【考案の詳細な説明】
(産業上の利用分野)
本考案は、熱転写方法において有用である感熱
転写シートに関し、更に詳しくは、高温転写にお
いても基材シートの良好な剥離性を有する感熱転
写シートに関する。
(従来の技術)
従来、基材シートの片面に、剥離層、絵柄層お
よび感熱接着剤層を順次設け、これを紙、合成樹
脂成形品、金属、木材、陶磁器等の表面に重ね
て、裏面から加圧加熱し、絵柄層を剥離層および
感熱接着剤層とともに被転写材に転写する技術は
公知である。
(考案が解決しようとしている問題点)
上記従来技術における感熱転写シートは、多く
の場合にポリエステル製の基材シートの一方の面
に、剥離層、絵柄層および感熱接着剤層を設けて
形成されている。
これら感熱転写シートは種々の被転写材に簡便
に各種絵柄を付与し得るものであるが、その転写
に際しては転写温度を十分に管理する必要があ
る。すなわち、低すぎる温度では十分な転写がで
きず、一方、転写温度が高いときは、剥離層が軟
化あるいは溶融して基材シートに強く接着して一
体化し、転写後の基材シートの剥離が困難とな
る。特にこのような感熱転写シートを、合成樹脂
の成形時に金型面に設けて合成樹脂の成形と同時
に転写を行う場合には必然的に高い温度にさらさ
れるため、上記の如き問題が特に重要となつてい
る。
従つて、高温の転写温度でも転写後容易に基材
シートが剥離できる感熱転写シートが要望されて
いる。
本考案は、上述の如き従来技術の問題点を解決
すべく鋭意研究の結果、従来の感熱転写シートの
基材シートの表面に硬化樹脂層を形成することに
よつて、高温転写時においても容易に基材シート
を剥離することができる感熱転写シートを完成し
た。
(問題点を解決するための手段)
すなわち、本考案は、基材シートの片面に、硬
化樹脂層、剥離層、絵柄層および感熱接着剤層を
順次設けてなり、上記硬化樹脂層がアクリル変性
メラミン樹脂又はエーテル化変性メラミン樹脂か
らなることを特徴とする感熱転写シートである。
本考案を本考案の一実施例を示す添付図面を参
照して更に具体的に説明すると、第1図は本考案
の感熱転写シートの構造を図解的に示す断面図で
あり、第2図は本発明の感熱転写シートを用いる
転写方法を図解的に示す図である。
本考案の感熱転写シート10は、第1図に例示
する通り、基材シート1の一方の面に、まず、硬
化樹脂層2を設け、この硬化樹脂層の上に剥離層
3を設け、その上に絵柄層4を設け、更にその上
に感熱接着剤層5を設けることにより形成するこ
とができる。
このような感熱転写シート10の構成のうち、
硬化樹脂層2を除く他の構成は従来公知の構成で
よい。
本考案の主たる特徴は、上記感熱転写シート1
0の構成において、従来公知の感熱転写シートの
基材シートと剥離層との間に硬化樹脂層2を設け
た点である。
上記本考案の感熱転写シート10に使用する基
材シート1としては、ポリエチレンテレフタレー
ト、ポリプロピレン等の合成樹脂シート、各種の
加工紙等、従来技術において感熱転写シートの基
材シートとして使用されているものはいずれも使
用することができる。その厚さは一般的には10〜
100μm程度であり、好ましくは20〜50μm程度で
ある。本考案において特に好ましいものはポリエ
チレンテレフタレートシートまたはフイルムであ
る。
上記基材シート1の表面に設ける硬化樹脂層2
は、150〜250℃程度の温度では軟化したり溶融し
たりしない被膜を形成し得る硬化製樹脂液から形
成することができる。このような硬化製樹脂とし
ては、アクリル変性メラミン樹脂及びエーテル化
変性メラミン樹脂が挙げられる。
これらの硬化製樹脂からなる硬化樹脂層2は、
これらの樹脂を必要に応じて適当な溶剤に溶解し
て塗工液またはインクを調製し、これを基材シー
ト1の表面にベタ印刷またはコーテイングし、乾
燥し、必要に応じて熱処理を行つてを形成する。
このような硬化樹脂層2の厚さは0.5〜5μm程度
が一般的である。
このようにして形成された硬化樹脂層2は十分
に三次元的に架橋した層であるため、転写時の温
度が高くなつても軟化したり溶融することがな
く、従つて剥離層3と一体化することがなく、転
写後の基材シートの剥離が容易である。
このような硬化樹脂層2は、転写後も基材シー
ト1に密着しているように形成する。そのために
は、基材シート1と硬化樹脂層2との接着力を、
硬化樹脂層2と剥離層3との接着力より大となる
ように各々の材料を選択したり、基材シートの表
面を粗面化したり、あるいは基材シートの表面に
プライマー層(図示なし)を設ける等の任意の手
段を施せばよい。
上記の硬化樹脂層2の面に設ける剥離層3は、
転写の際に感熱接着剤5および絵柄層4とともに
基材シート1上の硬化樹脂層2から剥離し、転写
後は、転写した絵柄層4を保護する作用をするも
のである。
このような剥離層3の材料および形成方法自体
は従来公知の材料および方法を用いて行うことが
でき、例えば、アクリル系樹脂、塩化ビニル系樹
脂、セルロース系樹脂、ゴム系樹脂、ウレタン系
樹脂、ポリエステル系樹脂、酢酸ビニル系樹脂、
エチレン−酢酸ビニル系樹脂等の如きホモポリマ
ー、コポリマーあるいはこれらの混合物等の有機
溶剤溶液あるいは分散液を、既知のコーテイング
方式、例えば、グラビア法、スクリーン印刷法、
ロールコーター法、スプレーコート法、フローコ
ート法、ナイフコート法、エアナイフコート法等
により、一般的には乾燥膜厚で0.1〜5μm、好ま
しくは0.3〜2μmの厚さに塗布し、乾燥して形成
される。
上記の如き剥離層3上に形成する絵柄層4は、
転写後に被転写材に実質上の絵柄を被転写材6に
与えるものであり、従来公知の同様目的用の各種
のインキがそのまま使用できる。更に具体的に
は、上記の剥離層3の形成に使用したと同様なバ
インダー樹脂中に、各種の顔料あるいは染料等を
練込みまたは混合してグラビアインキ、オフセツ
トインキ、シルクスクリーンインキ等を調製し、
既知のグラビア印刷、オフセツト印刷、シルクス
クリーン印刷、グラビアオフセツト印刷等、任意
の印刷方法により形成することができる。
このように形成する絵柄層4は、全面印刷でも
部分的印刷でもよいのは当然である。
上記の絵柄層4の上に形成する感熱接着剤層5
は、通常の状態では粘着性を示さないが、加熱に
よつて粘着性を発生し、転写に際しては前記の剥
離層3および絵柄層4とともに被転写材表面に転
写させるものである。このような感熱接着剤層5
それ自体も、従来同様目的に使用されている材料
および方法を用いることにより形成することがで
き、具体的には、各種の熱可塑性合成樹脂の有機
溶剤溶液を前述の如き方法で絵柄層4上に塗布し
て形成することができる。このような感熱接着剤
層5は、一般的には約0.2〜10μmの厚さであり、
好ましくは約0.5〜3μmの厚さである。また、被
転写材が、ポリスチレン、ABS,ASあるいはア
クリル樹脂等の如き合成樹脂成形品である場合に
は、アクリル系樹脂から感熱接着剤層5を形成す
るのが好ましい。
(作用・効果)
以上の如き本考案の感熱転写シートは、紙、合
成樹脂成形品、フイルム、シート、金属、木材そ
の他任意の一般的な被転写材の印刷に有用であ
り、これら被転写材への転写方法自体は大2図に
示す如く従来公知の方法に準じて行うことができ
る。
特に、本考案の感熱転写シートは、高い転写温
度においても基材シートと剥離層との一体化が生
じることがないので、高い温度に遭遇しやすい用
途、例えば成形と同時に絵付を行う合成樹脂の各
