, Toyota-cho, Kariya city, Aichi stock company Toyota Industries Corp.
Claims (1)
する斜板室が形成されたシリンダブロックと、少なくと
も各々吐出室を有して該シリンダブロックの両外端を閉
塞する前後のハウジングと、上記シリンダブロックの中
心軸孔に挿嵌支承され、かつ延在端が前部ハウジング内
で軸封された駆動軸と、該駆動軸に固着されて上記斜板
室内に回転可能に収容された斜板と、該斜板にシューを
介して係留され各ボア内を直動する両頭形のピストンと
を備え、上記吸入口から流入した冷媒を該斜板室を含む
吸入経路を介して各ボア内に吸入し、圧縮された各ボア
内の冷媒を上記前後の吐出室及び吐出通路を介して吐出
口から送出するように構成した斜板式圧縮機において、
上記吐出通路は上記駆動軸内に穿設されて上記前後の吐
出室を連通する中空通路を含んでなり、該中空通路の周
壁には軸方向に延びるスパイラル溝が刻設されるととも
に、少なくとも一方の吐出室と上記斜板室とは該スパイ
ラル溝によって分離移送された油成分を還流させる細孔
により連通されていることを特徴とする斜板式圧縮機。Claim: What is claimed is: 1. A cylinder block having a plurality of bores and a swash plate chamber communicating with the suction port, and at least respective discharge chambers for connecting both outer ends of the cylinder block. The housing before and after closing, the drive shaft inserted into and supported by the central shaft hole of the cylinder block, and the extended end of which is sealed in the front housing, and the drive shaft fixedly attached to the drive shaft into the swash plate chamber. An intake path including a swash plate rotatably accommodated and a double-headed piston moored to the swash plate via a shoe and directly moving in each of the bores, and the refrigerant flowing from the intake port including the swash plate chamber In a swash plate compressor configured to be sucked into each of the bores through and to discharge the compressed refrigerant in each of the bores from the discharge port through the front and rear discharge chambers and the discharge passage,
The discharge passage includes a hollow passage that is bored in the drive shaft and connects the front and rear discharge chambers, and a spiral groove extending in the axial direction is formed on the peripheral wall of the hollow passage, and at least one of the hollow passages is formed. The swash plate type compressor is characterized in that the discharge chamber and the swash plate chamber are communicated with each other by pores that return the oil component separated and transferred by the spiral groove.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3187851A JPH0533765A (en) | 1991-07-26 | 1991-07-26 | Swash plate type compressor |
KR1019920011068A KR960004242B1 (en) | 1991-07-26 | 1992-06-25 | Swash plate type compressor |
US07/917,451 US5181834A (en) | 1991-07-26 | 1992-07-21 | Swash plate type compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3187851A JPH0533765A (en) | 1991-07-26 | 1991-07-26 | Swash plate type compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0533765A true JPH0533765A (en) | 1993-02-09 |
Family
ID=16213331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3187851A Pending JPH0533765A (en) | 1991-07-26 | 1991-07-26 | Swash plate type compressor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH0533765A (en) |
KR (1) | KR960004242B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7547198B2 (en) | 2003-03-18 | 2009-06-16 | Kabushiki Kaisha Toyota Jidoshokki | Double-headed piston type compressor |
KR101069035B1 (en) * | 2007-06-07 | 2011-09-29 | 한라공조주식회사 | Compressor |
-
1991
- 1991-07-26 JP JP3187851A patent/JPH0533765A/en active Pending
-
1992
- 1992-06-25 KR KR1019920011068A patent/KR960004242B1/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7547198B2 (en) | 2003-03-18 | 2009-06-16 | Kabushiki Kaisha Toyota Jidoshokki | Double-headed piston type compressor |
KR101069035B1 (en) * | 2007-06-07 | 2011-09-29 | 한라공조주식회사 | Compressor |
Also Published As
Publication number | Publication date |
---|---|
KR930002672A (en) | 1993-02-23 |
KR960004242B1 (en) | 1996-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3085514B2 (en) | Compressor | |
US4403921A (en) | Multi-cylinder variable delivery compressor | |
US5702236A (en) | Reciprocating piston type compressor having a discharge chamber with a plurality of pulsation attenuating subchambers | |
US5181834A (en) | Swash plate type compressor | |
JP3855940B2 (en) | Lubrication structure in a compressor | |
JPH0613867B2 (en) | Swash plate type compressor | |
JP4016556B2 (en) | Compressor | |
KR19980086971A (en) | Refrigerant compressor | |
KR20030053444A (en) | Compressor and lubrication method thereof | |
JP2007205238A (en) | Refrigerant compressor | |
US5567137A (en) | Scroll compressor with shaft seal lubrication | |
KR100235511B1 (en) | Double-headed piston type compressor | |
JPH0533765A (en) | Swash plate type compressor | |
JP3994220B2 (en) | Screw compressor | |
JPH0968161A (en) | Compressor | |
KR20000047339A (en) | Oil separator including compressor | |
JPS6310315B2 (en) | ||
JPH04129886U (en) | Variable capacity rocking plate compressor | |
JP3144616B2 (en) | Swash plate compressor | |
KR101713322B1 (en) | Swash plate type compressor | |
JPS63280876A (en) | Lubricating mechanism of swash plate type compressor | |
JPH09209928A (en) | Swash plate type compressor | |
KR101059063B1 (en) | Oil Separation Structure of Compressor | |
JP2000027756A (en) | Compressor | |
CN107709771A (en) | Compressor |