種成形方法あるいは被転写面が複雑で、基材シー
トの剥離時に転写層も同時に剥離され易いような
被転写材の絵付に有用である。
次に実施例をあげて本考案を更に具体的に説明
する。
実施例 1
厚さ38μmのポリエステルフイルム(東レ製、
商品名「Q−30」)の一方の表面に、アクリル変
性メラミン系樹脂からなる塗工液(大日精化工業
製、商品名「EX−114D」)によりグラビアコー
ト法により塗布および乾燥し190℃で10秒間熱処
理して厚さ0.5μmの硬化樹脂層を形成した。次
に、塩化ビニル−酢酸ビニルコポリマー−アクリ
ル系樹脂液(昭和インキ工業所製)から、グラビ
アコート法により厚さ1μmの剥離層を形成し、次
いで、シルクスクリーン印刷方法により、塩化ビ
ニル−酢酸ビニルコポリマー−アクリル系樹脂イ
ンキ(東洋インク製、商品名「#8000シリーズ」)
により、絵柄層を形成し、次いで、塩化ビニル−
酢酸ビニルコポリマー−アクリル系樹脂液(諸星
インク製、商品名「VTPメジユーム」)をグラビ
アコート法により塗布および乾燥して、1μmの厚
さの感熱接着剤層を形成し、本考案の感熱転写シ
ートを得た。
上記の本考案の感熱転写シートを用いて、アク
リル樹脂プレートに250℃の表面温度のロールで
転写を行つたところ、優れた転写とともに基材シ
ートの剥離が容易であつた。これに対して、硬化
樹脂層を設けず、他は上記と同様にして形成した
感熱転写シートの場合は、転写時の温度で基材シ
ートと剥離層とが一体化してしまい、転写後の基
材シートの剥離は困難であつた。
実施例 2
実施例1における変性メラミン樹脂に代えて、
エーテル化変性メラミン樹脂を使用して硬化樹脂
層を形成し、他は実施例1と同様にして、本発明
の感熱転写シートを得た、この感熱転写シートも
実施例1におけると同様な良好な基材シートの剥
離性を示した。 [Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a thermal transfer sheet useful in thermal transfer methods, and more specifically, to a thermal transfer sheet that has good peelability from a base sheet even in high-temperature transfer. Regarding. (Prior art) Conventionally, a release layer, a pattern layer, and a heat-sensitive adhesive layer were sequentially provided on one side of a base sheet, and these were stacked on the surface of paper, synthetic resin molded product, metal, wood, ceramics, etc., and then the back side was layered. A technique for transferring a pattern layer to a transfer material together with a release layer and a heat-sensitive adhesive layer by applying pressure and heating is known. (Problem to be solved by the invention) The heat-sensitive transfer sheet in the above-mentioned conventional technology is often formed by providing a release layer, a pattern layer, and a heat-sensitive adhesive layer on one side of a polyester base sheet. ing. Although these heat-sensitive transfer sheets can easily impart various patterns to various transfer materials, it is necessary to sufficiently control the transfer temperature during transfer. In other words, if the temperature is too low, sufficient transfer will not be possible, while if the transfer temperature is too high, the release layer will soften or melt and strongly adhere to and integrate with the base sheet, making it difficult to peel off the base sheet after transfer. It becomes difficult. In particular, when such a heat-sensitive transfer sheet is placed on the mold surface during the molding of synthetic resin and the transfer is performed simultaneously with the molding of the synthetic resin, it is inevitably exposed to high temperatures, so the above problems are particularly important. It's summery. Therefore, there is a need for a heat-sensitive transfer sheet whose base sheet can be easily peeled off after transfer even at high transfer temperatures. As a result of intensive research to solve the problems of the conventional technology as described above, the present invention was developed by forming a cured resin layer on the surface of the base sheet of the conventional heat-sensitive transfer sheet, which facilitates high-temperature transfer. We have completed a heat-sensitive transfer sheet that can be peeled off from the base sheet. (Means for Solving the Problems) That is, the present invention has a cured resin layer, a release layer, a pattern layer, and a heat-sensitive adhesive layer sequentially provided on one side of a base sheet, and the cured resin layer is an acrylic-modified layer. This is a heat-sensitive transfer sheet characterized by being made of a melamine resin or an etherified modified melamine resin. The present invention will be described in more detail with reference to the accompanying drawings showing one embodiment of the present invention. Fig. 1 is a sectional view schematically showing the structure of the heat-sensitive transfer sheet of the present invention, and Fig. 2 is a cross-sectional view schematically showing the structure of the heat-sensitive transfer sheet of the present invention. FIG. 1 is a diagram schematically showing a transfer method using the heat-sensitive transfer sheet of the present invention. The thermal transfer sheet 10 of the present invention, as illustrated in FIG. It can be formed by providing a pattern layer 4 thereon and further providing a heat-sensitive adhesive layer 5 thereon. Among the configurations of such a thermal transfer sheet 10 ,
The other configurations except for the cured resin layer 2 may be conventionally known configurations. The main feature of the present invention is that the above thermal transfer sheet 1
In the configuration of No. 0, a cured resin layer 2 is provided between the base sheet and the release layer of a conventionally known heat-sensitive transfer sheet. The base sheet 1 used in the heat-sensitive transfer sheet 10 of the present invention may be a synthetic resin sheet such as polyethylene terephthalate or polypropylene, or various processed papers, which are used as a base sheet for heat-sensitive transfer sheets in the prior art. can be used. Its thickness is generally 10~
It is about 100 μm, preferably about 20 to 50 μm. Particularly preferred in the present invention is a polyethylene terephthalate sheet or film. Cured resin layer 2 provided on the surface of the base sheet 1
can be formed from a cured resin liquid that can form a film that does not soften or melt at temperatures of about 150 to 250°C. Examples of such cured resins include acrylic modified melamine resins and etherified modified melamine resins. The cured resin layer 2 made of these cured resins is
These resins are dissolved in an appropriate solvent as necessary to prepare a coating liquid or ink, which is solid printed or coated on the surface of the base sheet 1, dried, and heat treated as necessary. form.
The thickness of such a cured resin layer 2 is generally about 0.5 to 5 μm. Since the cured resin layer 2 formed in this way is a sufficiently three-dimensionally crosslinked layer, it does not soften or melt even when the temperature during transfer becomes high, and is therefore integrated with the release layer 3. The base sheet can be easily peeled off after transfer. Such a cured resin layer 2 is formed so as to remain in close contact with the base sheet 1 even after transfer. To do this, the adhesive strength between the base sheet 1 and the cured resin layer 2 must be
Each material may be selected so that the adhesive strength is greater than that between the cured resin layer 2 and the release layer 3, the surface of the base sheet may be roughened, or a primer layer (not shown) may be applied to the surface of the base sheet. Any means, such as providing a The release layer 3 provided on the surface of the cured resin layer 2 is
During transfer, it is peeled off from the cured resin layer 2 on the base sheet 1 together with the heat-sensitive adhesive 5 and the pattern layer 4, and after the transfer, it functions to protect the transferred pattern layer 4. The material and formation method of such a peeling layer 3 can be performed using conventionally known materials and methods, such as acrylic resin, vinyl chloride resin, cellulose resin, rubber resin, urethane resin, polyester resin, vinyl acetate resin,
An organic solvent solution or dispersion of a homopolymer, copolymer, or a mixture thereof such as ethylene-vinyl acetate resin is coated by a known coating method such as a gravure method, a screen printing method,
It is generally applied to a dry film thickness of 0.1 to 5 μm, preferably 0.3 to 2 μm, by a roll coater method, spray coat method, flow coat method, knife coat method, air knife coat method, etc., and then dried. be done. The pattern layer 4 formed on the peeling layer 3 as described above is
After the transfer, a substantial pattern is imparted to the transferred material 6, and various conventionally known inks for similar purposes can be used as they are. More specifically, gravure ink, offset ink, silk screen ink, etc. are prepared by kneading or mixing various pigments or dyes into the same binder resin as used for forming the above-mentioned release layer 3. death,
It can be formed by any printing method such as known gravure printing, offset printing, silk screen printing, and gravure offset printing. It goes without saying that the pattern layer 4 formed in this manner may be printed entirely or partially. Heat-sensitive adhesive layer 5 formed on the above-mentioned pattern layer 4
does not exhibit tackiness under normal conditions, but develops tackiness when heated, and upon transfer, it is transferred to the surface of the transfer material together with the above-mentioned peeling layer 3 and pattern layer 4. Such a heat-sensitive adhesive layer 5
It can also be formed by using materials and methods conventionally used for the same purpose. Specifically, organic solvent solutions of various thermoplastic synthetic resins are applied to the pattern layer 4 by the method described above. It can be formed by applying it to Such a heat-sensitive adhesive layer 5 generally has a thickness of about 0.2 to 10 μm,
Preferably the thickness is about 0.5-3 μm. Further, when the material to be transferred is a synthetic resin molded product such as polystyrene, ABS, AS, or acrylic resin, it is preferable to form the heat-sensitive adhesive layer 5 from an acrylic resin. (Function/Effect) The heat-sensitive transfer sheet of the present invention as described above is useful for printing on paper, synthetic resin molded products, films, sheets, metals, wood, and any other general transfer materials. The transfer method itself can be carried out according to a conventionally known method as shown in Figure 2. In particular, the heat-sensitive transfer sheet of the present invention does not cause the base sheet and release layer to become integrated even at high transfer temperatures, so it can be used in applications where high temperatures are likely to occur, such as synthetic resins that are molded and decorated at the same time. It is useful for various molding methods or for decorating transfer materials where the transfer surface is complicated and the transfer layer is likely to be peeled off at the same time when the base sheet is peeled off. Next, the present invention will be explained in more detail with reference to Examples. Example 1 Polyester film with a thickness of 38 μm (manufactured by Toray Industries, Ltd.)
A coating liquid made of acrylic modified melamine resin (manufactured by Dainichiseika Industries, product name "EX-114D") was coated on one surface of the product (trade name "Q-30") using a gravure coating method and dried at 190°C. A cured resin layer with a thickness of 0.5 μm was formed by heat treatment for 10 seconds. Next, a release layer with a thickness of 1 μm was formed using a vinyl chloride-vinyl acetate copolymer-acrylic resin liquid (manufactured by Showa Ink Industries) using a gravure coating method, and then a release layer of vinyl chloride-vinyl acetate was formed using a silk screen printing method. Copolymer-acrylic resin ink (manufactured by Toyo Ink, product name "#8000 series")
to form a pattern layer, and then vinyl chloride-
A vinyl acetate copolymer-acrylic resin liquid (manufactured by Moroboshi Ink, trade name "VTP Medium") is applied by gravure coating and dried to form a 1 μm thick heat-sensitive adhesive layer, and the heat-sensitive transfer sheet of the present invention is produced. I got it. When the above thermal transfer sheet of the present invention was used to transfer onto an acrylic resin plate with a roll having a surface temperature of 250°C, the transfer was excellent and the base sheet was easily peeled off. On the other hand, in the case of a heat-sensitive transfer sheet formed in the same manner as above without providing a cured resin layer, the base sheet and release layer become integrated at the temperature during transfer, and the base material after transfer is It was difficult to peel off the material sheet. Example 2 Instead of the modified melamine resin in Example 1,
A heat-sensitive transfer sheet of the present invention was obtained by forming a cured resin layer using an etherified modified melamine resin and otherwise in the same manner as in Example 1. This heat-sensitive transfer sheet also had the same good properties as in Example 1. The peelability of the base sheet was shown.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図は、本考案の感熱転写シートの構造を図
解的に示す断面図であり、第2図は上記第1図の
感熱転写シートを用いた転写方法を図解的に示す
図である。
1……基材シート、2……硬化樹脂層、3……
剥離層、4……絵柄層、5……接着剤層、6……
被転写材、10……感熱転写シート。
FIG. 1 is a sectional view schematically showing the structure of the heat-sensitive transfer sheet of the present invention, and FIG. 2 is a diagram schematically showing a transfer method using the heat-sensitive transfer sheet of FIG. 1. 1... Base material sheet, 2... Cured resin layer, 3...
Peeling layer, 4... Pattern layer, 5... Adhesive layer, 6...
Transferred material, 10 ...thermal transfer sheet.